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Abst rac t .  "Super Monaco" is the successor to Monaco, a shared-mem- 
ory multiprocessor implementation of a flat concurrent logic program- 
ming language. While the system retains, by-and-large, the older Monaco 
compiler and intermediate abstract machine, the intermediate code trans- 
lator and the runtime system have been completely replaced, incorporat- 
ing a number of new features intended to improve robustness, flexibility, 
maintainability, and performance. There are currently two native-code 
backends for 80x86-based and MIPS-based multiprocessors. The runtime 
system, written in C, improves upon its predecessor with better mem- 
ory utilization and garbage collection, and includes new features such as 
an efficient termination scheme and a novel variable binding and hook- 
ing mechanism. The result of this organization is a portable system 1 
which is robust, extensible, and has performance competitive with C- 
based systems. This paper describes the design choices made in building 
the system and the interfaces between the components. 
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1 Introduction 

Monaco is a high-performance parallel implementation of a subset of the KL1, a 
concurrent logic programming language [15], for shared-memory multiprocessors. 
"Super Monaco" is a second-generation implementation of this system, consist- 
ing of an evolved intermediate instruction set, a new assembler-generator, and 
a new runtime system. It incorporates the lessons learned in the first design 
[16], improves upon its predecessor with better  memory utilization (via a 2-bit 
tag scheme and the use of 32-bit words) and garbage collection, and includes 
a number of new features: 1) Termination detection through conservative goal 
counting. 2) A new mechanism for hooking suspended goals to variables. 3) A 
specialized language for implementing intermediate code translators. 4) A clean 
and efficient calling interface between the runtime system and compiled code. 

We have found that  our changes to Monaco have increased the robustness, 
portability, and maintainability of the system, while increasing the performance. 
The system now has less than 1,000 lines of machine-dependent code, completely 

1 AvaiJable by anonymous ftp from f t p .  cs. uoregon, edu: pub/sin, t a r .  gz. 
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encapsulated behind generic interfaces. The new assembler-assembler makes na- 
tive code generation simple and declarative, while supporting the use of stan- 
dard debugging and profiling tools. A conservative goal-counting algorithm im- 
plements distributed termination detection. The intermediate code is evolving 
toward a more abstract machine model, and thus toward more complex instruc- 
tions. A new data layout makes for more compact use of memory, in conjunction 
with a novel hooking scheme which maintains references to suspended goals with 
a hash table indexed by variable address. 

This paper discusses the design choices made in this second-generation sys- 
tem, its implementation and performance. Because of space limitations, we can- 
not review the compiler and assembler here (see Tick et al. [18]). 

2 M o n a c o  I n t e r m e d i a t e  C o d e  

The Monaco instruction set presents an abstract machine which is at an in- 
termediate level between the semantics of a concurrent logic program and the 
semantics of native machine code. The abstract machine consists of a number 
of independent processes which execute sequences of procedures and update a 
shared memory area. Each process has a set of abstract general-purpose regis- 
ters which are used as operands for Monaco instructions and for passing proce- 
dure arguments. Control flow within a procedure is sequential with conditional 
branching to code labels. See Tick et al. [18] for intermediate code samples. 

There are two unification operations. Passive unification verifies the equality 
of ground values (in contrast to systems such as JAM Parlog [4], which also ver- 
ify the equality of terms in which uninstantiated variables are bound together). 
An at tempt  to passively unify a term containing uninstantiated variables will 
result in suspension of the process until those variables become instantiated. 
Active unification, on the other hand, will bind variables to other variables or 
to values in order to ensure equality of terms. As is customary in logic pro- 
gramming implementations, no "occurs check" is performed during unification 
for efficiency reasons. Variables are bound only through assignment operations 
or active unification. 

The Monaco instruction set consists of about sixty operations. The operations 
are broadly categorized as: 1) Data constructors for each data type (constant, 
list, struct, goal record, variable). 2) Data  manipulators for accessing the fields of 
aggregates. 3) Arithmetic operations. 4) Predicates for testing the types of most 
objects and for arithmetic comparisons. Predicates store the t ru th  value of their 
result in a register. 5) Conditional branches based on the contents of a register. 
6) Interfaces to runtime system operations for assignment, unificatio~b suspen- 
sion, and scheduling. 7) Instructions for manipulating the suspension stack. The 
instructions take constants or registers as their arguments and return their re- 
sults in registers. There is no explicit access to the shared memory except through 
operations which access the fields of aggregates. 

Each data constructor has a variant which serves to batch up allocation 
requests into a large block, and then initialize smaller sections of the block. 
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Batching up the frequent allocation requests increased performance on standard 
benchmarks, as discussed below in Section 5. In addition, aggregates which are 
fully ground at compile time are statically allocated in the text segment of the 
assembled code. This decreases execution and compilation times. 

The instruction set is modeled after a reduced instruction set architecture, on 
the theory that such small instructions may be easily and efficiently translated 
to native RISC instructions with a simple assembler. However as frequent idioms 
are identified and coalesced, the Monaco instruction set has been evolving toward 
more complex instructions. There a few reasons for this trend: 1) Higher-level 
intermediate instructions better hide the runtime system implementation. 2) As 
the amount of work per instruction gets larger, more machine-specific optimiza- 
tions can be made in the monaa code templates. (This is in contrast to systems 
such as [8], a sophisticated multi-level translation scheme producing good code 
by intelligent generation of simple intermediate instructions.) 

3 T h e  R u n t i m e  D a t a  L a y o u t  

The previous memory layout [16] had three tag bits on each word, and words were 
laid out on eight-byte boundaries in memory. This prodigious use of memory was 
not merely a concession to the three tag bits; the unification scheme required 
each object to be lockable. As a consequence, some of the "extra" 32 bits of 
each word were used as a lock. While this led to a fine granularity for locking, it 
doubled the system's memory consumption. All objects are now represented as 
32-bit words of memory aligned on four-byte address boundaries. This alignment 
restriction allows the low-order two bits of pointers to be used as tag bits, without 
loss of pointer range. The four tagged types are immediates, list pointers, boz 
pointers, and reference pointers. Immediates are further subdivided into integers, 
atoms, and box headers. Integers have the distinction of being tagged with zero 
bits, allowing some optimizations to be made in arithmetic code generation. On 
most architectures, the pointer types suffer no inefficiencies from tagging, since 
negative offset addressing may be used to cancel the added tag. 

List pointers point to the first of two consecutive words in memory, the head 
and the tail of the list, respectively. The nil list is represented as a list-tagged 
null pointer. Box pointers point to an array of n consecutive words in memory, 
the first of which is a box header word which encodes the size of the box and 
the type of its contents. Boxes are used to implement structs, goal records, and 
strings, as well as objects specific to the runtime system such as suspension slips. 

There is only one mutable object type - -  the unbound variable, represented as 
a null pointer with a reference pointer tag. When a variable is bound, its value is 
changed to the binding value. When a variable is bound to another variable, one 
becomes a reference pointer to the other. Successive bindings of variables create 
trees of reference pointers which terminate in a root, which is either an unbound 
variable or some non-variable term. The special Monaco instruction de te r  must 
thus be applied to all input arguments of a procedure before they are examined. 
This operation chases down a chain of references to its root, and returns the 



530 

root value or a reference to the unbound root variable. Thus, a conservative 
estimate of whether the variable is bound can be made quickly. In practice, this 
is a performance, not correctness, issue: the process may try to suspend on a 
recently instantiated variable, in which case the runtime system will detect its 
instantiation and resume execution of the process. 

In old Monaco, one of the tag types was a hook pointer, which was semanti- 
cally equivalent to an unbound variable, but pointed to the set of goal records 
suspended on that variable. All of the code which dealt with unbound variables 
also had to test for hook pointers and handle them separately. However, profil- 
ing revealed that suspension is a relatively rare event: most variables are never 
hooked. Therefore the new data layout keeps the association between unbound 
variables and suspended goal records "off-line." This new organization seems 
promising (see Section 4.3); contention for buckets is indeed rare, and we were 
able to simplify some critical code sections in unification. 

4 T h e  R u n t i m e  S y s t e m  

The runtime system is responsible for memory management, scheduling, unifica- 
tion, and the multiprocessor synchronization involved in assignment and suspen- 
sion. It consists of about 2000 lines of machine-independent C code, and about 
300 lines of machine-dependent C for a particular platform. It has been ported 
to the Sequent Symmetry and MIPS-based SGI machines. 

Old Monaco used libraries provided by the host operating system [12] to im- 
plement parallel lightweight threads and memory management. Here we use a 
more operating system independent model. We create UNIX processes executing 
in parallel and communicating through machine-specific synchronization instruc- 
tions in shared memory, using the fork  and n a p  system calls. The machine- 
dependent runtime system requires only a few synchronization primitives: 1) 
atomic exchange operation, 2) atomic increment and decrement, 3) simple spin 
locks, and 4) barrier synchronization. For the Symmetry port, atomic increment, 
decrement, and exchange are provided by the instruction set, while locks and 
barriers are synthesized with atomic exchange. The machine-independent code 
assumes globally reliable writes. The runtime system's interface with the com- 
piled code is small and regular. 

The resulting framework is portable since it does not rely on UNIX implemen- 
tations' libraries for thread and memory management, but there are tradeoffs. 
UNIX debuggers are too low level. The shared memory must be managed explic- 
itly; consequently, every runtime system data structure which must be visible 
to all worker processes be a C global, hindering code modularity. The UNIX 
scheduler infrequently interacts badly with our threads, as in [1]. 

4,1 Schedul ing and  Call ing Interface  

The Monaco abstract machine produces many thousands of processes during a 
typical computation, too many for implementation via UNIX kernel processes. 
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We treat  UNIX "worker" processes as a set of virtual CPUs, on which we schedule 
Monaco processes in the runtime system. 

A goal record records the procedure name and arguments of a Monaco Pro- 
cess. A ready set of goal records is maintained by the runtime system. Each 
worker process starts in a central work loop inside the runtime system. This loop 
executes until some global termination flag is set, or until there is no more work 
to do. The worker takes a goal record out of the ready set, loads its arguments 
into registers, and calls its entry point. The worker then executes a compiled 
procedure, including sequences of tail calls, until the compiled code terminates, 
suspends, or fails. These three operations are implemented by a return to the 
control work loop in the runtime system with a status code as the return value. 
In addition, the intermediate code instructions for enqueueing, assignment, and 
unification are implemented as procedure calls from the compiled code into the 
runtime system. Such calls return back to the compiled code when done, possibly 
with a status code as a return value. Control flow during a typical execution is 
illustrated in Figure 1. The runtime system invokes a Monaco procedure via a 
goal record (1), which tail-calls another procedure (2). This procedure at tempts  
a passive unification via a call into the runtime system (3), which returns a 
constant suspend as an indication that the caller should suspend (4). The caller 
then suspends by returning the constant suspend to the runtime system (5). 

C o m p i l e d  M o n a c o  C o d e  
: . . . . . . . . .  ~ 1. Dispatch 

5. R e t u r n  ' suspend'  
~. Tail: 

�9 Passive Uni fy  

. . . . . . . . . . .  4. R e t u r n  ' suspend'  

C R u n t i m e  S y s t e m  

~...,.:! Worker Loop  I: 

~1  U:idtiec "r i~ n I:: 

Fig. 1. Sample Control Flow in the Monaco System 

The high contention experienced when the ready set is implemented as a 
shared, locked global object leads to the necessity of some form of distributed 
ready set implementation. In our scheme, each worker has a fixed-size local ready 
stack, corresponding to an efficient depth-first search of an execution subtree [14]. 
If the local stack overflows, local work is moved to a global ready stack. If workers 
are idle while local work is available, a goal is given to each idle worker, and the 
remaining local work is moved to the global ready stack. This policy is designed 
to work well both during normal execution, when many goals are available, and 
during the initial and final execution phases, when there is little work to do. 

4.2 T e r m i n a t i o n  

Execution of a Monaco program begins when goal records for the calls in the 
query are inserted into the ready set, and ends when there are no more runnable 
goals. At this point the computation has either terminated successfully, failed, 
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or deadlocked - -  the difference can be easily determined in a post-mortem phase 
which looks for a global failure flag and suspended goals. A serious difficulty for 
a parallel implementation is efficiently deciding when termination should occur. 

Many approaches to termination detection are susceptible to race conditions. 
The previous implementation maintained a monitor process which examined a 
status word maintained by each worker process, terminating the computation 
when it recognized that each work had maintained an idle state for some time. 
A locking scheme was used to avoid races by synchronizing the workers with the 
monitor, which hurt worker efficiency. Most importantly, the monitor process 
itself consumed a great deal of CPU time without performing much useful work. 

In Super Monaco, we have adopted a different and (to the best of our knowl- 
edge) novel approach. We maintain a count of all outstanding goals: those either 
in the ready set or currently being executed by workers. Termination occurs 
when this count goes to zero. The count increases when work is placed in the 
ready set, and decreases when a goal suspends, terminates, or fails. The count 
is not changed by the removal of a goal from the ready set, since the goal makes 
a transition from the ready state to the executing state. There is a temporary 
overestimate of the number of goals outstanding during the transition interval 
between the time the goal suspends, terminates, or fails, and the time the count 
is decremented. However, this will not cause premature termination, since the 
overestimate means that the counter must indicate a nonzero number of out- 
standing goals. Because the count is not incremented until after a parent has 
decided to spawn a child goal, there is also a temporary underestimation of the 
goal count during this interval. As long as the count is incremented before the 
parent exits, this will not cause premature termination either: Since the parent 
has not yet exited, the count must be nonzero until after the underestimation 
is corrected. Thus, since mis-estimates of the number of outstanding goals are 
temporary and will not cause premature termination, our termination technique 
is both efficient and safe. On the Symmetry, we implemented this goal counting 
scheme with atomic increment and decrement instructions. We observed no con- 
tention on Symmetry, and hypothesize no contention on faster multiprocessors 
because work within a task overshadows locking. 

4.3 Hooking and Suspension 

In order to awaken suspended processes when a variable becomes instantiated, 
there must be some association between them. As noted in Section 3, old Monaco 
represented this association explicitly: some unbound variables were represented 
as pointers to sets of hooks. Figures 2a illustrates the old representation. 

However, for our benchmark set, the vast majority of variables are never 
hooked. For a variety of reasons, the most important being the fact that we 
wanted to adopt two bit tag values to represent five types (immediates, lists, 
box pointers, variable pointers, and reference pointers), we chose to represent 
variables using a single word. Super Monaco continues to use suspension slips to 
implement suspension and resumption, as in systems such as JAM Parlog [4] and 
PDSS [10], except that the association between variables and hooks is reversed. 
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0"~" hoo]~h~176 b~ hookVariable 
[ suspension slip 

goal I goal record in, ref 
(a) Old Monaco 

hook table 

\ ~. 3 I~o,i !goal ..... d 
\Ig lin' I" 

(b) Super Monaco 

Fig. 2. Monaco Hook Structures 

Each hook contains a pointer to the variable it is suspended upon. Hooks are 
grouped into sets according to a hashing function based upon variable addresses. 
A global hook table contains a lock for each such set. 

Since any operation on an uninstantiated variable necessarily involves the 
manipulation of the hook table, the locks on the buckets of the hook table may 
serve as the only synchronization points for assignment and unification. This 
gives a lower space overhead for the representation of variables on the heap. 
There will be some hash-related contention for locks which would not occur in 
a one-lock-per-variable scheme, but since we are dealing with shared-memory 
machines with a moderate number of processors, the rate of such hash collisions 
can be made arbitrarily low by increasing the size of the hook table. 

To instantiate a variable, its bucket is locked, the unbound cell is bound to 
its new value, all corresponding hooks are removed from the bucket, and the lock 
is unlocked. All hooks are then examined. To bind a variable to another variable, 
both buckets are locked (a canonical order is chosen to prevent deadlock) and 
the set of hooks of on the second variable are extracted and mutated into hooks 
on the first variable. These hooks are then placed in the first variable's bucket, 
and the second variable is mutated into a reference to the first. The result is 
that  future dereferencing operations will return a reference to the new root, or 
its value when instantiated. Figure 2b illustrates the new representation. 

To evaluate the performance of our hooking scheme, we replaced it with a 
more traditional technique. In the latter approach, a list of suspension slips for 
goals suspended on an unbound variable is maintained in the cell following the 
variable on the heap. When the variable is bound, the binding process picks up 
the list directly: the garbage collector will eventually reclaim the extra cell. The 
traditional implementation requires a locking scheme for variables. We adopt the 
convention that  a locked variable is represented by a reference to itself, i.e., to 
the location of the locked variable. This representation has an interesting advan- 
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tage: readers of the variable will spin dereferencing its location until the lock is 
released, and thus do not have to be modified to be aware of variable locking. 
The actual lock operation is conveniently implemented with atomic exchange on 
architectures which have this capability. 

Table 1 shows the performance comparison (see Section 5 for benchmark 
descriptions). In general, there is insignificant performance difference between 
the two representations (the poor performance of wave needs further investiga- 
tion). In general, most of the differences are due to the longer typical-case path 
length of the table-based scheme (20 instructions versus 15), which in turn is 
an unavoidable consequence of the scheme's more complex nature. Although the 
two-cell representation is slightly faster, future runtime system optimizations 
may reverse this advantage. 

hooking pe r fo rmance  inlining pe r fo rmance  
benchmark  Itwo-cell hash table  slowdown inl ined non- inl ined slowdown 
hanoi(14) 2.3 
,nrev(lO00) 11.9 
pascal(200) 4.1 
primes(5000) 9.3 
queen(10) 28.3 
cube(6) 38.0 
nfe(20) 
semigroup 140.7 
waltz 26.6 
iwave(8,8) 7.4 

2.4 4% 
13.Y 10% 
4.2 2% 
9.8 5% 

30.5 7% 
38.9 2% 

147.8 5% 
27.0 2~ 

9.2 24~ 

2.3 
11.9 
4.1 
9.3 

28.3 
38.0 
20.5 

140.7 
26.6 

7.4 

2.5 9% 
16.0 34% 
4.7 14% 

11.3 21% 
29.1i 3% 
38.0 0% 
20.9 2% 

142.8~ 1% 
27.0 2% 

7.7 4% 

Table 1. Hooking Scheme and Inhning Performance Impacts (Seconds, Symmetry) 

4.4 M e m o r y  M a n a g e m e n t  

Memory is Mlocated in a two-tiered manner. First, there is a global allocator 
which allocates blocks of memory from the shared heap. Access to the global 
allocator is sequentialized by a global lock. Second, each worker uses the global 
allocator to acquire a large chunk of memory for its private use. All memory 
allocation operations a t tempt  to use this private heap, falling back on the global 
allocator when the private heap is exhausted. When the global heap is exhausted, 
execution suspends while a single worker performs a stop-and-copy garbage col- 
lection of the entire heap. Garbage collection overheads are acceptably low now, 
but a parallel garbage collector will be implemented in the near future. 

The heap holds not only objects created by the compiled code, but also 
dynamically created runtime system structures. Strings, which are allocated by 
the parser, are stored as special boxes. Suspension hooks and suspension slips 
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are stored in list cells and small boxes respectively. Sets of objects are either 
represented as statically-limited tables (such as suspension stacks) or as lists 
(such as hook lists). All sets were first implemented as lists on the heap, avoiding 
static limits on set sizes, and also speeding development time through reuse 
of general-purpose code. However, using statically-allocated resources not only 
reduces memory-allocation overhead, but also reduces contention by shortening 
critical sections. If no reasonable limit to set size is known at compile time, such 
as for the set of ready goals, a hybrid scheme is used where dynamically allocated 
storage is used to handle the overflow of statically-allocated tables. 

4.5 U n i f i c a t i o n  

In early benchmarking, we found that the high frequency of active unification 
made it a performance bottleneck. We have largely solved this problem through 
the implementation of "fast paths" through the active unification process. The 
approach is based on the Monaco compiler's identification of certain active uni- 
fications as assignments whose left-hand side is likely (but not certain) to be 
a reference directly to an unbound, unhooked variable, and whose right-hand 
side is likely to to be a bound value. Assignments comprise the bulk of active 
unification performed during execution. 

The main optimization of assignments is to arrange for inline assembly code 
to test that the conditions for the assignment are met, and if so, perform the 
assignment inline. If the assignment is too complex to perform inline, it is passed 
to a specialized procedure which attempts to optimize some additional common 
cases. Thus the general active unifier is infrequently executed. 

Table 1 shows the performance of the inlined and non-inlined versions (for the 
two-cell scheme). Differences are substantial in several benchmarks, and in no 
case do the extra tests degrade performance. For example, nrev(1000) performs 
about 500,000 assignments (and 1000 general unifications). Of the assignments, 
all but 12 are handled inline, resulting in 34% overall performance improvement. 

5 P e r f o r m a n c e  E v a l u a t i o n  

Super Monaco was evaluated on two sets of benchmarks executed on a Sequent 
Symmetry $81 with 16MHz Intel 80386 microprocessors. The first set, consisting 
of small, standard programs, is used for comparisons with other systems: KLIC 
[3] and Monaco. The second set, containing larger programs, is used for runtime 
system analysis. Table 2 compares Super Monaco, (original) Monaco [17], and 
KLIC (uniprocessor version) performance. All times are the best of several runs, 
using the sum of user- and system-level CPU times. In all cases, Super Monaco 
improves on the performance of the previous system, despite the fact that it is 
more robust. Tick and Banerjee [17] compared the old Monaco's performance 
to that of comparable systems available at the time, such as Strand [5], JAM 
[4], and Panda [14]. Monaco was found to outperform these systems in a unipro- 
cessor configuration by factors ranging from 1.6 to 4.0, and to maintain such 
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ratios for 1-16 processors (PEs). The new implementation of Monaco maintains 
this competitive performance. The uniprocessor performance relative to KLIC is 
respectable for all benchmarks, and especially good for the larger, more realistic 
benchmarks, where the geometric mean slowdown is only 20%. As for object code 
size, Super Monaco executables are 20 Kbytes smaller on average than KLIC. 

small 

large 

Super 
benchmark KLIC Monaco  
hanoi(14) 0.6 2.3 
nrev(1000) 5.9 11.9 
pascal(200) 1.7 4.1 
primes(5000) 4.4 9.3 
queen(lO) 10.4 28.3 
cube(f) 15.5 38.0 
life(20) 29.6 20.5 
semigroup 85.9 140.7 
waltz 18.8 26.6 
wave(8,8) 11.6 7.4 

KLIC:SM 
0.261 
0.495 
0.415 
0.474 
0.368 
0.408 
1.45 
0.610 
0.709 
1.56 

original 
Monaco  

4.4 
19.2 
9.0 

12.8 
43.4 

Monaco:SM 
1.91 
1.61 
2.19 
1.37 
1.53 

Table 2. Comparison of Uniprocessor Performance (Seconds, Symmetry) 

Tick et al. [18] present the multiprocessor execution times of Super Monaco. 
Times were measured for the longest running PE from the beginning of the com- 
putation until termination. The geometric mean speedups of the small bench- 
marks (as defined above) on 16 PEs are 10.3, 10.7, and 11.1 for Super Monaco, 
old Monaco, and JAM Parlog. However, the geometric mean execution times on 
16 PEs are 0.76, 1.2, and 3.0 seconds, respectively. For the large benchmarks, 
Super Monaco achieves a geometric mean of 10.5 speedup on 16 PEs. 

The mona assembler facilitates profiling our compiled code with standard 
UNIX tools. We analyzed the performance of compiled code and the runtime 
system using the UNIX prof  facilities. Table 3 gives the breakdown of the exe- 
cution time for differing numbers of PEs, as an arithmetic mean percentage over 
the larger benchmarks. The top portion of the table is runtime system overheads. 
The bottom portion is compiled thread execution. Runtime Alloc. and Compiled 
Alloc. are memory allocation overheads (not including GC). System scalability 
to larger numbers of PEs is limited by the increasing overhead of scheduling op- 
erations and the overhead of shared lock contention. We believe that almost all 
lock collisions are due to scheduling operations. The system is not yet balanced, 
with compiled code running below 40% of total execution time; however, these 
statistics are influenced a great deal by the benchmark suite. 
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Unification 
Schedul ing 
Suspens ion 
Runt ime  Alloc.  
Idling 
Content ion  
Compi led  Code  
Compiled Alloc. 

1 PE 2 PE 4 PE 
30.6 29 .2  27.7 
16.9 17 .0  16.9 
4.8 5.1 5.0 
5.1 5.6 6.3 
0.2 1.6 3.4 
0.0 0.0 0.1 

41.2i 40 .2  39.5 
1.3 1.3 1.1 

8 PE 
26.6 
16.6 
5.3 
6.1 
4.3 
1.0 

39.1 
1.1 

12 PE 
24.4 
17.6 
4.1 
5.7 
6.0 
3.2 

37.9 
1.1 

16 PE 
21.0 
16.8 
3.6 
4.7 
9.8 
7.8 

35.5 
0.9 

Table 3. Execution Time Breakdown (by Percentage) 

6 Related  Work 

Among the first abstract machine designs for committed-choice languages were 
an implementation of Flat Concurrent Prolog [15] by Houri [9], the Sequential 
Parlog machine by Gregory et al. [6], and the KL1 machine by Kimura [10] at 
ICOT. A good summary of work on Parlog appears in Gregory's book [6]. The 
JAM Parlog system [4] is a commonly-used Parlog implementation which com- 
piles Parlog into code for an abstract machine interpreter. The implementation 
of JAM Parlog features many innovations which are still in current use by both 
our system and others, including tail call optimization and goal queues. In spite 
of a layer of emulation, JAM Parlog is reasonably efficient. An outgrowth of 
work on Flat Parlog implementation, the Strand Abstract Machine [5] was orig- 
inally designed for distributed execution environments, but also achieved good 
performance on shared-memory parallel machines. More recent work includes 
the ICOT KLIC system [3], which translates KL1 code into portable C code, 
achieving excellent performance. Uniprocessor and distributed-memory versions 
[13] have been released. The j c  Janus system is a similar uniproeessor-based, 
high-performance implementation [7]. See Chikayama [3] for an in-depth perfor- 
mance comparison among KLIC, j c, Aquarius Prolog, and SICStus Prolog. 

7 Conclusions  

Super Monaco has obsoleted its predecessor in robustness, capability, and execu- 
tion performance, on the shared-memory hosts we are targeting. The novel con- 
tribution of this paper is the development of a real-parallel concurrent logic pro- 
gramming language implementation that achieves speeds competitive with the 
fastest known uniprocessor implementations, while retaining speedups compara- 
ble to the best shared-memory implementations. Other contributions include an 
efficient termination detection algorithm, a new hooking scheme, an assembler- 
assembler framework that facilitates portability, and support for native profiling, 
debugging, and linking. Future work includes exploring optimizations, such as 
lazy resumption and uses of mode analysis, to further reduce overheads. 
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