Lecture Notes in Computer Science 1182

Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

Waqar Hasan

Optimization
of SQL Queries
for Parallel Machines

&) Springer

Series Editors
Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Author

Wagqar Hasan

Stanford University, Department of Computer Science
Stanford, CA 94305, USA

E-mail: hasan@db.stanford.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Hasan, Wagqar:
Optimization of SQL queries for parallel machines / Waqar
Hasan. - Berlin ; Heidelberg ; New York ; Barcelona ;
Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ;
Singapore ; Tokyo : Springer, 1996

(Lecture notes in computer science ; 1182)

Zugl.: Stanford, CA, Univ., Diss.

ISBN 3-540-62065-6
NE: GT

CR Subject Classification (1991): H.2, H.3, E.5

ISSN 0302-9743
ISBN 3-540-62065-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10550447 06/3142-543210 Printed on acid-free paper

To my father

Dr. Amir Hasan

for showing me the paths that I follow.

Foreword

Performance in computing, and particularly in data access, is crucial as our
dependence on computing becomes pervasive. Continued innovation is essen-
tial for increases in performance to keep up with our requirements: at any
time in the past there has been a majority of tasks which can be performed
in time, while there has been a remainder, the tail of the distribution, that
provides a challenge. In addition, we are always facing some problems that
are in the infeasible range.

As examples for the three classes of problems, namely satisfactory, chal-
lenging, and infeasible, we see in the arena of information processing, respec-
tively, routine business processing, delivering information for decision-making
from distributed large databases, and prediction of future events from models
and historical data.

Performance in a computing system is improved in two dimensions: using
higher speed in the individual modules and increasing the number of modules
that can operate in parallel. These two dimensions are not independent, since
the coordination and communication required in parallel execution increases
the amount of work to be done by each module. Crucial in this balance
is hence the granularity, the size of the modules. At the very fine grain the
tradeoffs are well understood. Computer architectures, in various generations,
have moved from say 8-bit, to 16-bit, 32-bit, and even wider paths. There is,
however, a diminishing return here: if the natural data elements are small, and
interact to inhibit parallel operation, then wider data paths do not provide
an advantage.

Databases deal with mixed granularity. The primitive elemental values
being stored are often small, but are aggregated into records of hundreds of
elements, and then stored in files or tables containing thousands or millions
of records. Relevant data for even a modest problem may be found on dozens
of computers distributed anywhere over world-wide networks.

This monograph provides both insights and algorithms pertaining to par-
allel operation at a practical granularity relevant to database system opera-
tions. Tables or object classes provide sizable objects that can be treated in
parallel while permitting serial, pipelined overlap. Modules can also be cloned
by partitioning and replicating data objects. These approaches interact with
each other as well, making the selection of effective processing schedules yet

VIII Foreword

more complex. Fortunately, the algebras over these objects are well-behaved,
so that their operations can be completely and precisely defined.

This work provides an approach that balances the advantages and costs of
parallel execution. Module granularity is determined by the actual operations
being scheduled while respecting intrinsic limits on available parallelism such
as timing and data-placement constraints and accounting for the trade-off
between using parallel execution and incurring communication costs. The
result is applicable to modern system configurations, where computation is
performed on pipelining-capable workstations operating in parallel. Further
research will have to focus on dynamic aspects of parallel computation, letting .
the scheduling itself overlap with the computation, since this work seems to
be able to exploit all the information likely to be available prior to execution
in practical systems.

Stanford, California, USA Gio Wiederhold
September 1996

Preface

This book is about optimization techniques to determine the best way of
exploiting parallel execution for SQL queries against large databases. It is
the published version of my PhD dissertation at Stanford University. The
techniques in this book are useful in the construction of SQL compilers that
can exploit parallel machines effectively.

SQL permits questions to be posed declaratively. Users are insulated from
the physical hardware and the layout of the data and thus are able to avoid
the complex procedural details of programming a parallel machine. A Data
Base Management System (DBMS) answers a SQL query by first finding a
procedural plan to execute the query and subsequently executing the plan to
produce the query result. This book provides techniques for the problem of
parallel query optimization: Given a SQL query, find the parallel plan that
delivers the query result in minimal time.

I express my gratitude to the people and organizations that made my the-
sis possible. Gio Wiederhold was a constant source of intellectual support. He
encouraged me to learn and use a variety of techniques from different areas
of Computer Science. Rajeev Motwani helped enhance my understanding of
theory and contributed significantly to the ideas in my thesis. Jeff Ullman
was a source of useful discussions and I thank him for his helpful and in-
cisive comments. Ravi Krishnamurthy served as a mentor and a source of
interesting ideas and challenging questions. Hector Garcia-Molina provided
helpful advice. Jim Gray helped me understand the realities of parallel query
processing.

My thesis topic grew out of work at Hewlett-Packard Laboratories and
was supported by a fellowship from Hewlett-Packard. I express my gratitude
to Hewlett-Packard Company and thank my managers Umesh Dayal, Dan
Fishman, Peter Lyngbaek, and Marie-Anne Neimat for management and in-
tellectual and moral support.

I thank Tandem Computers for providing access to a parallel machine,
the NonStop SQL/MP parallel DBMS, and for permitting publication of
experimental results. I am grateful to Susanne Englert, Ray Glasstone, and
Shyam Johari for making this possible and for helping me understand Tandem
systems.

X Preface

The following friends and colleagues were a source of invaluable discus-
sions and diversions: Sang Cha, Surajit Chaudhuri, Philippe DeSmedt, Mike
Heytens, Curt Kolovson, Stephanie Leichner, Sheralyn Listgarten, Arif Mer-
chant, Inderpal Mumick, Pandu Nayak, Peter Rathmann, Donovan Schneider,
Arun Swami, Kevin Wilkinson, Xiaolei Qian.

My thesis would not have been possible without the support and under-
standing of my family. [thank my father, Dr. Amir Hasan, for providing the
inspiration to pursue a PhD. I thank my mother, Fatima Hasan, my brothers
Safdar, Javed, and Zulfiquar, and sister Seemin for their love and encourage-
ment. I owe a debt to my wife Shirin and son Arif for putting up with the
long hours that made this work possible.

Stanford, California, USA Wagar Hasan
September 1996

Abstract

Parallel execution offers a solution to the problem of reducing the response
time of SQL queries against large databases. As a declarative language, SQL
allows users to avoid the complex procedural details of programming a parallel
machine. A DBMS answers a SQL query by first finding a procedural plan to
execute the query and subsequently executing the plan to produce the query
result. We address the problem of parallel query optimization: Given a SQL
query, find the parallel plan that delivers the query result in minimal time.

We develop optimization algorithms using models that incorporate the
sources of parallelism as well as obstacles to achieving speedup. One obsta-
cle is inherent limits on available parallelism due to parallel and precedence
constraints between operators and due to data placement constraints that es-
sentially pre-allocate some subset of operators. Another obstacle is that the
overhead of exploiting parallelism may increase total work thus reducing or
even offsetting the benefit of parallel execution. Our experiments with Non-
Stop SQL, a commercial parallel DBMS, show communication of data across
processors to be a significant source of increase in work.

We adopt a two-phase approach to parallel query optimization: join order-
ing end query rewrite (JOQR), followed by parallelization. The JOQR phase
minimizes the total work to compute a query. The parallehization phase ex-
tracts parallelism and schedules resources to minimize response time. We
make contributions to both phases. Our work is applicable to queries that
include operations such as grouping, aggregation, foreign functions, and set
intersection and difference, and joins.

We develop algorithms for the JOQR phase that minimize total cost while
accounting for the communication cost of repartitioning data. Using a model
that abstracts physical characteristics of data, such as partitioning, as colors,
we devise tree coloring algorithms that are efficient and guarantee optimality.

We model the parallelization phase as scheduling a tree of inter-dependent
operators with computation and communication costs represented as node
and edge weights. Scheduling a weighted operator tree on a parallel machine
poses a class of novel multi-processor scheduling problems that differ from
the classical in several ways.

We develop and compare several efficient algorithms for the problem of
scheduling a pipelined operator tree in which all operators run in parallel

XII Abstract

using inter-operator parallelism. Given the NP-hardness of the problem, we
assess the quality of our algorithms by measuring their performance ratio
which is the ratio of the response time of the generated schedule to that of
the optimal. We prove worst-case bounds on the performance ratios of our
algorithms and measure the average cases using simulation.

We address the problem of scheduling a pipelined operator tree using both
pipelined and partitioned parallelism. We characterize optimal schedules and
investigate two classes of schedules that we term symmetric and balanced.

The results in this thesis enable the construction of SQL compilers that
can exploit parallel machines effectively.

Table of Contents

1. Imtroduction ittt 1
1.1 Minimizing Response Time: Sources and Deterrents. 1
1.1.1 Sourcesof Speedupcovivureneniinnen. 2
1.1.2 Deterrents toSpeedupcoiiiin ... 3

1.2 Model for Parallel Query Optimization 4
1.2.1 Annotated Query Trees 5
1.2.2 Operator Trees. 5
1.2.3 Parallel Machine Model 7

1.3 Organization of Thesis, 8
1.4 Related Work 9
1.4.1 Query Optimization for Centralized Databases 9
1.4.2 Query Optimization for Distributed Databases 9
1.4.3 Query Optimization for Parallel Databases 10

2. Priceof Parallelism.................................c..... 13
2.1 Introduction 13
2.2 Tandem Architecture: An Overview....................... 14
2.2.1 Parallel and Fault-Tolerant Hardware 14
2.2.2 Message Based Software........................... 16
2.2.3 Performance Characteristics 16

2.3 Parallelism in NonStop SQL/MP 17
2.3.1 Use of Intra-operator Parallelism 17
2.3.2 Process Structure il 18

24 Startup Costs 20
2.5 Costs of Operators and Communication 20
2.5.1 Experimental Setup 22
2.5.2 Costs of Scans, Predicates and Aggregation 23
2.5.3 Costs of Local and Remote Communication.......... 24
2.5.4 Cost of Repartitioned Communication 26
2.5.5 Costs of Join Operatorsc...oiua... 27
2.5.6 Costs of Grouping Operators. 30

2.6 Parallel Versus Sequential Execution 31
2.6.1 Parallelism Can Reduce Work...................... 31

XIV Table of Contents

2.7 Summaryof Findings il
JOQR Optimizations it innenn.
3.1 A Model for Minimizing Communication
3.1.1 Partitioningot
3.1.2 Repartitioning Cost.
3.1.3 Optimization Problem
3.2 Algorithms for Query Tree Coloring.c...ccoun....
3.2.1 Problem Simplification
3.2.2 A Greedy Algorithm for Distinct Pre-Colorings.
3.2.3 Algorithm for Repeated Colors
3.2.4 Extensions: Using Sets of Colors....................
3.3 Model for Methods and Physical Properties
3.3.1 Annotated Query Trees and Their Cost

3.4 Extension of ColorSplit for Methods and Physical Properties .
3.5 Model with Join Ordering,

3.5.1 Join Ordering Without Physical Properties
3.5.2 Join Ordering with Physical Properties.
3.6 Usageof Algorithms
Scheduling Pipelined Parallelism..........................
4.1 Problem Definition i
4.2 Identifying Worthless Parallelism
4.2.1 Worthless Edges and Monotone Trees
4.2.2 The GreedyChase Algorithm
423 LowerBounds i,
4.3 The Modified LPT Algorithm
4.4 Connected Schedules.
4.4.1 Connected Schedules When Communication is Free . ..
4.4.2 BalancedCuts with Communication Costs
4.5 Connected Schedules as an Approximation.................
4.6 Heuristics for POT Scheduling
4.6.1 A Hybrid Algorithm
4.6.2 The Greedy Pairing Algorithm
4.7 Approximation Algorithms
4.7.1 A Two-Stage Approach
4.7.2 The LocalCuts Algorithm
4.7.3 The BoundedCuts Algorithm
4.8 Experimental Comparisoncivvinieiiiin..n.
4.8.1 Experimental Setup 0.
4.8.2 Experimental Comparison
4.8.3 Performanceof Hybrid
4.8.4 Comparison of Hybrid, LocalCuts and BoundedCuts ..
4.8.5 Behavior of Lower Bound..........................
4.9 DISCUSSION .. vttt ittt et e e car e e ee et e

Table of Contents XV

5. Scheduling Mixed Parallelism............................. 95
5.1 Problem Definition 95
5.2 Balanced Schedules 99
5.3 Symmetric Schedules. 102
5.4 Scheduling Trees with Two Nodes 111
5.5 DISCUSSION ..\t vve ittt ittt i it e e it e e 112

6. Summary and Future Work............................... 115
6.1 Summary of Contributions. 115
6.2 Future Work i, 118

Referencesttt e 121 -

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

2.10
2.11

3.1
3.2

3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

4.3

Query Processing Architecture,
Phases and Sub-phases of Parallel Query Optimization
(A) Annotated Query Tree (B) Corresponding Operator Tree

(A) Tandem Architecture (B) Abstraction as Shared-Nothing

Process Startup: With (Solid) and Without (Dotted) Process Reuse.

Local, Remote and Repartitioned Communication
Scan with 1 Predicate (Dotted), 2 Predicates (Solid), Aggregation

(Dashed)
Scan and Aggregation e
Process Structure: (A) No Communication (B) Local (C) Remote.
Local and Repartitioned Execution
Local (Dotted) and Repartitioned (Solid) Communication
Query Using Simple-Hash (Dashed), Sort-Merge (Solid) and Nested
Join (Dotted) i
Hash (Solid) and Sort (Dotted) Grouping Costs
Process Structure: Sequential and Parallel Execution............

Query Trees: Hatched Edges Show Repartitioning
(1) Query Tree; (ii) Coloring of Cost 7; (iii) Minimal Coloring of

Cost B . . e
(1) Split Colored Interior Node (ii) Collapse Uncolored Leaves
(1) Query Tree (ii) Suboptimal DLC Coloring (cost=9) (iii) Opti-

mal Coloring (cost=8) i
Problem Decomposition After Coloring Node ¢
Opt and Optc Tables for Tree of Figure 3.4
Interaction of Repartitioning with Join Predicates
Annotated Query Treesttt
Interaction of Repartitioning with Order of Joins
Decomposition of a Complex Query............coovvvrnuenenn..

A Pipelined Schedule and Its Execution
(A) Trace of GreedyChase (Worthless Edges Hatched) (B) Modi-

fied LPT Schedule (C) Naive LPT Schedule
Example with Performance Ratio = n/p for Modified LPT

6

15
21
21

24
25
26
28
29

29
30
32

37

40
41

43
44
45
48
49
54
57

61

XVIII List of Figures

4.4
4.5

4.6

4.7
4.8
4.9
4.10

4.11

4.12

4.13

4.14

5.1
5.2
5.3
5.4

5.5
5.6
5.7

6.1

Connected Schedule as Cutting and Collapsing Edges 69
Fragments Formed by BpSchedule Before the Last Stage of Bal-

ancedCULS 73
Examples with —-f: =2 ﬁ 75
Performance Ratio=3 for Star of 10 Nodes Scheduled on 5 Processors 77
Subtrees T, Tonr, Ty for Nodes m,m/,m// 86
gt v 86
Performance of Hybrid (Solid), BalancedFragments (Dotted) and

Modified LPT (Dashed) on Wide Trees...................c.... 91
Performance of Hybrid (Solid), BalancedFragments (Dotted) and

Modified LPT (Dashed) on Narrow Trees 92
Comparison of Hybrid (Solid), LocalCuts (Dashed) and Bound-

edCuts (Dotted) on Narrow Treesc.......lu. 92
Comparison of Hybrid (Solid), LocalCuts (Dashed) and Bound-

edCuts (Dotted) on Wide Treesoviiinne.... 93
Performance of Optimal (Dotted) and Hybrid (Solid) 93
Execution with Mixed Parallelism 97
Structure of (Strongly) Minimal Schedule...................... 102
Matrices for p =3ot i e e e 107
Counter-Example: Tree for Which Symmetric Schedule is a Saddle

Point e 110
Plot of z = @11 + a21 — 2a11a31 with a1 on x-Axis, az; on y-Axis. 111
One Sided Schedule i, 113
Balanced Schedule for n=2 (Some Communication Arcs omitted) . 113
Phases and Sub-phases of Parallel Query Optimization 116

List of Tables

2.1
2.2

3.1

Parallelization Strategies and Join Methods 19
CPU Costs of Transfer and Computational Operations. (1K Tu-
ples Occupy 1 Mbyte)t 22

Examples of Input-Output Constraints 51

