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Abs t rac t .  This paper presents a general method to compact the first- 
order part of functional languages with call-by-value semantics for fine- 
grain parallel machines like VLIW or supeT-scalars. This work extends 
previous works on compaction in two ways. First, it defines a new formal 
system for the compaction problem usable to design a meta-compiler 
for these machines. Second, the compaction is directly applied to func- 
tional expressions instead of graph based representations (control flow 
or dependence flow based representations) leading to a very uniform and 
simple presentation. 

1 I n t r o d u c t i o n  

VLIW (Very Long Instruction Word) [14] and super-scalar architectures [11, 5] 
are fine grain parallel and compiled architectures in the sense that  they can 
execute many instructions per cycle, gathered together by a compiler. VLIW 
are controlled by a single instruction stream (one program counter) where each 
processor executes a dedicated field of a long instruction. In a super-scalar ma- 
chine, the processor executes successive RISC-like instructions belonging to a 
small window by analyzing at runtime their dependencies. 

Fine grain parallelization for these architectures, or compaction, statically 
recognizes and schedules groups of elementary operations that  can be executed 
in parallel. Compaction can be loca l -  it is then limited to expressions without 
branches, or global-  and it treats conditional expressions. Loops are compiled 
by Software Pipelining. 

We propose in this paper a new and formal presentation of compaction, 
directly applied to functional expressions (terms). It can be used as a first step 
in the problem of designing meta-compacting compilers but  also as a first step 
toward fast and efficient implementations of functional languages on fine-grain 
parallel machines. 

This paper is organized as follows. The first part  motivates the point of 
view adopted in this paper. We then give some examples. The next part is the 
formalization: we first define a functional language and its operational semantics. 
The classical notion of dependence is defined by an equivalence relation named 
structural equivalence, between programs having the same dependences. It serves 
as a guide for the formalization: every program transformations will have to 
preserve this equivalence. Then we build a transformational system on terms 
that  improves programs for a given machine. 
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2 M o t i v a t i o n s  

Compacting compilers and, more generally, parallelizing compilers, can be de- 
composed into two classes. Compilers in the first class are applied to control flow 
based representations (basic bloc graphs) where elementary instructions "perco- 
late" in the graph [8, 7, 1, 15, 6]. In this framework, software pipelining is done 
by iterative methods with a controlled inlining of loops, looking for a repeated 
behavior [1, 6]. For compilers in the second class, compaction is applied to de- 
pendence graph representations of programs, extending scheduling techniques 
to programs containing control structures [18, 13]. Software pipelining is then 
applied to graphs with cycles. The tradeoff is between generality and efficiency. 
Control based representation is the most general framework since it is the low 
level representation of every program. Nonetheless, it leads to very poor im- 
plementations - -  operations moves are done in linear time. Dependence graph 
based representation leads to efficient implementations - -  operation moves are 
done in constant time - -  but only a subset (without tests) of a real language 
is well treated in this framework. In particular, software pipelining is applied to 
elementary do loops with no tests or nested loops. When control is added (e.g, 
Lam's hierarchical reduction system [13]), the control is boxed, which forbids the 
best possible compaction. 

This paper investigates a formalization of compaction, thus we have to define 
an intermediate language and an abstract notion of fine-grain parallel machines. 
We have to balance this tradeoff: the intermediate language has to be general 
enough to represent a real subset of classical languages, but it also has to be 
practical (the representation must lead to efficient implementations). Moreover, 
this formalization has to be simple enough to allow reasoning about compaction. 
Then, some program transformations (renaming, duplication, unrolling, etc.) 
should be possible. Lastly, to be general enough, it has to compact recursive and 
functional programs: to compact such programs, it makes no sense to translate 
them into some low level control graph representation and then retrieve their 
dependences, since in a functional language, dependences are simply read off 
the syntax. Moreover, in a functional language, sections of programs can be 
guaranteed to be free of side-effects by the type system 1 and have the Static 
Single Assignment (SSA) property. As it fails to represent the control of all kind 
of programs, the dependence graph representation alone is not suited either as an 
intermediate representation of programs. The solution proposed here is between 
control flow based representations and dependence flow based representations. 

Compaction will be defined by a set of transformations directly applied to 
functional terms, each of them improving the term to some extent. The language 
is an extension of dependence graph representation - -  a dependence graph is a 
particular case of a functional expression 2 __ but is able to represent the control 
of program. With the functional representation, the compiler manage at the same 

1 Though they manage data-structures (lists,...) represented with pointers. 
2 The let definition in a functional expression defines the sharing, i.e, Directed Acyclic 

Graphs. 
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t ime the dependence and the control information on the program and program 
transformations are based on the well known substitution principle. In order to 
define a formal  system for the compaction problem, we propose an operational 
semantics to give a measure to expressions - -  every compacting transformations 
will have to improve programs - -  and a notion of dependences. The operational 
semantics defines the way a fine-grain parallel machine executes a program. 
The notion of dependences is also important .  Indeed, as compaction usually 
respects this notion in the classical framework, how this notion applies in the 
functional case, in order to have the same expressiveness? In other words, what 
are the program transformations a reasonable compiler can do? Here, the notion 
will be defined by an equivalence relation, named structural tha t  will permit  
classical t ransformations.  Finally, because functional terms can be represented 
with sharing, it allows better  implementat ions than with the classical control- 
flow based representation. 

3 E x a m p l e s  

Let us try first to compact  the simple program P1 given on the left of the 
following figure. It  executes an addition (+1) between a variable and a constant. 
It  binds the result to the variable x and then executes the operation +2 and 
then -3 ,  the test and one of the two branches. Finally, it computes *5 between 
the value of (x +2 4) - 3  x and the value of the conditional expression. 

P1 = letx : Y + I  2 P3 : letx : Y + I  2 
in +2 4) - 3  x) .5  i fz  : 2  0 

then l e t m = 4 + 3 y  
in m *4 n 

else x *3 2 
P2= l e t x =  y + l  2 

in i f  z =2 0 

then ((x +2 4) - 3  x) *5 (let m = 4 +3 Y) 
in m *4n 

eJse ((x +2 4) --3 x) *s (x *3 2) 

m = 4 + 3 y  
in if z =2 0 

then let xl --- x +2 4 
x 2 = m * 4 n  

in let Z l  ---- Xl  --3 X 

in Xl *5 X2 
else let Xl  ---- x + 2 4  

x 2 ~ - - ~ . 3 2  
in l e t x l - - - - x l - - 3 x  

in Xl *5 x2 

Consider now a machine A4 able to execute this program in a left-to-right eval- 
uation order and where three successive and independent instructions can be 
executed in parallel. The execution t ime of P1 on M is 5. Let us show how a 
simple t ransformation improves this execution time. Consider the elementary 
computat ions tha t  can be executed immediately  in parallel. We term these com- 
putat ions ready sub-terms. They are overlined here. +3 may  be executed specu- 
latively before the test because it is a safe computat ion 3. We apply a move-up 
rule to the test, getting P2. Now, +3 can be moved-up. We then continue the 

3 A computation is safe when it can be executed speculatively without modifying the 
semantics. 
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compaction with the two branches, getting at the end P3. This program can not 
be compacted further and its execution time on it4 is 4. It is decomposed into 
groups of independent instructions executed in parallel. 

Consider now the case of a simple recursive function F written in a PCF 
style [10]. It is an iteration on a list where [] stands for the empty list, hd and 
tl for the head and the tail of the list (x and a are the arguments). 

( ~ [x; a]. ifx = [] ) 
F = Fix/ thena 

else f[tl(x);-(hd(z)) + a] 

The global compaction on this program would compact the body of the function, 
ignoring the possible overlapping between iterations, thus the parallelism. For 
this reason, we apply an inlining rule: Fixf(a) ~ a[f\Fixf(a)] meaning that  
all occurrences of the free variable f are replaced by its definition. We get the 
following ~erm given on the lefL Now the only ready sub-term is the test. We 
then move the overlined ready sub-terms in the false branch, getting the program 
on the right. 

Ix; el. ifx = [1 
then a 
elseF[tl(x);-(hd(z)) + a] 

,k [x; a I. ifx = [] 
thena 
else let z l  = tl(x) 

x2 = hd(z) 
in F [Xl ; -x2  -I- a] 

The current term to be compacted is F[xl; -x2 + a]. Because the first argument 
is computed, the inlining of F will show new ready sub-terms to be executed 
in parallel with the current ready sub-terms. After the inlining, the following 
application has to be compacted. 

()~[x; a]. ifx = [] then a else F[tl(x); -(hd(x)) 4- a])([xl; -x2  4- a]) 

A simple renamming rule is used for simplifying the application. We get the new 
term: 

(ha. if ~c 1 -= [] then a else F[tl(xl); -(hd(xl))  4- a])(---~2 4- a) 

We can move-up the ready sub-terms. The resulting program is given below, 
on the left. In  this term, the sub-expression (~a.a)(x3 + a) can be simplified in 
z3 + a. After the first step of compaction on the false branch, we have the term 
given on the right. 

let ~3 = - - x 2  

in if Xl = [] 
then ( )~a . a ) (x3  + a )  

else (~a.F[tl(Zl);-(hd(xl)) + a ] ) ( ~  

let x 3 ~ --.~2 

in ifxl = [] 
then x3 + a 

else let x3 = z3 + a 

X2 ---- t l ( X l )  

x4 = hd(xl) 
in ($a.F[x2;-x4 + a])x3 



445 

The next expression to be compacted is (Aa.F[zg.; - z 4  + a])x3. By the renaming 
rule, this t e rm is simplified in FIx2; - z 4 + x 3 ] .  We already saw a very similar term. 
I t  is equal, modulo  a renaming of its free variables, to the t e rm F [ x l ; - x 2 +  a]. 
Compact ion  does not depend on names so it will produce the same result for 
this input,  hence the process enters in an infinite loop. To stop compaction, we 
give a name - -  here i f - -  to the t e rm and replace it by a call. The  final p rogram 
is the following one. 

le tff  = Fix#(A[xl ;  x2; a]. 
let  x 3  : --x2 
in if Xl  = [] 

then x3 + a 
e l se  let  x 3  = x 3  -4- a 

X2 : tl(Xl) 
X4 = hd(xl)  

in A [z ;a ] . i f z  = [1 
thena 
e l se  let  x l  = tl(x) 

x2 = hd(x) 
in ff[Xl; x2; a] 

This final program cannot be compacted anymore. It  is the Software Pipelin- 
ing version of the initial program, i.e. another inlining followed by the compaction 
process would produce the same result since we have inlined F as soon as pos- 
sible. 

Note that  the recursive call to f f  can be implemented here by a direct branch 
and variable names can be seen as register names. Then, register allocation can 
be done on the fly with compact ion (but it is not necessary). In this case, move 
instructions between z l  and x2, z2 and x4, a and z3 can be eliminated. 

This example raises the following questions. In this process, some transfor- 
mat ions  were done on programs like renaming, moving instructions, reducing 
identity calls. Wha t  are the legal t ransformations a reasonable compiler can do? 
Why would the last program be better  than the first one? Does the compaction 
process always terminate  and how can this be formalized? Answers to these 
questions will be developed in the following sections. 

4 F o r m a l i z a t i o n  

We present a complete formalization of compaction. The first part  deals with 
the presentation of a first-order recursive language, named ~ .  I t  is a low level 
language (an intermediate language). We then present the machine model tha t  
will allow discussing about  '% program is bet ter  than an other one for a given 
machine".  The definition should apply to sequential machines as well as super- 
scalar or vliw machines. The next par t  deals with the semantical model of fine 
grain parallelization. It  presents the notion of dependences in 2". We shall see 
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why dependences are defined intentionally by an equivalence relation named 
structural equivalence. The last part is the definition of software pipelining and 
the transformation system to produce it. 

4.1 T h e  .T" l a n g u a g e  

The 2" language is a recursive language with an ML-like syntax, but with a 
granularity close to the one of a machine. 

De f in i t i on  I T h e  2- l anguage .  The definition of the language is the following. 

a ::= i I true I false Ix I letz = aina  l a[a;. . .;a]lAs 
I op[a;...;a] I Fix/(a) I i fa thenae lsea  

op ::= add_Jut I --- 

Primitives (caLled op) are those of the architecture. Terms range over a. 
2" manages scalars (i), variables (z), defines local values (let), n-ary functions 
A[zl; ...; z,].a, recursive functions Fixf(a), and n-ary primitives (oi0) and appli- 
cations a[al; ...; an]. All memory accesses are done by explicit primitives and 
there are no s i d e - • c t s  in the sense that  the language has the SSA (Static Sin- 
gle Assignment) property [3]. In the paper, we note ff instead of [az; ...; a,] and 
a'li for [al; ...; ai-1; ai+l; ...; an]. 

~- is a typed language fi la ML and we suppose the existence of a typing 
function - -  named type - -  returning for each expression of ~', its type taken 
from the type language below for which a classical typing algorithm can be 
chosen [4]. 

t : :=  7. I t -- .  t I It; ...; t] 

7- denotes scalar types (int, bool ,...). t ~ t is the function typeand [t; ...; t] is 
the product type. Information needed about a type is its complexity, that  is, the 
number of arrows on the left. 

D e f i n i t i o n  2 T y p e  complex i ty .  We define the function l-I, returning the type 
complexity of its argument. 

Ih "-*t21 = 1 + Itll I[tl; .. .;t,]l = mazi(Iti l)  I r l  = 0 

For instance, the type complexity of (int ~ int) --+ int is 2 whereas the type 
complexity of int ~ (int ---* int ) is 1. This gives the functionality order. We need 
a preliminary definition before defining the ready sub-terms of an expression. 

D e f i n i t i o n 3  Cos t .  The cost of a term a is defined by the function II.lh returning 
an element from ~r U { ~ } .  

II if al then a 2 else a311 = ~ = l ( l l a ~ l l )  

I I ~ . a l l  = 1 

Ilzll = Ilfll = 0 I la( [bl ; . . . ;  b.]) l l  = c r  

n Ilop[a~; ...; a-] l l  = 1 + ~ = ~ ( 1 1 ~ 1 1 )  

Illet = = a~ in a=ll = I1~]11 + Ila211 

t l F i x 1 ( a ) l l -  Ilall 
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The cost is a coarse approximat ion of the execution t ime of an expression. 
All primitives are assumed to be executed in one cycle and the execution t ime 
of an expression containing a call is infinite. The cost of an abstract ion is 1 as 
we consider the cost of constructing a closure to be elementary 4. Now we can 
define the ready sub-terms of an expression. 

D e f i n i t i o n 4  R e a d y  s u b - t e r m s .  Let a be a te rm of ~ .  s -< a means that  the 
sub- term s of a is ready in a. 

s -< ai s -~ a Xi 7~ 8 Ilsll < ~ s -~ al s -~ A f . a  

s -< s s -< op(ff) s -< A~.a s ~ l e t x  = al  ina2 s -< Fixl(a)  

s-< al  s ~ ai I1~11 < c r  s - g  a2 x ~ s s-< ai 

s ~ if al then a2 else a3 s -< if a then al  else a2 s -< let x = ax in a2 s-<ao(f f )  

A ready sub- term is a sub- term that  can be computed immediately. For 
example,  1 + x ~ Ay.(1 + x) �9 y. The notion of ready sub-terms is an extension 
of free variables (hence, a free variable is always ready). For this reason, we will 
use the classical notat ion F V ( a )  containing the set of free variables of a, i.e, 
x C= F V ( a )  iff x -~ a. Ready sub-terms of special interest are those whose cost is 
1, that  is elementary computat ions.  

D e f i n i t i o n  5 R e a d y  s u b - t e r m s  s u b s t i t u t i o n .  Let t be such that  t -< a. The 
substi tut ion of all occurrences of t in a by b, noted air\b], is defined by: 

t i t \b]  = b 
x[t\b] = x i f  x # t 

(op[al ; . . . ;  a~ l ) [ t \b ]  - op[[al [t\b]; ...; a .  It\b]1 
(a0 [a l ;  ...; an])[t\b] = (ao[t\b])([al[t\b]; ...; an[t\b]]) 

(),x.a)[t\b] = ),z.a i f  x 4 t 
(~z.a)[tkb] = Az.(a[x\z][tkb]) else .  z 7~ a A z 7~ b 

( l e t x  = a l  in a2)[t\b] = l e t x  = al[tkb] ina2 i f  x -< t 
( let  z = a l  in a2)[t\b] = fat z = a l  [tkb] in a~[z\zl[tkb] else .  z -~ a= A z ~ b 

Fix](a)[t\b] = F i •  i f  f -< t 
Fixl(a)[ t \b  ] = Fixg(a[f\g][t \b]) else .  g 7~ a A g ~ b 

( i f  a l  then a2 else a3)It \b]  - -  if e l  It\b] then a2 It\b] else a3[t\b] 

The substi tution of ready sub-terms is very similar to the classical substitu- 
tion of free variables. For example,  (Az.(1 -4- y) * x)[1 -4- y \y]  = A x . y  * ~. Thus 
substi tution makes it possible to extract computat ions from a term. 

4 A multicycle computation op(x) can be treated, replacing it by 
Opl (Op2 (... (Opn(,T,))...)). 
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4.2 Operational semantics 

The operational semantics has two aims. As usual, it defines the values and the 
execution order. But, it also express how a fine-grain parallel machine handles a 
given program. I t  leads to a measure on programs.  

The language has a call-by-value evaluation in a left-to-right order. A machine 
can be seen as a function, selecting a subset of elementary ready sub-terms 
and executing them. All sub-terms cannot be selected. A fine grain parallel 
machine executing some in-line code does not see the entire control structure of 
the program and is limited by control-dependences [12]: an instruction following a 
function call is unreachable. To define machines, we need a prel iminary definition 
to explain what unreachable means. 

D e f i n i t i o n 6  O c c u r r e n c e s  a n d  d e p t h .  The set of occurrences (access paths),  
O(a) of a te rm a contains words on integers (the empty  word is A). I t  is defined 
as usual by: 

A e O(a) 
For all construction C of the language, i.oi E O(C(al, . . . ,  a,~)) 

if ol E O(ai). 

We define the Depth of an occurrence in a given te rm as follows: 

7~a(A) = 0 
7~[a,;...;~.](1.o) = ~in_l  Ilaill +/ )~ (o )  
For all other constructions C, :De(a, ..... a.)(i.o) = :Da~(o) + ~ j<i  IlaJ H" 

The depth of an occurrence is the number  of instructions tha t  are executed 
before it, in a left-to-right evaluation order. Thus, the depth of ( l + y )  in ( ~ x . ( l +  
y) * x)(2 + z) is 2 because the argument  is executed before the body of the 
function. The depth of a sub- term on the right of a function call always equals 
cr I t  means that  the computat ion is unreachable by the machine. 

When possible, the occurrence will be omit ted  and the notat ion :Da(t) will 
be used instead of:P~(o) if o is the occurrence of the sub- term t in a. 

A machine can be seen as a sub-relation of -<. For example,  a machine is 
able to forbid speculative execution. Therefore, instructions under conditionals 
or abstractions are never ready. 

D e f i n i t i o n 7  M a c h i n e  AA. A machine AA is a function f rom terms f rom ~ to 
set of terms verifying the following constraint: there exists kl,  k2 E ~V such tha t  
for all a with A/l(a) = {tl, ..., tn}, we have n < kl, ti -< a and :Da(ti) < k2 and 
there exists at most  one tl such tha t  Iltill = co. 

The number  of ready sub-terms (kl) gives the number  of parallel units of the 
machine and the depth gives the window size (k2) - -  the number  of instructions 
tha t  can be fetched every cycle. This window contains at most  a function call 
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(an unconditional jump)  which is on the right of the others 5. A super-scalar 
machine also matches this description. A sequential machine is the special case 
where kl = 1 and k2 = 1. A vliw machine is a special case of a machine. 

Example I VLIW machine. A vliw machine is a maximal  machine Ad such that:  
i f t  E A/I(a) and 7)a(t) = n then Vt',7)a(t') < n ~ t' E Ad(a) 

Here, the maximal  prefix of independent instructions from a window of se- 
quential instructions can be executed in parallel. We call it a VLIW machine, 
even if it is not a real one - -  a Multifiow-like machine [14] - -  because no schedul- 
ing is done by the machine. 

Pipelined machines enter in this description if the compiler t ransforms a 
pipelined instruction op(x) in nop(...(nop(op(x)))...). 

Example 2 Pipelined machine. A pipelined machine is a machine A~ such that:  
i f t  E Ad(a) and t # hop(y) then hop(x) ~ a =~ hOp(X) E }vI(a). 

All hop operations are necessarily executed in parallel with a non-hop oper- 
ation. A machine will be given by its s tate au tomaton  that  reads only a finite 
par t  of the term. Let us see now the definition of the operational semantics of 
the ~ language given in a structural  way [16]. 

The operational semantics is straightforward. Like a classical fine-grain par- 
allel machine, the machine selects a subset of ready sub-terms that  can be ex- 
ecuted in parallel, executes them and substitutes selected ready sub-terms by 
their values. Nonetheless, because of the representation of programs,  a te rm of 

contains some noise, that  is, syntactical constructions that  do not generate 
any computat ion (in fact, they correspond to no assembly instructions). For ex- 
ample, the let represents dags and the expression let x = 1 in x + x has the same 
execution t ime as 1 + 1. To reduce this noise, we define an equality. 

Definit ion 8 e - t r a n s i t i o n s .  We define the equality = ~ .  C(a) denotes a t e rm 
containing the sub- term a. 

C(let x = x in a) 
C(let x = i in a) 

C(let x = $y.al in a2) 
C(let x = F ix l ($y .a ,  ) in a2) 

C( if true then a2 else a3) 
C( if false then a2 else a3) 

= ~  C(a) 
= ~  C(a[x\ i ] )  
=.,t4 C(a2[x\.~y.al]) 
=.M C(a2[x\Fix.f(,~y.a, )]) 
=~ C(a2) 

C(a3) 

C( ( As ...; xi; ...; b~]) = ~  

C(Fix.f ( )~E.e) ) = ~  

; ...; ; ...; b.]) 
i f  xi E A d ( ( A s  ...; xi;  ...; b . ] )  
^type(x,)l  = 0 

if Fixl(l .a ) E 

s According to the definition, the depth of a function call is finite if it is not preceeded 
by any other call. 
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The constraint on the complexity of the type for the reduction of applications 
will be explained further. The equality says which constructions are invisible for 
the machine A/I. Here, only reachable sub-expressions are reduced: the equality 
is not applied in all contextes. This is due to the inlining rule for recursions. 
Indeed, without the use of M m ,  the following infinite reduction could occur: 
F[x; y], ..., F[x; op(y)], ..., ( Ay.F[x; op(y)])(op(y) ), .... 
with F = Fix](~[x; y].f[x; op(y)]). In our definition, empty  computat ions are 
erased when necessary. 

D e f i n i t i o n 9  O p e r a t i o n a l  s e m a n t i c s .  The operational semantics of a pro- 
gram on a machine A/I is given by the relation 4- a 1} b means that  a evaluates 
to b. Terms are considered modulo = ~ .  The inference rules are: 

.M(a) = {t] , . . . ,  tn} ti 1} vi a[tl\vl].. .[tn\Vn] ~ b 

a~b 
Axioms are of the following form: 

X,~X 
Ax.a ~ Ax.a 
Fix.f (Ax.a) ,U, Fix ](Ax.a) 
il + i2 ~ i3 where 43 is the sum of il and i2. 

The execution t ime l a l~  of a is the size of the proof of a ~ v. 

For simplicity, we only give the axiom for integers. With the definition of the 
execution time, we may  compare programs. 

4.3 D e p e n d e n c e  s e m a n t i c s  

We used some program transformations like renaming of inlining in the com- 
paction of the second example. What  reasonable t ransformations should be in- 
corporated in a compacting compiler? In the classical framework, only transfor- 
mations preserving dependences are legal. There is a dependence between two 
instructions if one instruction modifies a value read by another. These depen- 
dences are decomposed into true-dependences - -  or data-dependences - -  when 
the second instruction reads the value produced by the first, and false depen- 
dences - -  anti-dependences and output-dependences - -  when the second modifies 
a value read or written by the first one [2]. 

Because : f  is a functional language, dependences, in the usual sense as def-use 
links are directly given in the text by variables and composition of computations.  
Thus, x of let x = a in b depends on a - -  and of all its sub-terms - -  and every sub- 
te rm of b containing x depends on it. The transitive closure of this relation gives 
the classical notion of dependence graph. It  is useless to define another notion of 
dependences of a te rm in : f  and if it would exist, it would be as complex as the 
t e rm itself. Our notion of dependences is too rigid here for what  we need since 
no syntactical t ransformation of the t e rm is allowed. 
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We prefer to define dependences as an equivalence between "programs having 
the same dependences". This equivalence will be named structural equivalence. 
How does this equivalence interact with fl-reduction6? On one hand, two really 
different programs can be extensionally (beta) equivalent and it is clearly infea- 
sible (in a compiler) to allow all kinds of/~-reductions. Moreover, we would have 
some coherency problems since 1 + 2 is not equivalent to 3 but  the translation in 
pure h-calculus would yield the equivalence. On the other hand, can we limit the 
equivalence to the syntactic equality? Of course, not. It  is reasonable to allow 
instruction moves, inlining, duplication 7 which are the minimal  t ransformations 
needed for compaction. 

The solution proposed here is to limit fi-reductions by the complexity of the 
type: only fl-reductions where the type of the argument  is simple (the complexity 
is 0) are allowed. 

D e f i n i t i o n  10 S t r u c t u r a l  e q u i v a l e n c e .  Let a and b, two terms of ~'. We say 
that  a and b are structurally equivalent, noted a --~ b, when limn..,ooa ~ = 
limn_~oob n where a n is defined by a ~ a 2 --* . . .  ~ a n and by the rewriting 
relation --* applied to all contexts. --* is defined by: 

1. let x = al in a2 --~ a2[x\al]  

2. if a then b'else E--~ i f a  then b else c 
3. if true then al  elsea2 - + a l  
4. if false then al else a2 --~ 
5. ()t~.a)b---~ (A~li.a[zi\b~])bll if Jtype(bi)J = 0 
6. Fixf(a)  --* a[fkFixf(a)]  

The first rule allows to duplicate a computat ion.  The second rule is equivalent 
for the test. The  next two rules show that  conditions can be simplified. The next 
rule is a j3-reduction when the type of the argument  bi is simple. 

4.4 C o m p a c t i o n  

We saw in the examples that  compaction can be obtained by selecting and 
moving up ready sub-terms. We first define instruction move by two simple 
rules and then define how to select a subset of the ready sub-terms. 

D e f i n i t i o n  11 M o v e - u p .  Instruction moves are defined by the relation a ~ b 
where t is ready in a, such that:  

(MOVE) a t_+ let x ---- t in a[t\x] if x ~ a 

(TEST) a ~-~ i f t then air\ true] elsea[t\false] 
if if t then al else bl is a sub- term of a 

3-reduction is the following rule ()~x.al)a2 --*~ al[x\a2]. 
7 Duplication is useful when it is cheaper to recompute a value than to communicate 

it. 
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Instruction moves are simply inverse fl-reductions. Now, to select a subset 
of the ready sub-terms that  can be executed in parallel on the machine, the 
compaction process needs a s tra tegy .  For example,  the classical L i s t - s c h e d u l i n g  [9] 
strategy will select ready sub-terms which are on the longest dependence path.  

D e f i n i t i o n l 2  S t r a t e g y .  A strategy C is a function C between terms and set 
of terms such that  C(a)  = { t l , . . . ,  t n }  and for all t l ,  ti  -< a 

A strategy is not very different from a machine except tha t  - -  for the moment  
- -  there is no constraint on the position of ready sub-terms in the term. I t  is 
the reason why we can deal with =c ,  replacing A4 by C. 

Let us see now the compaction system. I t  is very similar to the operational 
semantics: at every step, some computat ions are selected and moved-up in the 
program. The rest of the program is then compacted. 

D e f i n i t i o n l 3  C o m p a c t i o n .  Let p be a renaming. Terms are considered mod-  
ulo =c-  The general compaction is defined by the predicates e ~c a ~ l  b given 
in the figure 1, meaning tha t  in the environment e, the te rm a is compacted to 
b, using the strategy C and moving up the selected ready sub-terms in I. An 
environment is a set [fl\Av~.al]...[f,~\A~.a,~] used to record terms. 

The (SELECT) rule selects a subset of ready sub-terms f rom a. I t  records the 
current te rm a in the environment e and compacts  a with the selected ready sub- 
terms. The resulting program may  be recursive. Of course, if the compaction of a 
does not use f ,  the te rm (Fix ] ( ) w . b ) ) v  simplifies to b. The (EqvIv) rule stops com- 
paction when the current te rm is equivalent modulo a renaming p to a recorded 
term. In this case, the compaction of the current te rm is a call to the name of 
the recorded term. The (LAMBDA) rule is compositional rule. The (PRIM), (APP), 
(CONST) and (vArt) rules are the axioms. The (MOVE) rule moves up a selected 
ready-sub te rm and the (TEST) moves up a selected test. 

Now, do the resulting program always exists, that  is, does the system ter- 
minate?  What  are the conditions under which the compacted program is bet ter  
than  the initial one? 

For the termination problem, without constraints on C, the answer is clearly 
no. Indeed, consider F = Fix/()~[x; y] .f[opl(x);  op2(op3(y ) ) ] )  and F([x; y]). Let 
us see the suite of terms that  we shall have to compact.  It  is, 

F [ x ;  y], . . ., F [ x ;  op2(y)],  . . . , F I x ;  op2 (op3(y )  )],. . . , F i x ;  o p 2 ( o p 3 ( o p 2 ( y )  ) )], . . . 

Y [ x ;  y] is first inlined and the two ready sub-terms o p l ( z )  and op3(y )  are sub- 
stituted. Then, the current te rm to compact  is F [ x ;  op2(y)] ,  etc. This is a very 
classical problem of iterative compaction methods [1]: the problem is that  ready 
sub-terms are selected deeper and deeper. In the case of tail recursive functions, 
i.e. loops, we shall see tha t  compaction is simpler than  in the general case and 
that  simple and satisfying conditions over C can be taken. We shall come back 
on general recursive function at the end of the paper  to show the problems. 
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C(a) = l ~ = FV(a) e[f\~ga] ~c a ::~1 b 
(SELECT) 

e ~ a ~ ( F i x / ( ~ b ) ) ~  

b = p(a) r = p(~) e ~c a ~ a' 
(LAMBDA) 

e[f\,~ga] ~c b =:r f(~#) e ~c ~ a  ::~ /~a' 

a t-L, l e t x = t i n a l  e~ct=C,t' e~cal:=~tbl 
(MOVE) 

e ~c a ::~{~}ut let x = t ~ in bl 

(PRIM) e ~c op(~) ::~ op(x) (CONST) c ~c i ::~ i 

(APP) e ~ y(~) ~ y(~) (VAR) e ~ �9 ~ 

at---* iftthenalelsea2 e ~ c t ~ t l  e~eal::C'lbl e~ca2::~lb2 

(EQUIV) 

(TEST) 
e ~c a =r ift~then bl elseb2 

Fig.  1. The compaction system 

C o n s t r a i n t  1 ( T e r m i n a l  r e c u r s i o n s )  A term a is terminal if every sub-term 
Fixf(b) of a is such that f is in a terminal position in b, noted T( f ,  b). 

T ( f ,  i f  a then al else a2) if f ~ FV(a), T ( f ,  al) and 7/-(f, a2) 

T ( f ,  f(a)) if f g FV(a) 
T( f ,  let x : a in b) if f • FV(a) and T ( f ,  b) 
"T(f, )~x.a) if'T(f, a) 
T(f, a(b)) ifT(f, a) and f ~ FV(b) 
7-(f, a) if f ~ FV(a) for the other constructions 

The definition of t~il-reeursive functions says that  recursive calls to f are 
never followed by a computation. Now, we define a constraint on the strategy 
that  must be bounded to guaranty termination of the compaction system. 

C o n s t r a i n t  2 ( B o u n d e d  s t r a t e g y )  Let ]a[ be the number of ready sub-terms 
of a. A strategy C bounded by k is a strategy such that ilia] > k then for all t, 
t E C(a) iff t E C(b) where a ---+ b. 

A bounded strategy limits the number of selected ready sub-terms. The impli- 
cation t E C(a) :=~ t E C(b) is reasonable: it means, for example, that  instructions 
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inside a loop iteration have a priority over the ones belonging to the next iter- 
ations. The other constraint is quite unusual: it means tha t  even if a sub- term 
is ready after an inlining, for example, it cannot be selected if the size of the 
te rm is greater than a certain limit. This condition is not so strange: consider a 
te rm F(a) where F stands for a recursive function. An argument  for terminat ion 
in iterative methods can be that  the recursion is inlined when the size of the 
argument is bounded (usually, an instruction from an iteration can be moved up 
when the scheduling t ime of the previous iteration is less than  a certain limit). 

How does this constraints act with the classical List-scheduling strategy? This 
strategy selects ready sub-terms which are on the longest path.  The constraint 
means that  only bounded paths are considered 8 

P r o p o s i t i o n  1 ( T e r m i n a t i o n )  The compaction system ~c terminates with a 
bounded strategy. 

P r o p o s i t i o n  2 ( C o r r e c t i o n )  The compaction system preserves the structural 
equivalence. 

We have to prove that  this system is useful, that  is, it decreases the execution 
t ime of programs. This cannot be done for general machines because scheduling 
is NP-hard [9] and cannot be achieved by a greedy algorithm. Nonetheless, the 
speed-up can be guaranteed for VLIW machines and a s trategy which always 
select at least the nodes selected by the machine. 

Proposition 3 ( S p e e d - u p )  Let .M be a vliw machine and C such that Va, 3c, 
such that M(a) C_ e(a) C_ M(c). Then if ~ca ~ b then [a[~ >_ Ib]~ 

The result applies for VLIW machines because the depth of instructions in 
the program never increase: an instruction that  is selected by the machine in the 
initial program is still selected in the second one (except if it has been executed 
before). 

We can ask now how the resulting program compares with the classical soft- 
ware pipelining principle. Software pipelining for recursive programs can be seen 
as a finite representation of programs, infinitely inlined and compacted. I t  is a 
fixpoint for compaction: the compaction of the inlined version programs yields 
the same program. Software pipelining is defined f rom the notion of optimality.  

D e f i n i t i o n l 4  S o f t w a r e  p i p e l i n i n g .  Let a be a te rm of Y. A program a is 
opt imal  for C if ~cb ~ a where a --~ b. A program a I is a software pipelining of a 
by C when a -,, a ~ and a ~ is optimal.  

Proposition 4 ( O p t i m a l i t y )  ~c constructs a software pipelining for tail-recur- 
sire functions. 

s Proofs can be found in [17]. 
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The proposed system is a greedy system and is not well suited to general re- 
cursion. Indeed, consider the very simple expression F = Fix y ()~.A(~, f(op(Z)))) 
where A denotes an Y expression. We have the list of terms to compact: 
F(x~), A(xq, F(x~2)), A(x~, A(x'2, F(x~3))), ... 
The compaction process only reads the beginning of the term (op(xi)). Here the 
term grows after the recursive call. Even if compaction is stopped, using condi- 
tions over C, we do not have any re-rolling rule for the production of the software 
pipelining. It is unclear how a greedy algorithm, where software pipelining is ob- 
tained using what has been done in previous steps and where terms are inlined 
a priori, can be obtained for non-tail recursive functions. 

5 Conclusion and future work 

We have presented a method to directly compact the first-order part of func- 
tional programs. Compaction is described as a set of program transformations. 
An operational semantics has been proposed to model the behavior of a fine 
grain parallel machine that  executes a program. A notion of dependences has 
been given here by the structural equivalence: it defines only legal - -  but minimal 
- -  program transformations a parallelizing compiler needs to have. This paper 
can be seen as a formalization of classical compaction techniques, but also as an 
extension to the general class of recursive programs. By applying compaction to 
terms instead of control flow based representation, the compiler can take benefit 
of semantical informations available in the source program (for dependence anal- 
ysis, for example). Because the representation is more general than dependence 
based representations - -  this representation can be obtained with sharing - -  it 
can be used to represent dependences of a large class of languages. 

Some extensions can be done. First, a better strategy will improve conver- 
gence since iteration methods are known to be slow and to produce large resulting 
code. Secondly, imperative features could be treated with a slight modification 
of de ready sub-terms definition. Thirdly, it could be interesting (and useful) to 
take into account semantical properties of primitives in order to increase the 
set of the structurally equivalent terms and, thus, to improve compaction. This 
could be done by the addition of other simplifying rules (commutative rules,...). 
It is certainly for this kind of extension that  the functional representation of 
programs is better than the classical control-flow representation. Thirdly, non- 
tail first-order recursion must be treated and, finally, the compaction of general 
functional program can be studied. 
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