
Language Implementation II

Super Monaco: Its Portable and
Efficient Parallel R u n t i m e Sys tem

J. S. Larson B . C . Massey E. Tick

University of Oregon, Eugene OR 97403, USA

Abst rac t . "Super Monaco" is the successor to Monaco, a shared-mem-
ory multiprocessor implementation of a flat concurrent logic program-
ming language. While the system retains, by-and-large, the older Monaco
compiler and intermediate abstract machine, the intermediate code trans-
lator and the runtime system have been completely replaced, incorporat-
ing a number of new features intended to improve robustness, flexibility,
maintainability, and performance. There are currently two native-code
backends for 80x86-based and MIPS-based multiprocessors. The runtime
system, written in C, improves upon its predecessor with better mem-
ory utilization and garbage collection, and includes new features such as
an efficient termination scheme and a novel variable binding and hook-
ing mechanism. The result of this organization is a portable system 1
which is robust, extensible, and has performance competitive with C-
based systems. This paper describes the design choices made in building
the system and the interfaces between the components.

KEYWORDS: logic programming, parallelism, native code, runtime systems.

1 Introduction

Monaco is a high-performance parallel implementation of a subset of the KL1, a
concurrent logic programming language [15], for shared-memory multiprocessors.
"Super Monaco" is a second-generation implementation of this system, consist-
ing of an evolved intermediate instruction set, a new assembler-generator, and
a new runtime system. It incorporates the lessons learned in the first design
[16], improves upon its predecessor with better memory utilization (via a 2-bit
tag scheme and the use of 32-bit words) and garbage collection, and includes
a number of new features: 1) Termination detection through conservative goal
counting. 2) A new mechanism for hooking suspended goals to variables. 3) A
specialized language for implementing intermediate code translators. 4) A clean
and efficient calling interface between the runtime system and compiled code.

We have found that our changes to Monaco have increased the robustness,
portability, and maintainability of the system, while increasing the performance.
The system now has less than 1,000 lines of machine-dependent code, completely

1 AvaiJable by anonymous ftp from f t p . cs. uoregon, edu: pub/sin, t a r . gz.

528

encapsulated behind generic interfaces. The new assembler-assembler makes na-
tive code generation simple and declarative, while supporting the use of stan-
dard debugging and profiling tools. A conservative goal-counting algorithm im-
plements distributed termination detection. The intermediate code is evolving
toward a more abstract machine model, and thus toward more complex instruc-
tions. A new data layout makes for more compact use of memory, in conjunction
with a novel hooking scheme which maintains references to suspended goals with
a hash table indexed by variable address.

This paper discusses the design choices made in this second-generation sys-
tem, its implementation and performance. Because of space limitations, we can-
not review the compiler and assembler here (see Tick et al. [18]).

2 M o n a c o I n t e r m e d i a t e C o d e

The Monaco instruction set presents an abstract machine which is at an in-
termediate level between the semantics of a concurrent logic program and the
semantics of native machine code. The abstract machine consists of a number
of independent processes which execute sequences of procedures and update a
shared memory area. Each process has a set of abstract general-purpose regis-
ters which are used as operands for Monaco instructions and for passing proce-
dure arguments. Control flow within a procedure is sequential with conditional
branching to code labels. See Tick et al. [18] for intermediate code samples.

There are two unification operations. Passive unification verifies the equality
of ground values (in contrast to systems such as JAM Parlog [4], which also ver-
ify the equality of terms in which uninstantiated variables are bound together).
An at tempt to passively unify a term containing uninstantiated variables will
result in suspension of the process until those variables become instantiated.
Active unification, on the other hand, will bind variables to other variables or
to values in order to ensure equality of terms. As is customary in logic pro-
gramming implementations, no "occurs check" is performed during unification
for efficiency reasons. Variables are bound only through assignment operations
or active unification.

The Monaco instruction set consists of about sixty operations. The operations
are broadly categorized as: 1) Data constructors for each data type (constant,
list, struct, goal record, variable). 2) Data manipulators for accessing the fields of
aggregates. 3) Arithmetic operations. 4) Predicates for testing the types of most
objects and for arithmetic comparisons. Predicates store the t ru th value of their
result in a register. 5) Conditional branches based on the contents of a register.
6) Interfaces to runtime system operations for assignment, unificatio~b suspen-
sion, and scheduling. 7) Instructions for manipulating the suspension stack. The
instructions take constants or registers as their arguments and return their re-
sults in registers. There is no explicit access to the shared memory except through
operations which access the fields of aggregates.

Each data constructor has a variant which serves to batch up allocation
requests into a large block, and then initialize smaller sections of the block.

529

Batching up the frequent allocation requests increased performance on standard
benchmarks, as discussed below in Section 5. In addition, aggregates which are
fully ground at compile time are statically allocated in the text segment of the
assembled code. This decreases execution and compilation times.

The instruction set is modeled after a reduced instruction set architecture, on
the theory that such small instructions may be easily and efficiently translated
to native RISC instructions with a simple assembler. However as frequent idioms
are identified and coalesced, the Monaco instruction set has been evolving toward
more complex instructions. There a few reasons for this trend: 1) Higher-level
intermediate instructions better hide the runtime system implementation. 2) As
the amount of work per instruction gets larger, more machine-specific optimiza-
tions can be made in the monaa code templates. (This is in contrast to systems
such as [8], a sophisticated multi-level translation scheme producing good code
by intelligent generation of simple intermediate instructions.)

3 T h e R u n t i m e D a t a L a y o u t

The previous memory layout [16] had three tag bits on each word, and words were
laid out on eight-byte boundaries in memory. This prodigious use of memory was
not merely a concession to the three tag bits; the unification scheme required
each object to be lockable. As a consequence, some of the "extra" 32 bits of
each word were used as a lock. While this led to a fine granularity for locking, it
doubled the system's memory consumption. All objects are now represented as
32-bit words of memory aligned on four-byte address boundaries. This alignment
restriction allows the low-order two bits of pointers to be used as tag bits, without
loss of pointer range. The four tagged types are immediates, list pointers, boz
pointers, and reference pointers. Immediates are further subdivided into integers,
atoms, and box headers. Integers have the distinction of being tagged with zero
bits, allowing some optimizations to be made in arithmetic code generation. On
most architectures, the pointer types suffer no inefficiencies from tagging, since
negative offset addressing may be used to cancel the added tag.

List pointers point to the first of two consecutive words in memory, the head
and the tail of the list, respectively. The nil list is represented as a list-tagged
null pointer. Box pointers point to an array of n consecutive words in memory,
the first of which is a box header word which encodes the size of the box and
the type of its contents. Boxes are used to implement structs, goal records, and
strings, as well as objects specific to the runtime system such as suspension slips.

There is only one mutable object type - - the unbound variable, represented as
a null pointer with a reference pointer tag. When a variable is bound, its value is
changed to the binding value. When a variable is bound to another variable, one
becomes a reference pointer to the other. Successive bindings of variables create
trees of reference pointers which terminate in a root, which is either an unbound
variable or some non-variable term. The special Monaco instruction de te r must
thus be applied to all input arguments of a procedure before they are examined.
This operation chases down a chain of references to its root, and returns the

530

root value or a reference to the unbound root variable. Thus, a conservative
estimate of whether the variable is bound can be made quickly. In practice, this
is a performance, not correctness, issue: the process may try to suspend on a
recently instantiated variable, in which case the runtime system will detect its
instantiation and resume execution of the process.

In old Monaco, one of the tag types was a hook pointer, which was semanti-
cally equivalent to an unbound variable, but pointed to the set of goal records
suspended on that variable. All of the code which dealt with unbound variables
also had to test for hook pointers and handle them separately. However, profil-
ing revealed that suspension is a relatively rare event: most variables are never
hooked. Therefore the new data layout keeps the association between unbound
variables and suspended goal records "off-line." This new organization seems
promising (see Section 4.3); contention for buckets is indeed rare, and we were
able to simplify some critical code sections in unification.

4 T h e R u n t i m e S y s t e m

The runtime system is responsible for memory management, scheduling, unifica-
tion, and the multiprocessor synchronization involved in assignment and suspen-
sion. It consists of about 2000 lines of machine-independent C code, and about
300 lines of machine-dependent C for a particular platform. It has been ported
to the Sequent Symmetry and MIPS-based SGI machines.

Old Monaco used libraries provided by the host operating system [12] to im-
plement parallel lightweight threads and memory management. Here we use a
more operating system independent model. We create UNIX processes executing
in parallel and communicating through machine-specific synchronization instruc-
tions in shared memory, using the fork and n a p system calls. The machine-
dependent runtime system requires only a few synchronization primitives: 1)
atomic exchange operation, 2) atomic increment and decrement, 3) simple spin
locks, and 4) barrier synchronization. For the Symmetry port, atomic increment,
decrement, and exchange are provided by the instruction set, while locks and
barriers are synthesized with atomic exchange. The machine-independent code
assumes globally reliable writes. The runtime system's interface with the com-
piled code is small and regular.

The resulting framework is portable since it does not rely on UNIX implemen-
tations' libraries for thread and memory management, but there are tradeoffs.
UNIX debuggers are too low level. The shared memory must be managed explic-
itly; consequently, every runtime system data structure which must be visible
to all worker processes be a C global, hindering code modularity. The UNIX
scheduler infrequently interacts badly with our threads, as in [1].

4,1 Schedul ing and Call ing Interface

The Monaco abstract machine produces many thousands of processes during a
typical computation, too many for implementation via UNIX kernel processes.

531

We treat UNIX "worker" processes as a set of virtual CPUs, on which we schedule
Monaco processes in the runtime system.

A goal record records the procedure name and arguments of a Monaco Pro-
cess. A ready set of goal records is maintained by the runtime system. Each
worker process starts in a central work loop inside the runtime system. This loop
executes until some global termination flag is set, or until there is no more work
to do. The worker takes a goal record out of the ready set, loads its arguments
into registers, and calls its entry point. The worker then executes a compiled
procedure, including sequences of tail calls, until the compiled code terminates,
suspends, or fails. These three operations are implemented by a return to the
control work loop in the runtime system with a status code as the return value.
In addition, the intermediate code instructions for enqueueing, assignment, and
unification are implemented as procedure calls from the compiled code into the
runtime system. Such calls return back to the compiled code when done, possibly
with a status code as a return value. Control flow during a typical execution is
illustrated in Figure 1. The runtime system invokes a Monaco procedure via a
goal record (1), which tail-calls another procedure (2). This procedure at tempts
a passive unification via a call into the runtime system (3), which returns a
constant suspend as an indication that the caller should suspend (4). The caller
then suspends by returning the constant suspend to the runtime system (5).

C o m p i l e d M o n a c o C o d e
: ~ 1. Dispatch

5. R e t u r n ' suspend'
~. Tail:

�9 Passive Uni fy

. 4. R e t u r n ' suspend'

C R u n t i m e S y s t e m

~...,.:! Worker Loop I:

~1 U:idtiec "r i~ n I::

Fig. 1. Sample Control Flow in the Monaco System

The high contention experienced when the ready set is implemented as a
shared, locked global object leads to the necessity of some form of distributed
ready set implementation. In our scheme, each worker has a fixed-size local ready
stack, corresponding to an efficient depth-first search of an execution subtree [14].
If the local stack overflows, local work is moved to a global ready stack. If workers
are idle while local work is available, a goal is given to each idle worker, and the
remaining local work is moved to the global ready stack. This policy is designed
to work well both during normal execution, when many goals are available, and
during the initial and final execution phases, when there is little work to do.

4.2 T e r m i n a t i o n

Execution of a Monaco program begins when goal records for the calls in the
query are inserted into the ready set, and ends when there are no more runnable
goals. At this point the computation has either terminated successfully, failed,

532

or deadlocked - - the difference can be easily determined in a post-mortem phase
which looks for a global failure flag and suspended goals. A serious difficulty for
a parallel implementation is efficiently deciding when termination should occur.

Many approaches to termination detection are susceptible to race conditions.
The previous implementation maintained a monitor process which examined a
status word maintained by each worker process, terminating the computation
when it recognized that each work had maintained an idle state for some time.
A locking scheme was used to avoid races by synchronizing the workers with the
monitor, which hurt worker efficiency. Most importantly, the monitor process
itself consumed a great deal of CPU time without performing much useful work.

In Super Monaco, we have adopted a different and (to the best of our knowl-
edge) novel approach. We maintain a count of all outstanding goals: those either
in the ready set or currently being executed by workers. Termination occurs
when this count goes to zero. The count increases when work is placed in the
ready set, and decreases when a goal suspends, terminates, or fails. The count
is not changed by the removal of a goal from the ready set, since the goal makes
a transition from the ready state to the executing state. There is a temporary
overestimate of the number of goals outstanding during the transition interval
between the time the goal suspends, terminates, or fails, and the time the count
is decremented. However, this will not cause premature termination, since the
overestimate means that the counter must indicate a nonzero number of out-
standing goals. Because the count is not incremented until after a parent has
decided to spawn a child goal, there is also a temporary underestimation of the
goal count during this interval. As long as the count is incremented before the
parent exits, this will not cause premature termination either: Since the parent
has not yet exited, the count must be nonzero until after the underestimation
is corrected. Thus, since mis-estimates of the number of outstanding goals are
temporary and will not cause premature termination, our termination technique
is both efficient and safe. On the Symmetry, we implemented this goal counting
scheme with atomic increment and decrement instructions. We observed no con-
tention on Symmetry, and hypothesize no contention on faster multiprocessors
because work within a task overshadows locking.

4.3 Hooking and Suspension

In order to awaken suspended processes when a variable becomes instantiated,
there must be some association between them. As noted in Section 3, old Monaco
represented this association explicitly: some unbound variables were represented
as pointers to sets of hooks. Figures 2a illustrates the old representation.

However, for our benchmark set, the vast majority of variables are never
hooked. For a variety of reasons, the most important being the fact that we
wanted to adopt two bit tag values to represent five types (immediates, lists,
box pointers, variable pointers, and reference pointers), we chose to represent
variables using a single word. Super Monaco continues to use suspension slips to
implement suspension and resumption, as in systems such as JAM Parlog [4] and
PDSS [10], except that the association between variables and hooks is reversed.

533

0"~" hoo]~h~176 b~ hookVariable
[suspension slip

goal I goal record in, ref
(a) Old Monaco

hook table

\ ~. 3 I~o,i !goal d
\Ig lin' I"

(b) Super Monaco

Fig. 2. Monaco Hook Structures

Each hook contains a pointer to the variable it is suspended upon. Hooks are
grouped into sets according to a hashing function based upon variable addresses.
A global hook table contains a lock for each such set.

Since any operation on an uninstantiated variable necessarily involves the
manipulation of the hook table, the locks on the buckets of the hook table may
serve as the only synchronization points for assignment and unification. This
gives a lower space overhead for the representation of variables on the heap.
There will be some hash-related contention for locks which would not occur in
a one-lock-per-variable scheme, but since we are dealing with shared-memory
machines with a moderate number of processors, the rate of such hash collisions
can be made arbitrarily low by increasing the size of the hook table.

To instantiate a variable, its bucket is locked, the unbound cell is bound to
its new value, all corresponding hooks are removed from the bucket, and the lock
is unlocked. All hooks are then examined. To bind a variable to another variable,
both buckets are locked (a canonical order is chosen to prevent deadlock) and
the set of hooks of on the second variable are extracted and mutated into hooks
on the first variable. These hooks are then placed in the first variable's bucket,
and the second variable is mutated into a reference to the first. The result is
that future dereferencing operations will return a reference to the new root, or
its value when instantiated. Figure 2b illustrates the new representation.

To evaluate the performance of our hooking scheme, we replaced it with a
more traditional technique. In the latter approach, a list of suspension slips for
goals suspended on an unbound variable is maintained in the cell following the
variable on the heap. When the variable is bound, the binding process picks up
the list directly: the garbage collector will eventually reclaim the extra cell. The
traditional implementation requires a locking scheme for variables. We adopt the
convention that a locked variable is represented by a reference to itself, i.e., to
the location of the locked variable. This representation has an interesting advan-

534

tage: readers of the variable will spin dereferencing its location until the lock is
released, and thus do not have to be modified to be aware of variable locking.
The actual lock operation is conveniently implemented with atomic exchange on
architectures which have this capability.

Table 1 shows the performance comparison (see Section 5 for benchmark
descriptions). In general, there is insignificant performance difference between
the two representations (the poor performance of wave needs further investiga-
tion). In general, most of the differences are due to the longer typical-case path
length of the table-based scheme (20 instructions versus 15), which in turn is
an unavoidable consequence of the scheme's more complex nature. Although the
two-cell representation is slightly faster, future runtime system optimizations
may reverse this advantage.

hooking pe r fo rmance inlining pe r fo rmance
benchmark Itwo-cell hash table slowdown inl ined non- inl ined slowdown
hanoi(14) 2.3
,nrev(lO00) 11.9
pascal(200) 4.1
primes(5000) 9.3
queen(10) 28.3
cube(6) 38.0
nfe(20)
semigroup 140.7
waltz 26.6
iwave(8,8) 7.4

2.4 4%
13.Y 10%
4.2 2%
9.8 5%

30.5 7%
38.9 2%

147.8 5%
27.0 2~

9.2 24~

2.3
11.9
4.1
9.3

28.3
38.0
20.5

140.7
26.6

7.4

2.5 9%
16.0 34%
4.7 14%

11.3 21%
29.1i 3%
38.0 0%
20.9 2%

142.8~ 1%
27.0 2%

7.7 4%

Table 1. Hooking Scheme and Inhning Performance Impacts (Seconds, Symmetry)

4.4 M e m o r y M a n a g e m e n t

Memory is Mlocated in a two-tiered manner. First, there is a global allocator
which allocates blocks of memory from the shared heap. Access to the global
allocator is sequentialized by a global lock. Second, each worker uses the global
allocator to acquire a large chunk of memory for its private use. All memory
allocation operations a t tempt to use this private heap, falling back on the global
allocator when the private heap is exhausted. When the global heap is exhausted,
execution suspends while a single worker performs a stop-and-copy garbage col-
lection of the entire heap. Garbage collection overheads are acceptably low now,
but a parallel garbage collector will be implemented in the near future.

The heap holds not only objects created by the compiled code, but also
dynamically created runtime system structures. Strings, which are allocated by
the parser, are stored as special boxes. Suspension hooks and suspension slips

535

are stored in list cells and small boxes respectively. Sets of objects are either
represented as statically-limited tables (such as suspension stacks) or as lists
(such as hook lists). All sets were first implemented as lists on the heap, avoiding
static limits on set sizes, and also speeding development time through reuse
of general-purpose code. However, using statically-allocated resources not only
reduces memory-allocation overhead, but also reduces contention by shortening
critical sections. If no reasonable limit to set size is known at compile time, such
as for the set of ready goals, a hybrid scheme is used where dynamically allocated
storage is used to handle the overflow of statically-allocated tables.

4.5 U n i f i c a t i o n

In early benchmarking, we found that the high frequency of active unification
made it a performance bottleneck. We have largely solved this problem through
the implementation of "fast paths" through the active unification process. The
approach is based on the Monaco compiler's identification of certain active uni-
fications as assignments whose left-hand side is likely (but not certain) to be
a reference directly to an unbound, unhooked variable, and whose right-hand
side is likely to to be a bound value. Assignments comprise the bulk of active
unification performed during execution.

The main optimization of assignments is to arrange for inline assembly code
to test that the conditions for the assignment are met, and if so, perform the
assignment inline. If the assignment is too complex to perform inline, it is passed
to a specialized procedure which attempts to optimize some additional common
cases. Thus the general active unifier is infrequently executed.

Table 1 shows the performance of the inlined and non-inlined versions (for the
two-cell scheme). Differences are substantial in several benchmarks, and in no
case do the extra tests degrade performance. For example, nrev(1000) performs
about 500,000 assignments (and 1000 general unifications). Of the assignments,
all but 12 are handled inline, resulting in 34% overall performance improvement.

5 P e r f o r m a n c e E v a l u a t i o n

Super Monaco was evaluated on two sets of benchmarks executed on a Sequent
Symmetry $81 with 16MHz Intel 80386 microprocessors. The first set, consisting
of small, standard programs, is used for comparisons with other systems: KLIC
[3] and Monaco. The second set, containing larger programs, is used for runtime
system analysis. Table 2 compares Super Monaco, (original) Monaco [17], and
KLIC (uniprocessor version) performance. All times are the best of several runs,
using the sum of user- and system-level CPU times. In all cases, Super Monaco
improves on the performance of the previous system, despite the fact that it is
more robust. Tick and Banerjee [17] compared the old Monaco's performance
to that of comparable systems available at the time, such as Strand [5], JAM
[4], and Panda [14]. Monaco was found to outperform these systems in a unipro-
cessor configuration by factors ranging from 1.6 to 4.0, and to maintain such

536

ratios for 1-16 processors (PEs). The new implementation of Monaco maintains
this competitive performance. The uniprocessor performance relative to KLIC is
respectable for all benchmarks, and especially good for the larger, more realistic
benchmarks, where the geometric mean slowdown is only 20%. As for object code
size, Super Monaco executables are 20 Kbytes smaller on average than KLIC.

small

large

Super
benchmark KLIC Monaco
hanoi(14) 0.6 2.3
nrev(1000) 5.9 11.9
pascal(200) 1.7 4.1
primes(5000) 4.4 9.3
queen(lO) 10.4 28.3
cube(f) 15.5 38.0
life(20) 29.6 20.5
semigroup 85.9 140.7
waltz 18.8 26.6
wave(8,8) 11.6 7.4

KLIC:SM
0.261
0.495
0.415
0.474
0.368
0.408
1.45
0.610
0.709
1.56

original
Monaco

4.4
19.2
9.0

12.8
43.4

Monaco:SM
1.91
1.61
2.19
1.37
1.53

Table 2. Comparison of Uniprocessor Performance (Seconds, Symmetry)

Tick et al. [18] present the multiprocessor execution times of Super Monaco.
Times were measured for the longest running PE from the beginning of the com-
putation until termination. The geometric mean speedups of the small bench-
marks (as defined above) on 16 PEs are 10.3, 10.7, and 11.1 for Super Monaco,
old Monaco, and JAM Parlog. However, the geometric mean execution times on
16 PEs are 0.76, 1.2, and 3.0 seconds, respectively. For the large benchmarks,
Super Monaco achieves a geometric mean of 10.5 speedup on 16 PEs.

The mona assembler facilitates profiling our compiled code with standard
UNIX tools. We analyzed the performance of compiled code and the runtime
system using the UNIX prof facilities. Table 3 gives the breakdown of the exe-
cution time for differing numbers of PEs, as an arithmetic mean percentage over
the larger benchmarks. The top portion of the table is runtime system overheads.
The bottom portion is compiled thread execution. Runtime Alloc. and Compiled
Alloc. are memory allocation overheads (not including GC). System scalability
to larger numbers of PEs is limited by the increasing overhead of scheduling op-
erations and the overhead of shared lock contention. We believe that almost all
lock collisions are due to scheduling operations. The system is not yet balanced,
with compiled code running below 40% of total execution time; however, these
statistics are influenced a great deal by the benchmark suite.

537

Unification
Schedul ing
Suspens ion
Runt ime Alloc.
Idling
Content ion
Compi led Code
Compiled Alloc.

1 PE 2 PE 4 PE
30.6 29 .2 27.7
16.9 17 .0 16.9
4.8 5.1 5.0
5.1 5.6 6.3
0.2 1.6 3.4
0.0 0.0 0.1

41.2i 40 .2 39.5
1.3 1.3 1.1

8 PE
26.6
16.6
5.3
6.1
4.3
1.0

39.1
1.1

12 PE
24.4
17.6
4.1
5.7
6.0
3.2

37.9
1.1

16 PE
21.0
16.8
3.6
4.7
9.8
7.8

35.5
0.9

Table 3. Execution Time Breakdown (by Percentage)

6 Related Work

Among the first abstract machine designs for committed-choice languages were
an implementation of Flat Concurrent Prolog [15] by Houri [9], the Sequential
Parlog machine by Gregory et al. [6], and the KL1 machine by Kimura [10] at
ICOT. A good summary of work on Parlog appears in Gregory's book [6]. The
JAM Parlog system [4] is a commonly-used Parlog implementation which com-
piles Parlog into code for an abstract machine interpreter. The implementation
of JAM Parlog features many innovations which are still in current use by both
our system and others, including tail call optimization and goal queues. In spite
of a layer of emulation, JAM Parlog is reasonably efficient. An outgrowth of
work on Flat Parlog implementation, the Strand Abstract Machine [5] was orig-
inally designed for distributed execution environments, but also achieved good
performance on shared-memory parallel machines. More recent work includes
the ICOT KLIC system [3], which translates KL1 code into portable C code,
achieving excellent performance. Uniprocessor and distributed-memory versions
[13] have been released. The j c Janus system is a similar uniproeessor-based,
high-performance implementation [7]. See Chikayama [3] for an in-depth perfor-
mance comparison among KLIC, j c, Aquarius Prolog, and SICStus Prolog.

7 Conclusions

Super Monaco has obsoleted its predecessor in robustness, capability, and execu-
tion performance, on the shared-memory hosts we are targeting. The novel con-
tribution of this paper is the development of a real-parallel concurrent logic pro-
gramming language implementation that achieves speeds competitive with the
fastest known uniprocessor implementations, while retaining speedups compara-
ble to the best shared-memory implementations. Other contributions include an
efficient termination detection algorithm, a new hooking scheme, an assembler-
assembler framework that facilitates portability, and support for native profiling,
debugging, and linking. Future work includes exploring optimizations, such as
lazy resumption and uses of mode analysis, to further reduce overheads.

538

Acknowledgements

J. Larson was supported by a grant from the Institute of New Generation Com-
puter Technology (ICOT). B. Massey was supported by a University of Oregon
Graduate Fellowship. E. Tick was supported by an NSF Presidential Young In-
vestigator award, with matching funds from Sequent Computer Systems Inc. We
thank C. Au-Yeung and N. Badovinac for their help with this research.

References

1. T. Anderson et al. Scheduler Activations: Effective Kernel Support for the User-
Level Management of ParMlelism. A C M Trans. on Comp. Sys., 10(1):53-79, 1992.

2. C. Au-Yeung. A RISC Backend for the 2 "a Generation Shared-Memory Mnltipro-
cessor Monaco System. Bachelor's thesis, University of Oregon, December 1994.

3. T. Chikayama et al. A Portable and Efficient Implementation of KL1. In lnt.
Syrup. on Prog. Lang. Impl. and Logic Prog., pp. 25-39, 1994. Springer-Verlag.

4. J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog.
New Generation Computing, 10(4):385-422, August 1992.

5. I. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In
North American Conf. on Logic Prog., pages 497-512. MIT Press, October 1989.

6. S. Gregory. Parallel Logic Programming in PARLOG: The Language and its Im-
plementation. Addison-Wesley Ltd., Wokingham, England, 1987.

7. D. Gudeman et al. jc: An Efficient and Portable Sequential Implementation of
Janus. In Joint lnt. Conf. and Syrup. on Logic Prog.. MIT Press, 1992.

8. R. C. Haygood. Native Code Compilation in SICStus Prolog. In International
Conference on Logic Programming, pages 190-204, Genoa, June 1994. MIT Press.

9. A. Houri et al. A Sequential Abstract Machine for Flat Concurrent Prolog. In
Concurrent Prolog: Collected Papers, vol. 2, pp. 513-574. MIT Press, 1987.

10. Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set.
In Int. Syrup. on Logic Prog., pp. 468-477. IEEE Computer Society Press, 1987.

11. S. Kliger and E. Y. Shapiro. From Decision Trees to Decision Graphs. In North
American Conf. on Logic Prog., pages 97-116. MIT Press, October 1990.

12. A. Osterhaug, editor. Guide to Parallel Programming on Sequent Computer Sys-
tems. Prentice Hall, Englewood Cliffs, N J, 2nd edition, 1989.

13. K. Rokusawa et al. Distributed Memory Implementation of KLIC. New Genera-
tion Computing, vol. 14, no. 3, 1995.

14. M. Sato et al. Evaluation of the KL1 Parallel System on a Shared Memory Mul-
tiprocessor. In IFIP Work. Conf. on Par. Processing. North Holland, 1988.

15. E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. A C M
Computing Surveys, 21(3):413-510, 1989.

16. E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming Sys-
tem. In Conf. on Parallel Arch. and Lang. Europe, LNCS no. 694, pp. 266-278.
Springer Verlag, 1993.

17. E. Tick and C. Banerjee. Performance Evaluation of Monaco Compiler and Run-
time Kernel. In Int. Con]. on Logic Prog., pages 757-773. MIT Press, June 1993.

18. E. Tick et al. Experience with the Super Monaco Optimizing Compiler. University
of Oregon, Dept. of Computer Science Technical Report CIS-TR-95-07.

