
The Program Compact ion Revisited: the
Functional Framework

Marc Pouzet

VERIMAG, Miniparc-ZIRST, Rue Lavoisier, 38330 Montbonnot St-Martin, France
e-mail Marc.Pouzet@imag.fr.

Abs t rac t . This paper presents a general method to compact the first-
order part of functional languages with call-by-value semantics for fine-
grain parallel machines like VLIW or supeT-scalars. This work extends
previous works on compaction in two ways. First, it defines a new formal
system for the compaction problem usable to design a meta-compiler
for these machines. Second, the compaction is directly applied to func-
tional expressions instead of graph based representations (control flow
or dependence flow based representations) leading to a very uniform and
simple presentation.

1 I n t r o d u c t i o n

VLIW (Very Long Instruction Word) [14] and super-scalar architectures [11, 5]
are fine grain parallel and compiled architectures in the sense that they can
execute many instructions per cycle, gathered together by a compiler. VLIW
are controlled by a single instruction stream (one program counter) where each
processor executes a dedicated field of a long instruction. In a super-scalar ma-
chine, the processor executes successive RISC-like instructions belonging to a
small window by analyzing at runtime their dependencies.

Fine grain parallelization for these architectures, or compaction, statically
recognizes and schedules groups of elementary operations that can be executed
in parallel. Compaction can be loca l - it is then limited to expressions without
branches, or global- and it treats conditional expressions. Loops are compiled
by Software Pipelining.

We propose in this paper a new and formal presentation of compaction,
directly applied to functional expressions (terms). It can be used as a first step
in the problem of designing meta-compacting compilers but also as a first step
toward fast and efficient implementations of functional languages on fine-grain
parallel machines.

This paper is organized as follows. The first part motivates the point of
view adopted in this paper. We then give some examples. The next part is the
formalization: we first define a functional language and its operational semantics.
The classical notion of dependence is defined by an equivalence relation named
structural equivalence, between programs having the same dependences. It serves
as a guide for the formalization: every program transformations will have to
preserve this equivalence. Then we build a transformational system on terms
that improves programs for a given machine.

442

2 M o t i v a t i o n s

Compacting compilers and, more generally, parallelizing compilers, can be de-
composed into two classes. Compilers in the first class are applied to control flow
based representations (basic bloc graphs) where elementary instructions "perco-
late" in the graph [8, 7, 1, 15, 6]. In this framework, software pipelining is done
by iterative methods with a controlled inlining of loops, looking for a repeated
behavior [1, 6]. For compilers in the second class, compaction is applied to de-
pendence graph representations of programs, extending scheduling techniques
to programs containing control structures [18, 13]. Software pipelining is then
applied to graphs with cycles. The tradeoff is between generality and efficiency.
Control based representation is the most general framework since it is the low
level representation of every program. Nonetheless, it leads to very poor im-
plementations - - operations moves are done in linear time. Dependence graph
based representation leads to efficient implementations - - operation moves are
done in constant time - - but only a subset (without tests) of a real language
is well treated in this framework. In particular, software pipelining is applied to
elementary do loops with no tests or nested loops. When control is added (e.g,
Lam's hierarchical reduction system [13]), the control is boxed, which forbids the
best possible compaction.

This paper investigates a formalization of compaction, thus we have to define
an intermediate language and an abstract notion of fine-grain parallel machines.
We have to balance this tradeoff: the intermediate language has to be general
enough to represent a real subset of classical languages, but it also has to be
practical (the representation must lead to efficient implementations). Moreover,
this formalization has to be simple enough to allow reasoning about compaction.
Then, some program transformations (renaming, duplication, unrolling, etc.)
should be possible. Lastly, to be general enough, it has to compact recursive and
functional programs: to compact such programs, it makes no sense to translate
them into some low level control graph representation and then retrieve their
dependences, since in a functional language, dependences are simply read off
the syntax. Moreover, in a functional language, sections of programs can be
guaranteed to be free of side-effects by the type system 1 and have the Static
Single Assignment (SSA) property. As it fails to represent the control of all kind
of programs, the dependence graph representation alone is not suited either as an
intermediate representation of programs. The solution proposed here is between
control flow based representations and dependence flow based representations.

Compaction will be defined by a set of transformations directly applied to
functional terms, each of them improving the term to some extent. The language
is an extension of dependence graph representation - - a dependence graph is a
particular case of a functional expression 2 __ but is able to represent the control
of program. With the functional representation, the compiler manage at the same

1 Though they manage data-structures (lists,...) represented with pointers.
2 The let definition in a functional expression defines the sharing, i.e, Directed Acyclic

Graphs.

443

t ime the dependence and the control information on the program and program
transformations are based on the well known substitution principle. In order to
define a formal system for the compaction problem, we propose an operational
semantics to give a measure to expressions - - every compacting transformations
will have to improve programs - - and a notion of dependences. The operational
semantics defines the way a fine-grain parallel machine executes a program.
The notion of dependences is also important . Indeed, as compaction usually
respects this notion in the classical framework, how this notion applies in the
functional case, in order to have the same expressiveness? In other words, what
are the program transformations a reasonable compiler can do? Here, the notion
will be defined by an equivalence relation, named structural tha t will permit
classical t ransformations. Finally, because functional terms can be represented
with sharing, it allows better implementat ions than with the classical control-
flow based representation.

3 E x a m p l e s

Let us try first to compact the simple program P1 given on the left of the
following figure. It executes an addition (+1) between a variable and a constant.
It binds the result to the variable x and then executes the operation +2 and
then -3 , the test and one of the two branches. Finally, it computes *5 between
the value of (x +2 4) - 3 x and the value of the conditional expression.

P1 = letx : Y + I 2 P3 : letx : Y + I 2
in +2 4) - 3 x) .5 i fz : 2 0

then l e t m = 4 + 3 y
in m *4 n

else x *3 2
P2= l e t x = y + l 2

in i f z =2 0

then ((x +2 4) - 3 x) *5 (let m = 4 +3 Y)
in m *4n

eJse ((x +2 4) --3 x) *s (x *3 2)

m = 4 + 3 y
in if z =2 0

then let xl --- x +2 4
x 2 = m * 4 n

in let Z l ---- Xl --3 X

in Xl *5 X2
else let Xl ---- x + 2 4

x 2 ~ - - ~ . 3 2
in l e t x l - - - - x l - - 3 x

in Xl *5 x2

Consider now a machine A4 able to execute this program in a left-to-right eval-
uation order and where three successive and independent instructions can be
executed in parallel. The execution t ime of P1 on M is 5. Let us show how a
simple t ransformation improves this execution time. Consider the elementary
computat ions tha t can be executed immediately in parallel. We term these com-
putat ions ready sub-terms. They are overlined here. +3 may be executed specu-
latively before the test because it is a safe computat ion 3. We apply a move-up
rule to the test, getting P2. Now, +3 can be moved-up. We then continue the

3 A computation is safe when it can be executed speculatively without modifying the
semantics.

444

compaction with the two branches, getting at the end P3. This program can not
be compacted further and its execution time on it4 is 4. It is decomposed into
groups of independent instructions executed in parallel.

Consider now the case of a simple recursive function F written in a PCF
style [10]. It is an iteration on a list where [] stands for the empty list, hd and
tl for the head and the tail of the list (x and a are the arguments).

(~ [x; a]. ifx = [])
F = Fix/ thena

else f[tl(x);-(hd(z)) + a]

The global compaction on this program would compact the body of the function,
ignoring the possible overlapping between iterations, thus the parallelism. For
this reason, we apply an inlining rule: Fixf(a) ~ a[f\Fixf(a)] meaning that
all occurrences of the free variable f are replaced by its definition. We get the
following ~erm given on the lefL Now the only ready sub-term is the test. We
then move the overlined ready sub-terms in the false branch, getting the program
on the right.

Ix; el. ifx = [1
then a
elseF[tl(x);-(hd(z)) + a]

,k [x; a I. ifx = []
thena
else let z l = tl(x)

x2 = hd(z)
in F [Xl ; -x2 -I- a]

The current term to be compacted is F[xl; -x2 + a]. Because the first argument
is computed, the inlining of F will show new ready sub-terms to be executed
in parallel with the current ready sub-terms. After the inlining, the following
application has to be compacted.

()~[x; a]. ifx = [] then a else F[tl(x); -(hd(x)) 4- a])([xl; -x2 4- a])

A simple renamming rule is used for simplifying the application. We get the new
term:

(ha. if ~c 1 -= [] then a else F[tl(xl); -(hd(xl)) 4- a])(---~2 4- a)

We can move-up the ready sub-terms. The resulting program is given below,
on the left. In this term, the sub-expression (~a.a)(x3 + a) can be simplified in
z3 + a. After the first step of compaction on the false branch, we have the term
given on the right.

let ~3 = - - x 2

in if Xl = []
then ()~a . a) (x3 + a)

else (~a.F[tl(Zl);-(hd(xl)) + a]) (~

let x 3 ~ --.~2

in ifxl = []
then x3 + a

else let x3 = z3 + a

X2 ---- t l (X l)

x4 = hd(xl)
in ($a.F[x2;-x4 + a])x3

445

The next expression to be compacted is (Aa.F[zg.; - z 4 + a])x3. By the renaming
rule, this t e rm is simplified in FIx2; - z 4 + x 3] . We already saw a very similar term.
I t is equal, modulo a renaming of its free variables, to the t e rm F [x l ; - x 2 + a].
Compact ion does not depend on names so it will produce the same result for
this input, hence the process enters in an infinite loop. To stop compaction, we
give a name - - here i f - - to the t e rm and replace it by a call. The final p rogram
is the following one.

le tff = Fix#(A[xl ; x2; a].
let x 3 : --x2
in if Xl = []

then x3 + a
e l se let x 3 = x 3 -4- a

X2 : tl(Xl)
X4 = hd(xl)

in A [z ;a] . i f z = [1
thena
e l se let x l = tl(x)

x2 = hd(x)
in ff[Xl; x2; a]

This final program cannot be compacted anymore. It is the Software Pipelin-
ing version of the initial program, i.e. another inlining followed by the compaction
process would produce the same result since we have inlined F as soon as pos-
sible.

Note that the recursive call to f f can be implemented here by a direct branch
and variable names can be seen as register names. Then, register allocation can
be done on the fly with compact ion (but it is not necessary). In this case, move
instructions between z l and x2, z2 and x4, a and z3 can be eliminated.

This example raises the following questions. In this process, some transfor-
mat ions were done on programs like renaming, moving instructions, reducing
identity calls. Wha t are the legal t ransformations a reasonable compiler can do?
Why would the last program be better than the first one? Does the compaction
process always terminate and how can this be formalized? Answers to these
questions will be developed in the following sections.

4 F o r m a l i z a t i o n

We present a complete formalization of compaction. The first part deals with
the presentation of a first-order recursive language, named ~ . I t is a low level
language (an intermediate language). We then present the machine model tha t
will allow discussing about '% program is bet ter than an other one for a given
machine". The definition should apply to sequential machines as well as super-
scalar or vliw machines. The next par t deals with the semantical model of fine
grain parallelization. It presents the notion of dependences in 2". We shall see

446

why dependences are defined intentionally by an equivalence relation named
structural equivalence. The last part is the definition of software pipelining and
the transformation system to produce it.

4.1 T h e .T" l a n g u a g e

The 2" language is a recursive language with an ML-like syntax, but with a
granularity close to the one of a machine.

De f in i t i on I T h e 2- l anguage . The definition of the language is the following.

a ::= i I true I false Ix I letz = aina l a[a;. . .;a]lAs
I op[a;...;a] I Fix/(a) I i fa thenae lsea

op ::= add_Jut I ---

Primitives (caLled op) are those of the architecture. Terms range over a.
2" manages scalars (i), variables (z), defines local values (let), n-ary functions
A[zl; ...; z,].a, recursive functions Fixf(a), and n-ary primitives (oi0) and appli-
cations a[al; ...; an]. All memory accesses are done by explicit primitives and
there are no s i d e - • c t s in the sense that the language has the SSA (Static Sin-
gle Assignment) property [3]. In the paper, we note ff instead of [az; ...; a,] and
a'li for [al; ...; ai-1; ai+l; ...; an].

~- is a typed language fi la ML and we suppose the existence of a typing
function - - named type - - returning for each expression of ~', its type taken
from the type language below for which a classical typing algorithm can be
chosen [4].

t : := 7. I t -- . t I It; ...; t]

7- denotes scalar types (int, bool ,...). t ~ t is the function typeand [t; ...; t] is
the product type. Information needed about a type is its complexity, that is, the
number of arrows on the left.

D e f i n i t i o n 2 T y p e complex i ty . We define the function l-I, returning the type
complexity of its argument.

Ih "-*t21 = 1 + Itll I[tl; .. .;t,]l = mazi(Iti l) I r l = 0

For instance, the type complexity of (int ~ int) --+ int is 2 whereas the type
complexity of int ~ (int ---* int) is 1. This gives the functionality order. We need
a preliminary definition before defining the ready sub-terms of an expression.

D e f i n i t i o n 3 Cos t . The cost of a term a is defined by the function II.lh returning
an element from ~r U { ~ } .

II if al then a 2 else a311 = ~ = l (l l a ~ l l)

I I ~ . a l l = 1

Ilzll = Ilfll = 0 I la([bl ; . . . ; b.]) l l = c r

n Ilop[a~; ...; a-] l l = 1 + ~ = ~ (1 1 ~ 1 1)

Illet = = a~ in a=ll = I1~]11 + Ila211

t l F i x 1 (a) l l - Ilall

447

The cost is a coarse approximat ion of the execution t ime of an expression.
All primitives are assumed to be executed in one cycle and the execution t ime
of an expression containing a call is infinite. The cost of an abstract ion is 1 as
we consider the cost of constructing a closure to be elementary 4. Now we can
define the ready sub-terms of an expression.

D e f i n i t i o n 4 R e a d y s u b - t e r m s . Let a be a te rm of ~ . s -< a means that the
sub- term s of a is ready in a.

s -< ai s -~ a Xi 7~ 8 Ilsll < ~ s -~ al s -~ A f . a

s -< s s -< op(ff) s -< A~.a s ~ l e t x = al ina2 s -< Fixl(a)

s-< al s ~ ai I1~11 < c r s - g a2 x ~ s s-< ai

s ~ if al then a2 else a3 s -< if a then al else a2 s -< let x = ax in a2 s-<ao(f f)

A ready sub- term is a sub- term that can be computed immediately. For
example, 1 + x ~ Ay.(1 + x) �9 y. The notion of ready sub-terms is an extension
of free variables (hence, a free variable is always ready). For this reason, we will
use the classical notat ion F V (a) containing the set of free variables of a, i.e,
x C= F V (a) iff x -~ a. Ready sub-terms of special interest are those whose cost is
1, that is elementary computat ions.

D e f i n i t i o n 5 R e a d y s u b - t e r m s s u b s t i t u t i o n . Let t be such that t -< a. The
substi tut ion of all occurrences of t in a by b, noted air\b], is defined by:

t i t \b] = b
x[t\b] = x i f x # t

(op[al ; . . . ; a~ l) [t \b] - op[[al [t\b]; ...; a . It\b]1
(a0 [a l ; ...; an])[t\b] = (ao[t\b])([al[t\b]; ...; an[t\b]])

(),x.a)[t\b] =),z.a i f x 4 t
(~z.a)[tkb] = Az.(a[x\z][tkb]) else . z 7~ a A z 7~ b

(l e t x = a l in a2)[t\b] = l e t x = al[tkb] ina2 i f x -< t
(let z = a l in a2)[t\b] = fat z = a l [tkb] in a~[z\zl[tkb] else . z -~ a= A z ~ b

Fix](a)[t\b] = F i • i f f -< t
Fixl(a)[t \b] = Fixg(a[f\g][t \b]) else . g 7~ a A g ~ b

(i f a l then a2 else a3)It \b] - - if e l It\b] then a2 It\b] else a3[t\b]

The substi tution of ready sub-terms is very similar to the classical substitu-
tion of free variables. For example, (Az.(1 -4- y) * x)[1 -4- y \y] = A x . y * ~. Thus
substi tution makes it possible to extract computat ions from a term.

4 A multicycle computation op(x) can be treated, replacing it by
Opl (Op2 (... (Opn(,T,))...)).

448

4.2 Operational semantics

The operational semantics has two aims. As usual, it defines the values and the
execution order. But, it also express how a fine-grain parallel machine handles a
given program. I t leads to a measure on programs.

The language has a call-by-value evaluation in a left-to-right order. A machine
can be seen as a function, selecting a subset of elementary ready sub-terms
and executing them. All sub-terms cannot be selected. A fine grain parallel
machine executing some in-line code does not see the entire control structure of
the program and is limited by control-dependences [12]: an instruction following a
function call is unreachable. To define machines, we need a prel iminary definition
to explain what unreachable means.

D e f i n i t i o n 6 O c c u r r e n c e s a n d d e p t h . The set of occurrences (access paths),
O(a) of a te rm a contains words on integers (the empty word is A). I t is defined
as usual by:

A e O(a)
For all construction C of the language, i.oi E O(C(al, . . . , a,~))

if ol E O(ai).

We define the Depth of an occurrence in a given te rm as follows:

7~a(A) = 0
7~[a,;...;~.](1.o) = ~in_l Ilaill +/)~ (o)
For all other constructions C, :De(a, a.)(i.o) = :Da~(o) + ~ j<i IlaJ H"

The depth of an occurrence is the number of instructions tha t are executed
before it, in a left-to-right evaluation order. Thus, the depth of (l + y) in (~ x . (l +
y) * x)(2 + z) is 2 because the argument is executed before the body of the
function. The depth of a sub- term on the right of a function call always equals
cr I t means that the computat ion is unreachable by the machine.

When possible, the occurrence will be omit ted and the notat ion :Da(t) will
be used instead of:P~(o) if o is the occurrence of the sub- term t in a.

A machine can be seen as a sub-relation of -<. For example, a machine is
able to forbid speculative execution. Therefore, instructions under conditionals
or abstractions are never ready.

D e f i n i t i o n 7 M a c h i n e AA. A machine AA is a function f rom terms f rom ~ to
set of terms verifying the following constraint: there exists kl, k2 E ~V such tha t
for all a with A/l(a) = {tl, ..., tn}, we have n < kl, ti -< a and :Da(ti) < k2 and
there exists at most one tl such tha t Iltill = co.

The number of ready sub-terms (kl) gives the number of parallel units of the
machine and the depth gives the window size (k2) - - the number of instructions
tha t can be fetched every cycle. This window contains at most a function call

449

(an unconditional jump) which is on the right of the others 5. A super-scalar
machine also matches this description. A sequential machine is the special case
where kl = 1 and k2 = 1. A vliw machine is a special case of a machine.

Example I VLIW machine. A vliw machine is a maximal machine Ad such that:
i f t E A/I(a) and 7)a(t) = n then Vt',7)a(t') < n ~ t' E Ad(a)

Here, the maximal prefix of independent instructions from a window of se-
quential instructions can be executed in parallel. We call it a VLIW machine,
even if it is not a real one - - a Multifiow-like machine [14] - - because no schedul-
ing is done by the machine.

Pipelined machines enter in this description if the compiler t ransforms a
pipelined instruction op(x) in nop(...(nop(op(x)))...).

Example 2 Pipelined machine. A pipelined machine is a machine A~ such that:
i f t E Ad(a) and t # hop(y) then hop(x) ~ a =~ hOp(X) E }vI(a).

All hop operations are necessarily executed in parallel with a non-hop oper-
ation. A machine will be given by its s tate au tomaton that reads only a finite
par t of the term. Let us see now the definition of the operational semantics of
the ~ language given in a structural way [16].

The operational semantics is straightforward. Like a classical fine-grain par-
allel machine, the machine selects a subset of ready sub-terms that can be ex-
ecuted in parallel, executes them and substitutes selected ready sub-terms by
their values. Nonetheless, because of the representation of programs, a te rm of

contains some noise, that is, syntactical constructions that do not generate
any computat ion (in fact, they correspond to no assembly instructions). For ex-
ample, the let represents dags and the expression let x = 1 in x + x has the same
execution t ime as 1 + 1. To reduce this noise, we define an equality.

Definit ion 8 e - t r a n s i t i o n s . We define the equality = ~ . C(a) denotes a t e rm
containing the sub- term a.

C(let x = x in a)
C(let x = i in a)

C(let x = $y.al in a2)
C(let x = F ix l ($y .a ,) in a2)

C(if true then a2 else a3)
C(if false then a2 else a3)

= ~ C(a)
= ~ C(a[x\ i])
=.,t4 C(a2[x\.~y.al])
=.M C(a2[x\Fix.f(,~y.a,)])
=~ C(a2)

C(a3)

C((As ...; xi; ...; b~]) = ~

C(Fix.f ()~E.e)) = ~

; ...; ; ...; b.])
i f xi E A d ((A s ...; xi; ...; b .])
^type(x,)l = 0

if Fixl(l .a) E

s According to the definition, the depth of a function call is finite if it is not preceeded
by any other call.

450

The constraint on the complexity of the type for the reduction of applications
will be explained further. The equality says which constructions are invisible for
the machine A/I. Here, only reachable sub-expressions are reduced: the equality
is not applied in all contextes. This is due to the inlining rule for recursions.
Indeed, without the use of M m , the following infinite reduction could occur:
F[x; y], ..., F[x; op(y)], ..., (Ay.F[x; op(y)])(op(y)),
with F = Fix](~[x; y].f[x; op(y)]). In our definition, empty computat ions are
erased when necessary.

D e f i n i t i o n 9 O p e r a t i o n a l s e m a n t i c s . The operational semantics of a pro-
gram on a machine A/I is given by the relation 4- a 1} b means that a evaluates
to b. Terms are considered modulo = ~ . The inference rules are:

.M(a) = {t] , . . . , tn} ti 1} vi a[tl\vl].. .[tn\Vn] ~ b

a~b
Axioms are of the following form:

X,~X
Ax.a ~ Ax.a
Fix.f (Ax.a) ,U, Fix](Ax.a)
il + i2 ~ i3 where 43 is the sum of il and i2.

The execution t ime l a l~ of a is the size of the proof of a ~ v.

For simplicity, we only give the axiom for integers. With the definition of the
execution time, we may compare programs.

4.3 D e p e n d e n c e s e m a n t i c s

We used some program transformations like renaming of inlining in the com-
paction of the second example. What reasonable t ransformations should be in-
corporated in a compacting compiler? In the classical framework, only transfor-
mations preserving dependences are legal. There is a dependence between two
instructions if one instruction modifies a value read by another. These depen-
dences are decomposed into true-dependences - - or data-dependences - - when
the second instruction reads the value produced by the first, and false depen-
dences - - anti-dependences and output-dependences - - when the second modifies
a value read or written by the first one [2].

Because : f is a functional language, dependences, in the usual sense as def-use
links are directly given in the text by variables and composition of computations.
Thus, x of let x = a in b depends on a - - and of all its sub-terms - - and every sub-
te rm of b containing x depends on it. The transitive closure of this relation gives
the classical notion of dependence graph. It is useless to define another notion of
dependences of a te rm in : f and if it would exist, it would be as complex as the
t e rm itself. Our notion of dependences is too rigid here for what we need since
no syntactical t ransformation of the t e rm is allowed.

451

We prefer to define dependences as an equivalence between "programs having
the same dependences". This equivalence will be named structural equivalence.
How does this equivalence interact with fl-reduction6? On one hand, two really
different programs can be extensionally (beta) equivalent and it is clearly infea-
sible (in a compiler) to allow all kinds of/~-reductions. Moreover, we would have
some coherency problems since 1 + 2 is not equivalent to 3 but the translation in
pure h-calculus would yield the equivalence. On the other hand, can we limit the
equivalence to the syntactic equality? Of course, not. It is reasonable to allow
instruction moves, inlining, duplication 7 which are the minimal t ransformations
needed for compaction.

The solution proposed here is to limit fi-reductions by the complexity of the
type: only fl-reductions where the type of the argument is simple (the complexity
is 0) are allowed.

D e f i n i t i o n 10 S t r u c t u r a l e q u i v a l e n c e . Let a and b, two terms of ~'. We say
that a and b are structurally equivalent, noted a --~ b, when limn..,ooa ~ =
limn_~oob n where a n is defined by a ~ a 2 --* . . . ~ a n and by the rewriting
relation --* applied to all contexts. --* is defined by:

1. let x = al in a2 --~ a2[x\al]

2. if a then b'else E--~ i f a then b else c
3. if true then al elsea2 - + a l
4. if false then al else a2 --~
5. ()t~.a)b---~ (A~li.a[zi\b~])bll if Jtype(bi)J = 0
6. Fixf(a) --* a[fkFixf(a)]

The first rule allows to duplicate a computat ion. The second rule is equivalent
for the test. The next two rules show that conditions can be simplified. The next
rule is a j3-reduction when the type of the argument bi is simple.

4.4 C o m p a c t i o n

We saw in the examples that compaction can be obtained by selecting and
moving up ready sub-terms. We first define instruction move by two simple
rules and then define how to select a subset of the ready sub-terms.

D e f i n i t i o n 11 M o v e - u p . Instruction moves are defined by the relation a ~ b
where t is ready in a, such that:

(MOVE) a t_+ let x ---- t in a[t\x] if x ~ a

(TEST) a ~-~ i f t then air\ true] elsea[t\false]
if if t then al else bl is a sub- term of a

3-reduction is the following rule ()~x.al)a2 --*~ al[x\a2].
7 Duplication is useful when it is cheaper to recompute a value than to communicate

it.

452

Instruction moves are simply inverse fl-reductions. Now, to select a subset
of the ready sub-terms that can be executed in parallel on the machine, the
compaction process needs a s tra tegy . For example, the classical L i s t - s c h e d u l i n g [9]
strategy will select ready sub-terms which are on the longest dependence path.

D e f i n i t i o n l 2 S t r a t e g y . A strategy C is a function C between terms and set
of terms such that C(a) = { t l , . . . , t n } and for all t l , ti -< a

A strategy is not very different from a machine except tha t - - for the moment
- - there is no constraint on the position of ready sub-terms in the term. I t is
the reason why we can deal with =c , replacing A4 by C.

Let us see now the compaction system. I t is very similar to the operational
semantics: at every step, some computat ions are selected and moved-up in the
program. The rest of the program is then compacted.

D e f i n i t i o n l 3 C o m p a c t i o n . Let p be a renaming. Terms are considered mod-
ulo =c- The general compaction is defined by the predicates e ~c a ~ l b given
in the figure 1, meaning tha t in the environment e, the te rm a is compacted to
b, using the strategy C and moving up the selected ready sub-terms in I. An
environment is a set [fl\Av~.al]...[f,~\A~.a,~] used to record terms.

The (SELECT) rule selects a subset of ready sub-terms f rom a. I t records the
current te rm a in the environment e and compacts a with the selected ready sub-
terms. The resulting program may be recursive. Of course, if the compaction of a
does not use f , the te rm (Fix] () w . b)) v simplifies to b. The (EqvIv) rule stops com-
paction when the current te rm is equivalent modulo a renaming p to a recorded
term. In this case, the compaction of the current te rm is a call to the name of
the recorded term. The (LAMBDA) rule is compositional rule. The (PRIM), (APP),
(CONST) and (vArt) rules are the axioms. The (MOVE) rule moves up a selected
ready-sub te rm and the (TEST) moves up a selected test.

Now, do the resulting program always exists, that is, does the system ter-
minate? What are the conditions under which the compacted program is bet ter
than the initial one?

For the termination problem, without constraints on C, the answer is clearly
no. Indeed, consider F = Fix/()~[x; y] .f[opl(x); op2(op3(y))]) and F([x; y]). Let
us see the suite of terms that we shall have to compact. It is,

F [x ; y], . . ., F [x ; op2(y)], . . . , F I x ; op2 (op3(y))],. . . , F i x ; o p 2 (o p 3 (o p 2 (y)))], . . .

Y [x ; y] is first inlined and the two ready sub-terms o p l (z) and op3(y) are sub-
stituted. Then, the current te rm to compact is F [x ; op2(y)] , etc. This is a very
classical problem of iterative compaction methods [1]: the problem is that ready
sub-terms are selected deeper and deeper. In the case of tail recursive functions,
i.e. loops, we shall see tha t compaction is simpler than in the general case and
that simple and satisfying conditions over C can be taken. We shall come back
on general recursive function at the end of the paper to show the problems.

453

C(a) = l ~ = FV(a) e[f\~ga] ~c a ::~1 b
(SELECT)

e ~ a ~ (F i x / (~ b)) ~

b = p(a) r = p(~) e ~c a ~ a'
(LAMBDA)

e[f\,~ga] ~c b =:r f(~#) e ~c ~ a ::~ /~a'

a t-L, l e t x = t i n a l e~ct=C,t' e~cal:=~tbl
(MOVE)

e ~c a ::~{~}ut let x = t ~ in bl

(PRIM) e ~c op(~) ::~ op(x) (CONST) c ~c i ::~ i

(APP) e ~ y(~) ~ y(~) (VAR) e ~ �9 ~

at---* iftthenalelsea2 e ~ c t ~ t l e~eal::C'lbl e~ca2::~lb2

(EQUIV)

(TEST)
e ~c a =r ift~then bl elseb2

Fig. 1. The compaction system

C o n s t r a i n t 1 (T e r m i n a l r e c u r s i o n s) A term a is terminal if every sub-term
Fixf(b) of a is such that f is in a terminal position in b, noted T(f , b).

T (f , i f a then al else a2) if f ~ FV(a), T (f , al) and 7/-(f, a2)

T (f , f(a)) if f g FV(a)
T(f , let x : a in b) if f • FV(a) and T (f , b)
"T(f,)~x.a) if'T(f, a)
T(f, a(b)) ifT(f, a) and f ~ FV(b)
7-(f, a) if f ~ FV(a) for the other constructions

The definition of t~il-reeursive functions says that recursive calls to f are
never followed by a computation. Now, we define a constraint on the strategy
that must be bounded to guaranty termination of the compaction system.

C o n s t r a i n t 2 (B o u n d e d s t r a t e g y) Let]a[be the number of ready sub-terms
of a. A strategy C bounded by k is a strategy such that ilia] > k then for all t,
t E C(a) iff t E C(b) where a ---+ b.

A bounded strategy limits the number of selected ready sub-terms. The impli-
cation t E C(a) :=~ t E C(b) is reasonable: it means, for example, that instructions

454

inside a loop iteration have a priority over the ones belonging to the next iter-
ations. The other constraint is quite unusual: it means tha t even if a sub- term
is ready after an inlining, for example, it cannot be selected if the size of the
te rm is greater than a certain limit. This condition is not so strange: consider a
te rm F(a) where F stands for a recursive function. An argument for terminat ion
in iterative methods can be that the recursion is inlined when the size of the
argument is bounded (usually, an instruction from an iteration can be moved up
when the scheduling t ime of the previous iteration is less than a certain limit).

How does this constraints act with the classical List-scheduling strategy? This
strategy selects ready sub-terms which are on the longest path. The constraint
means that only bounded paths are considered 8

P r o p o s i t i o n 1 (T e r m i n a t i o n) The compaction system ~c terminates with a
bounded strategy.

P r o p o s i t i o n 2 (C o r r e c t i o n) The compaction system preserves the structural
equivalence.

We have to prove that this system is useful, that is, it decreases the execution
t ime of programs. This cannot be done for general machines because scheduling
is NP-hard [9] and cannot be achieved by a greedy algorithm. Nonetheless, the
speed-up can be guaranteed for VLIW machines and a s trategy which always
select at least the nodes selected by the machine.

Proposition 3 (S p e e d - u p) Let .M be a vliw machine and C such that Va, 3c,
such that M(a) C_ e(a) C_ M(c). Then if ~ca ~ b then [a[~ >_ Ib]~

The result applies for VLIW machines because the depth of instructions in
the program never increase: an instruction that is selected by the machine in the
initial program is still selected in the second one (except if it has been executed
before).

We can ask now how the resulting program compares with the classical soft-
ware pipelining principle. Software pipelining for recursive programs can be seen
as a finite representation of programs, infinitely inlined and compacted. I t is a
fixpoint for compaction: the compaction of the inlined version programs yields
the same program. Software pipelining is defined f rom the notion of optimality.

D e f i n i t i o n l 4 S o f t w a r e p i p e l i n i n g . Let a be a te rm of Y. A program a is
opt imal for C if ~cb ~ a where a --~ b. A program a I is a software pipelining of a
by C when a -,, a ~ and a ~ is optimal.

Proposition 4 (O p t i m a l i t y) ~c constructs a software pipelining for tail-recur-
sire functions.

s Proofs can be found in [17].

455

The proposed system is a greedy system and is not well suited to general re-
cursion. Indeed, consider the very simple expression F = Fix y ()~.A(~, f(op(Z))))
where A denotes an Y expression. We have the list of terms to compact:
F(x~), A(xq, F(x~2)), A(x~, A(x'2, F(x~3))), ...
The compaction process only reads the beginning of the term (op(xi)). Here the
term grows after the recursive call. Even if compaction is stopped, using condi-
tions over C, we do not have any re-rolling rule for the production of the software
pipelining. It is unclear how a greedy algorithm, where software pipelining is ob-
tained using what has been done in previous steps and where terms are inlined
a priori, can be obtained for non-tail recursive functions.

5 Conclusion and future work

We have presented a method to directly compact the first-order part of func-
tional programs. Compaction is described as a set of program transformations.
An operational semantics has been proposed to model the behavior of a fine
grain parallel machine that executes a program. A notion of dependences has
been given here by the structural equivalence: it defines only legal - - but minimal
- - program transformations a parallelizing compiler needs to have. This paper
can be seen as a formalization of classical compaction techniques, but also as an
extension to the general class of recursive programs. By applying compaction to
terms instead of control flow based representation, the compiler can take benefit
of semantical informations available in the source program (for dependence anal-
ysis, for example). Because the representation is more general than dependence
based representations - - this representation can be obtained with sharing - - it
can be used to represent dependences of a large class of languages.

Some extensions can be done. First, a better strategy will improve conver-
gence since iteration methods are known to be slow and to produce large resulting
code. Secondly, imperative features could be treated with a slight modification
of de ready sub-terms definition. Thirdly, it could be interesting (and useful) to
take into account semantical properties of primitives in order to increase the
set of the structurally equivalent terms and, thus, to improve compaction. This
could be done by the addition of other simplifying rules (commutative rules,...).
It is certainly for this kind of extension that the functional representation of
programs is better than the classical control-flow representation. Thirdly, non-
tail first-order recursion must be treated and, finally, the compaction of general
functional program can be studied.

Acknowledgments

Many thanks to my PhD. advisor Jean-Jacques L~vy and to careful readers
Paul Caspi from VERIMAG, Thdr~se Hardin and Bernard Serpette from INRIA
Rocquencourt. Thanks also to the usefull remarks from the referees.

456

R e f e r e n c e s

1. Alexander Aiken. Compaction-based Parallelization. PhD thesis, Cornell Univer-
sity, 1988.

2. R. Cytron and J. Ferrante. What 's in a name ? In International Conference on
Parallel Processing, pages 19-27, August 1987.

3. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An ef-
ficient method of computing static single assignement form. In Conference on
Principles of Programming Langages, 1989.

4. L. Damns and R. Milner. Principal type-schemes for functional programs. In Con-
ference on Principles of Programming Languages, 1982.

5. Digital. Alpha Architecture Handbook. Digital, 1992.
6. Kemal Ebcioglu. A compilation technique for software pipelining of loops with

conditional jumps. In Annual Workshop on Microprogramming, pages 69-79, De-
cember 1987.

7. J. R. Ellis. Bulldog-A Compiler for VLIW Architectures. MIT Press, 1985. Ph.D
dissertation.

8. J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing: A
smart compiler and a dumb machine. In Symposium on Compiler construction.
SIGPLAN Notices, June 1984. Volume 19, Number 6.

9. M. R. Garey and D. S. Johnson. Computers and Intractability - A guide to the
Theory of NP-completeness. Freeman, New-York, 1979.

10. Carl A. Gunter. Semantics o 1 programming languages: structures and techniques.
The MIT press, Cambridge, Mass., London, 1992.

11. IBM. IBM Risc System/6000 technology. Technical Report SA23-2619, IBM, 1990.
Copies can be obtained from the local IBM Branch office.

12. M. S. Lam and R. P. Whilson. Limits of control flow on parallelism. ACM Sigarch.
Computer Architecture News, 20(4), 1992.

13. Monica S. Lain. Software pipelining: An effective scheduling technique for VLIW
machines. In Conference on Programming Language, Design and Implementation,
pages 318-328, Atlanta, Georgia, June 22-24 1988.

14. Multiflow Computer Inc. Trace/300 series. Technical report, Multiflow Computer
Inc, Brandford, Connecticut, 1987.

15. Alex Nicolau. Percolation scheduling: A parallel compilation technique. Technical
report, Cornell University, 1985.

16. Gordon D. Plotkin. A structural approach to operational semantics. Daimi FN-
19. University of Aarhus, Computer Science Department Aarhus University Ny
Munkegade DK 8000 C Danemark, September 1981.

17. Marc Pouzet. The program compaction revisited: the functional framework. Tech-
nical Report Spectre-94-11, Verimag, Grenoble, France, December 1994. Available
by anonymous ftp on imag.fr in pub/SPECTRF.

18. R. F. Touzeau. A fortran compiler for the FPS-164 scientific computer. In Sym*
posium on Compiler Construction, pages 48-57, June 1984.

