
Parallel Prolog with Uncertainty Handling

Katalin Molns

IQSOFT Intelligent Software Ltd.,
Teleki Blanka u 15-17, H-1142 Budapest, Htm~gary

raolnar_kOiqsoft.hu

CUBIQ is a toolset that is built on top of Aurora [Carl 92], an OR-parallel im-
plementation of Prolog for shared memory multiprocessors that provides support
for the full Prolog language. CUBIQ introduces frames, blackboard handling,
functional notation and uncertainty handling incrementally and independently of
each other. As part of the CUBIQ project we investigated how parallelism can
be exploited in deduction in uncertain knowledge bases.

Several models of uncertainty are suitable for parallel execution [Pear 88],
[Ram 90], [Roj 93]. Logic programming languages have been extended to deal
with support logic [Bal 87b], certainty functions [Nara 86] and fuzzy sets [Geig 94].
Meta-interpreters to handle uncertain information in Prolog have been designed
by [Ster 86], [Yal~ 90].

We used a compiled version of Yalqinalp and Sterling's layered interpreter
[Yal~ 90] in the CUBIQ toolset. The uncertainty is modelled after support logic
programming as described in [Bal 87b] that represents Dempster-Shafer-style
uncertainty and incorporates representation methods for fuzzy information and
probabilistic rules.

1 U n c e r t a i n k n o w l e d g e r e p r e s e n t a t i o n

Support logic programming assigns necessary support and possible support as
a pair of values [Sn, Sp] to every clause. The rules of the knowledge base are
represented by Prolog clauses that are extended with support pairs.

(Head:- Body): [Sn, Sp].
Uncertainty can be assigned not only to whole clauses, but to individual ar-

guments as well (so called fuzzy arguments). Following [Bal 87b] we use semantic
unification instead of the Prolog unification for fuzzy arguments. The first use of
a fuzzy argument has to be preceded by a CUBIQ declaration of the form:

:- fuzzy(Name,[(Value:Membership_grade),...]
There is a smooth transition between logic and uncertain knowledge inside

the same knowledge base. One can invoke logical rules from uncertain ones and
vice versa through CUBIQ built-in predicates:

unc(: CalLto_uncertain_knowledge, -Unc)
logic(:CaILto_logic_knowledge, + Unc}
Prolog built-in predicates are handled as having either [1,1] or [0,0] outcome

(true or false). Meta-predicates (findall, if-then-else, call, etc) and cut and commit
operators are not yet supported.

692

2 Parallel aspects of uncertainty handling

In this project, we focused on those aspects of uncertain knowledge bases in
which the scope for exploiting OR-parallelism was most significant.

When evaluating logic knowledge it may be interesting to find either o n e

or more solutions. One solution generally means the first evaluation path that
leads to a solution. In an uncertain knowledge base, we have to explore all paths
leading to the same solution in order to get the combined uncertainty that is
calculated from the uncertainties of the different paths leading to that solution.
The main problem is to decide which of the different solutions is considered the
answer. In the best case there is one solution that has a significantly higher de-
gree of certainty (less uncertainty) than all the other solutions. Searching for one
solution in a logic knowledge base thus becomes searching for all solutions in an
uncertain knowledge base. Searching for all solutions is obviously more effective
when done in parallel than sequentially. Note that negated goals (negation by
failure in Aurora) are evaluated through full search both in logic and in uncer-
tain knowledge--thus in the case of negated goals, parallel execution in logic
knowledge is exploited as much as in uncertain knowledge.

3 Implementation

Each predicate with uncertainty is extended with an additional argument, in
which its uncertainty is returned. During the execution of the body of a goal the
constituent subgoals are evaluated and their uncertainty is combined according
to the support logic rules for the AND (Prolog ','), OR (Prolog ';') and NOT
(Prolog ' \+ ') operators [Bal 87a]. We have to preserve the uncertainty calculated
for one evaluation path until all the other paths leading to the same solution are
evaluated. Following the layered interpreter approach [Yal~ 90] we use the Prolog
dynamic database for asserting the solutions of a goal. Every solution is stored
together with a unique identifier and its uncertainty measure. After all solutions
of a goal have been found, the uncertainties of unifiable solutions are combined
to give the general uncertainty of the solution.

As a first step we implemented a straightforward, unsophisticated Prolog in-
terpreter without considering parallelism. We interpreted a knowledge base using
multiple workers and found that the parallel evaluation takes more time than the
sequential evaluation. The reason for this slowdown was that a worker perform-
ing a dynamic database update will suspend its branch, unless it is leftmost in
the OR-tree (to preserve Prolog semantics). As the order of the solutions is not
important, we could use the asynchronous database predicates of Aurora, and so
avoid unnecessary suspensions.

Another source of the parallelization bottleneck was the improper use of cuts.
In many cases the asynchronous database handling predicates had been suspen-
ded because they were in the scope of a cut [Haus 90]. This was due to bad
programming style of placing cuts at the end of clauses. We restructured the
CUBIQ interpreter by placing cuts as early as possible in the alternatives. This
helped to get rid of most suspensions.

693

Finally, we substituted the interpreter with a compiler. The compiled code
runs about three times faster than the interpreted code.

We used the ship knowledge base described in [Bal 87a] to evaluate the per-
formance of an uncertain knowledge base. This is a classification problem about
recognising warships and ordinary ships on the base of visual, acoustic and radar
information. The knowledge base contains 112 clauses.

The table below shows performance results for the ship program in various
stages of our implementation. We present execution times in milliseconds for
1, 3 and 4 workers on a SEQUENT/DYNIX system with 4 of 50Mhz Intel486
processors.

1 worker ,3 workers(speedup) 4 workers(speedup)

simple interpreter 1526 2020 (0.75) 2178 (0.71)
interpreter 1591 638 (2.49) 515 (3.12)
compiler 593 241 (2.46) 193 (3.07)

4 F u t u r e work

The main problem is the representation of the uncertain knowledge in the Prolog
language in such a way that all the language structures of Prolog are allowed.
The current model of uncertainty in CUBIQ does not fulfill this requirement.
The uncertainty of built-in procedures and especially meta-predicates (findall,
if-then-else, etc.) should still be investigated.

We devoted some effort to exploring possible interpretations for the cut oper-
ator in uncertain knowledge bases. In Prolog we use cut operators when we want
to prune the evaluation of other alternatives after some subgoals in an alternative
have been found true. We plan to introduce an uncertain cut operator with the
following meaning: the cut operator is executed when the preceding subgoals are
evaluated with high support (near to true) and ignored when the support for the
preceding subgoals is low (near to fMse). The applicability of the cut operator
may also depend on the general support of the containing clause.

A further area to explore is the uncertainty in frames with multiple inheritance
[Itz 94]. In this model the ancestor relationship is extended to allow uncertain
parent(s). In the CUBIQ tool-set the knowledge engineer is allowed to provide
his/her own definition of ancestorship. One may consider using this mechanism
for experimenting with such extended forms of inheritance.This may also lead to
a search mechanism that is highly parallel.

5 C o n c l u s i o n

Aurora Prolog has been extended with uncertainty handling and experiments
show a reasonable speedup on multiple workers. We have found that there is a
bigger scope for exploiting parallelism in an uncertain knowledge base than in an
ordinary logic knowledge base because of the nature of calculating uncertainty.

694

Our experiments contributed to expanding our knowledge on applicability of
parallel Prolog. We have found the asynchronous database handling predicates of
Aurora useful for implementing efficient information transfer between the parallel
branches of the search tree. We have found that in a parallel environment one
has to pay attention to careful use of the non-logical features of Prolog (such as
the cut operator), as improper use may lead to serious performance degradation.

6 A c k n o w l e d g e m e n t

This work has been supported by the European Union in the framework of Co-
operation in Science and Technology with Central and Eastern European Coun-
tries (CUBIQ - - P E C O Project 10979).

The author is much indebted to P6ter Szeredi for his valuable comments and
encouragement.

R e f e r e n c e s

[Sal 87a]

[sal 8rb]

[Carl 92]
[Geig 94]

[Haus 90]

[Itz 94]

[Nara 86]

[Pear 88]

[Ram 90]

[Roj 93]

[Ster 86]
[YalG 90]

Baldwin, J. F., Martin, T. P., Pilsworth, B. W.: FRIL Programming Lan-
guage Reference Manual.
Baldwin, J. F.: Evidential Support Logic Programming in Fuzzy Sets and
Systems 24, (1987) 1-26
Carlsson, M., et al.: Aurora Prolog User's Manual.
Geiger, C., Lehrenfeld, G.: The Application of Concurrent Fuzzy Prolog in
the Field of Modelling Flexible Manufacturing Systems, in Proc. of 2nd Int.
Conf. on the Practical Applications of Prolog, London, (1994) 233-251
Hausman, B.: Pruning and Speculative Work in OR-Parallel Prolog, Disser-
tation, Stockholm, Sweden, (1990)
I. Itzkovich, I., Hawkes, L. W.: Fuzzy extension of inheritance hierarchies,
in Fuzzy Sets and Systems 62, (1994) 143-153
Narain, S.: MYCIN: The Expert System and Its Implementation in LogLisp,
in van Caneghem, M., Warren D. H.: Logic Programming and its Applica-
tions in Ablex Series in AI, (1986) 161-174
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plaus-
ible Inference. USA, (1988)
Ramsey, C. L., Booker, L. B.: A Parallel Implementation of a Belief Main-
tenance System, in Proc. The Fifth Ann. AI Systems in Gov. Conf., (1990)
180-186
Rojas-Guzman, C., Kramer, M. A.: Comparison of Belief Networks and
Rule-Based Expert Systems for Fault Diagnosis of Chemical Processes, in
Engineering Appl. of AI, Vol. 6, Iss 3, (1993) 191-202
Sterling, L., Shapiro, E. H.: The Art of Prolog. MIT Press, (1988)
Yalqinalp, L. U., Sterling, L.: Building Embedded Languages and Expert
System Shells in Prolog, in Proc. of 2nd Int. IEEE Conf. on Tools for AI,
(1990) 56-62

