Lecture Notes in Computer Science 1182

Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer



Waqar Hasan

Optimization
of SQL Queries
for Parallel Machines

&) Springer




Series Editors
Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Author

Wagqar Hasan

Stanford University, Department of Computer Science
Stanford, CA 94305, USA

E-mail: hasan@db.stanford.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Hasan, Wagqar:
Optimization of SQL queries for parallel machines / Waqar
Hasan. - Berlin ; Heidelberg ; New York ; Barcelona ;
Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ;
Singapore ; Tokyo : Springer, 1996

(Lecture notes in computer science ; 1182)

Zugl.: Stanford, CA, Univ., Diss.

ISBN 3-540-62065-6
NE: GT

CR Subject Classification (1991): H.2, H.3, E.5

ISSN 0302-9743
ISBN 3-540-62065-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10550447 06/3142-543210  Printed on acid-free paper



To my father

Dr. Amir Hasan

for showing me the paths that I follow.



Foreword

Performance in computing, and particularly in data access, is crucial as our
dependence on computing becomes pervasive. Continued innovation is essen-
tial for increases in performance to keep up with our requirements: at any
time in the past there has been a majority of tasks which can be performed
in time, while there has been a remainder, the tail of the distribution, that
provides a challenge. In addition, we are always facing some problems that
are in the infeasible range.

As examples for the three classes of problems, namely satisfactory, chal-
lenging, and infeasible, we see in the arena of information processing, respec-
tively, routine business processing, delivering information for decision-making
from distributed large databases, and prediction of future events from models
and historical data.

Performance in a computing system is improved in two dimensions: using
higher speed in the individual modules and increasing the number of modules
that can operate in parallel. These two dimensions are not independent, since
the coordination and communication required in parallel execution increases
the amount of work to be done by each module. Crucial in this balance
is hence the granularity, the size of the modules. At the very fine grain the
tradeoffs are well understood. Computer architectures, in various generations,
have moved from say 8-bit, to 16-bit, 32-bit, and even wider paths. There is,
however, a diminishing return here: if the natural data elements are small, and
interact to inhibit parallel operation, then wider data paths do not provide
an advantage.

Databases deal with mixed granularity. The primitive elemental values
being stored are often small, but are aggregated into records of hundreds of
elements, and then stored in files or tables containing thousands or millions
of records. Relevant data for even a modest problem may be found on dozens
of computers distributed anywhere over world-wide networks.

This monograph provides both insights and algorithms pertaining to par-
allel operation at a practical granularity relevant to database system opera-
tions. Tables or object classes provide sizable objects that can be treated in
parallel while permitting serial, pipelined overlap. Modules can also be cloned
by partitioning and replicating data objects. These approaches interact with
each other as well, making the selection of effective processing schedules yet
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more complex. Fortunately, the algebras over these objects are well-behaved,
so that their operations can be completely and precisely defined.

This work provides an approach that balances the advantages and costs of
parallel execution. Module granularity is determined by the actual operations
being scheduled while respecting intrinsic limits on available parallelism such
as timing and data-placement constraints and accounting for the trade-off
between using parallel execution and incurring communication costs. The
result is applicable to modern system configurations, where computation is
performed on pipelining-capable workstations operating in parallel. Further
research will have to focus on dynamic aspects of parallel computation, letting .
the scheduling itself overlap with the computation, since this work seems to
be able to exploit all the information likely to be available prior to execution
in practical systems.

Stanford, California, USA Gio Wiederhold
September 1996



Preface

This book is about optimization techniques to determine the best way of
exploiting parallel execution for SQL queries against large databases. It is
the published version of my PhD dissertation at Stanford University. The
techniques in this book are useful in the construction of SQL compilers that
can exploit parallel machines effectively.

SQL permits questions to be posed declaratively. Users are insulated from
the physical hardware and the layout of the data and thus are able to avoid
the complex procedural details of programming a parallel machine. A Data
Base Management System (DBMS) answers a SQL query by first finding a
procedural plan to execute the query and subsequently executing the plan to
produce the query result. This book provides techniques for the problem of
parallel query optimization: Given a SQL query, find the parallel plan that
delivers the query result in minimal time.

I express my gratitude to the people and organizations that made my the-
sis possible. Gio Wiederhold was a constant source of intellectual support. He
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theory and contributed significantly to the ideas in my thesis. Jeff Ullman
was a source of useful discussions and I thank him for his helpful and in-
cisive comments. Ravi Krishnamurthy served as a mentor and a source of
interesting ideas and challenging questions. Hector Garcia-Molina provided
helpful advice. Jim Gray helped me understand the realities of parallel query
processing.

My thesis topic grew out of work at Hewlett-Packard Laboratories and
was supported by a fellowship from Hewlett-Packard. I express my gratitude
to Hewlett-Packard Company and thank my managers Umesh Dayal, Dan
Fishman, Peter Lyngbaek, and Marie-Anne Neimat for management and in-
tellectual and moral support.

I thank Tandem Computers for providing access to a parallel machine,
the NonStop SQL/MP parallel DBMS, and for permitting publication of
experimental results. I am grateful to Susanne Englert, Ray Glasstone, and
Shyam Johari for making this possible and for helping me understand Tandem
systems.
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Abstract

Parallel execution offers a solution to the problem of reducing the response
time of SQL queries against large databases. As a declarative language, SQL
allows users to avoid the complex procedural details of programming a parallel
machine. A DBMS answers a SQL query by first finding a procedural plan to
execute the query and subsequently executing the plan to produce the query
result. We address the problem of parallel query optimization: Given a SQL
query, find the parallel plan that delivers the query result in minimal time.

We develop optimization algorithms using models that incorporate the
sources of parallelism as well as obstacles to achieving speedup. One obsta-
cle is inherent limits on available parallelism due to parallel and precedence
constraints between operators and due to data placement constraints that es-
sentially pre-allocate some subset of operators. Another obstacle is that the
overhead of exploiting parallelism may increase total work thus reducing or
even offsetting the benefit of parallel execution. Our experiments with Non-
Stop SQL, a commercial parallel DBMS, show communication of data across
processors to be a significant source of increase in work.

We adopt a two-phase approach to parallel query optimization: join order-
ing end query rewrite (JOQR), followed by parallelization. The JOQR phase
minimizes the total work to compute a query. The parallehization phase ex-
tracts parallelism and schedules resources to minimize response time. We
make contributions to both phases. Our work is applicable to queries that
include operations such as grouping, aggregation, foreign functions, and set
intersection and difference, and joins.

We develop algorithms for the JOQR phase that minimize total cost while
accounting for the communication cost of repartitioning data. Using a model
that abstracts physical characteristics of data, such as partitioning, as colors,
we devise tree coloring algorithms that are efficient and guarantee optimality.

We model the parallelization phase as scheduling a tree of inter-dependent
operators with computation and communication costs represented as node
and edge weights. Scheduling a weighted operator tree on a parallel machine
poses a class of novel multi-processor scheduling problems that differ from
the classical in several ways.

We develop and compare several efficient algorithms for the problem of
scheduling a pipelined operator tree in which all operators run in parallel
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using inter-operator parallelism. Given the NP-hardness of the problem, we
assess the quality of our algorithms by measuring their performance ratio
which is the ratio of the response time of the generated schedule to that of
the optimal. We prove worst-case bounds on the performance ratios of our
algorithms and measure the average cases using simulation.

We address the problem of scheduling a pipelined operator tree using both
pipelined and partitioned parallelism. We characterize optimal schedules and
investigate two classes of schedules that we term symmetric and balanced.

The results in this thesis enable the construction of SQL compilers that
can exploit parallel machines effectively.
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