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Abstract. Unification in first-order languages is a central operation in symbolic computation and logic programming.
Many unification algorithms have been proposed in the past, however there is no consensus on which algorithm
is the best to use in practice. While Paterson and Wegman’s linear unification algorithm has the lowest time
complexity in the worst case, it necessitates an important overhead to be implemented. This is true also, although less
importantly, for Martelli and Montanari’s algorithm [MMB82], and Robinson’s algorithm [Rob71] is finally retained in
many applications despite its exponential worst-case time complexity. There are many explanations for that situation,
one important argument is that in practice unification subproblems are not independent, and linear unification
algorithms do not perform well on sequences of unify-deunify operations [MU86]. In this paper we present average
case complexity theoretic arguments. We show first that the family of unifiable pairs of binary trees is exponentially
negligible with respect to the family of arbitrary pairs of binary trees formed over | binary fuaction symbols, ¢
constants and v variables. We analyze the different causes of failure and get asymptotical and numerical evaluations.
Then we extend the previous results of [DL89] to these families of trees, we show that a slight modification of
Herbrand-Robinson’s algorithm has a constant average cost on random pairs of trees. On the other hand, we show
that various variants of Martelli and Montanari’s algorithm all have a linear average cost on random pairs of trees.
The point is that failures by clash are not sufficient to lead to a constant average cost, an efficient occur check (i.e.
without a complete traversal of subterms) is necessary. In the last section we extend the results on the probability
of the occur check in presence of an unbounded number of variables.

ANALYSE EN MOYENNE DES ALGORITHMES D’UNIFICATION

Résumé. L’unification dans les langages du premier ordre est une opération fondamentale en calcul symbolique et en
programmation logique. On dispose de beaucoup d’algorithmes d’unification, mais il n’y a pas de consensus quant &
savoir lequel est le meilleur 3 utiliser en pratique. L’algorithme linéaire de Paterson Wegman a la plus faible complexité
dans le cas le pire, néanmoins son implémentation nécessite un prétraitement important. C’est aussi le cas, dans une
moindre mesure, de I’algorithme de Martelli Montanari [MM82] et finalement, c’est souvent I’algorithme de Robinson
[Rob71] qui est employé dans beaucoup d’applications malgré sa complexité exponentielle dans le cas le pire. Cette
situation s’explique de plusieurs facons : un fait important est que, dans la pratique, les sous-problémes d’unification
ne sont pas indépendants et les algorithmes d’unification linéaires ne sont pas trés performants sur les séquences
d’unification-desunification [MU86]. Dans cet article, nous présentons des arguments théoriques basés sur ’étude de
la complexité en moyenne. Nous montrons, tout d’abord, que la famille des paires d’arbres binaires unifiables est
exponentiellement négligeable devant la famille des paires d’arbres binaires formés & partir de | symboles de fonction
binaires, ¢ constantes et v variables. Nous analysons les différentes causes d’échec et nous obtenons des évaluations
asymptotiques et numériques. Nous généralisons ensuite les résultats de [DL89] pour ces familles de termes et nous
montrons qu’une légére modification de I’algorithme de Herbrand-Robinson a une complexilé moyenne constante
sur les paires d’arbres quelconques. D’autre part, nous montrons que ’algorithme de Martelli Montanari et une de
ses améliorations ont une complezilé moyenne linéaire sur les paires d’arbres quelconques. Les échecs par clash
ne sont en effet pas suffisants pour assurer une complexité moyenne constante, il est nécessaire de disposer d’un test
d’occurrence efficace (i.e. qui ne nécessite pas un parcours complet des sous-arbres). Enfin, dans la derniére partie,
nous généralisons nos résultats sur la probabilité d’occurrence & un modéle avec un nombre infini de variables.
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I. Introduction

Solving equations on terms of a first-order language is a central operation in symbolic computation.
This problem was first studied by Herbrand [Her30] in proof theory, and was called unification in Robinson’s
foundational work on automatic theorem proving in first-order logic [Rob65]. Today first-order unification is
at the heart of various systems ranging from theorem provers [CL73}, [KB70], [HO80], to logic programming
language interpreters [Kow74], [Col84], functional language type checkers [Mil78}, [Mai90], natural language
parsers [Col78], machine learning systems, etc... All these area of application motivated the search for effi-
cient unification algorithms, as well as extensions for unification in higher-order languages [Hue75], [Hue76),
unification in equational theories [Plo72], [FH86], [BJSS88] e.g. unification in presence of associative and
commutative operators [Sti75], [Fag84], etc...

Robinson’s unification algorithm [Rob65] takes as input two first-order terms and produces as output
a most general substitution of the variables in the input terms that makes them equal, or failure if they
are not unifiable. It is well-known that Robinson’s algorithm has a worst-case time complexity which is
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exponential in the size of the input terms, even if the output substitution is represented in a triangular form
and structure sharing techniques {Rob71] are used to represent terms by directed acyclic graphs (dag). The
reason for the worst-case time complexity of this algorithm is that, although the number of nodes in the
dags stays constant, the dags are traversed as trees without marking. When marking techniques are used
the worst-case time complexity can be reduced to a polynomial of quadratic order in the size of the input
[VZ75] [CB83]. By improving these ideas Martelli and Montanari [MM82] gave an unification algorithm in
O(n + vlogv) where n is the size of the input terms and v is the number of distinct variables, and Paterson
and Wegman gave a linear algorithm [PWT78] (also discovered independently by Martelli and Montanari
[MM76]).

By considering unification as a particular kind of closure on classes of terms, Huet [Hue76] gave a quasi-
linear unification algorithm based on the well-known set-union-find algorithm [AHU74]. Some variants are
given in [Fag83], [Col84], [Jaf84], [EG88]. Huet’s algorithm performs unification on regular trees {Cou83],
i.e. finite and infinite terms represented by a finite possibly cyclic graph. Unification on regular trees lead
to implement a variant of the logic programming language Prolog working on infinite expressions.

Huet’s algorithm can be used for unification on finite terms by adding in a final pass a check for
circularity. As it is linear this test does not change the worst-case time complexity of the algorithm, i.e. O(n?),
O(nln(n)) or O(nG(n)) where G is an extremely growing function (an inverse of Ackermann’s function)
according to the different strategies for path compression that can be used in the set-union-find algorithm.

In [DKM84] it is proved that unification is P-time complete. This result means that unification is a
sequential process in nature, and no significant gain in efficiency can be obtained from a parallel implemen-
tation. The result holds also for unification on infinite regular trees, but in that case Paterson and Wegman’s
linear sequential algorithm cannot be used. The existence of a linear algorithm for unifying infinite expres-
sions is an open question (the same as for testing the equivalence of deterministic finite automata).

From a practical point of view there is no consensus on which unification algorithm is the best to
use. While Paterson and Wegman’s algorithm has the lowest complexity in the worst case, it necessitates
an important overhead to be implemented. This is true also, although less importantly, for Martelli and
Montanari’s algorithm due to the initialization phase for setting up counters of variable occurrences in
the terms (see the next section). Huet’s algorithm in the O(n?) version presents no important overhead
in comparison to Robinson’s algorithm which, on the other hand, reveals its exponential behaviour only
on pathological examples but not in practice. Furthermore in applications where non-unifiable problems
are preponderant the ability to detect efficiently failures may be more significant than the worst-case time
complexity. These reasons tend to explain why Robinson’s algorithm is still used in many implementations
of theorem provers, Prolog (usually with the unsound omission of the occur check, see the next section),
type checkers [CAMLSY], etc ...

In this paper we try to make precise the preceding arguments by performing an average case complexity
analysis of unification algorithms under the assumption that all terms of same size are equiprobable. In
section 11, we present in some details Herbrand non-deterministic algorithm from which we derive Robinson’s
and Martelli-Montanari’s algorithms. In section I1I, we show that the family of unifiable pairs of binary trees
formed over { binary function symbols, ¢ constants and v variables is exponentially negligible with respect
to the family of arbitrary pairs of binary trees. For this result we analyze the different causes of failure and
get asymptotical and numerical evaluations (we extend the previous results of [ACDT90]).

In section IV, we first extend the previous results of [DL89)] to these families of trees, we show that a
slight modification of Herbrand-Robinson’s algorithm uses in the average a constant number of steps over
random pairs of trees. Then we show that Martelli and Montanari’s algorithm uses on random pairs of
trees a linear number of steps in the average. This result holds even if decompositions are mixed with
compactifications and if the initialization of counters is mixed with the computation of the first frontier
(instead of in a preliminary phase). The question of whether Paterson-Wegman’s algorithm needs also a
linear number of steps in average over random pairs of trees remains open.

On unifiable pairs of trees, the average complexity of Robinson’s algorithm has been studied in [CDS89]
for binary trees having only two different types of leaves and one internal node. In that particular case, there
are only three possible substitutions and no composition. The latter phenomenon allows to count exactly the
family of unifiable pairs of trees and permits to derive that the average complexity of Robinson’s algorithm
is linear on unifiable pairs of trees (while being quadratic in the worst case). On unifiable pairs of trees, we
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can only assert that at least the average cost of unification is linear.

Finally, we study the probability of the occur check in presence of an unbounded number of variables,
which is more closely related to many applications. In section V, we consider binary trees formed over one
function symbol and a countable set of variables. The number of such binary trees of size n up to variable
renaming is equal to Cp, B4 where C, is the n'* Catalan number and By, 4 is the n + 1** Bell number. We
show that the average number of distinct variables in a tree of size n is n/In(n)(1 + O(1)). The probability
that a variable occurs in a term of size n is 1 — (1 — 1)"+! where v is the number of variables. Therefore if
v is of the order of the average number of distinct variables in a term of size n, or if v is a constant as in
section II1, the probability that a variable occurs in a term tends to 1 when the size of the term tends to the

infinity.

I1. Presentation of the algorithms and tree model

2.1. Presentation of basic unification algorithms

2.1.1 Herbrand-Robinson’s algorithm

In this section we present basic unification algorithms in a general framework. Let F be a finite set of
function symbols given with their arity a (constants are function symbols of arity 0). Let V' be an infinite
countable set of variables. We denote by T(F, V) the set of first-order terms, that is the free F-algebra over
V. Substitutions, denoted by o, p, 8,... are the F-endomorphisms of T(F, V) with finite domain on V.
They are represented by a finite set of elementary substitutions. For example with ¢ = {z — a,y — g(b,b)},
and M = g(z, f(y)) we get Mo = g(a, f(g(b,d))). In the sequel we shall be interested mainly in idempotent
substitutions for which a more compact representation can be given. A substitution o is idempotent (ocoo =
o) if and only if D(e) N I(¢) = @, where D denotes the domain of ¢ and I(c) denotes the set of variables

introduced by o.
Substitutions define the preorder of pattern-matching on T(F,V). We write: M < N iff 30 Mo = N.

In this case we say that term M is more general than N, or that N is an instance of M. The equivalence
relation associated to < over T'(F, V) is variable renaming: M = Nif M < N andN < M. Eg. g(z, f(y)) =
g(u, f(v)) = g9(y, f(z)). When counting families of terms containing variables we shall be interested in the
number of classes of terms of a given size up to variable renaming. The pattern-matching preorder on terms
can be extended to substitutions. We say a substitution o is more general than p, o < p iff 39 008 = p.
DEFINITION : Two terms M and N are unifiable iff 30 Mo = No. We denote the set of unifiers of two

terms by U(M,N) = {0 | oM = oN}

THEOREM 1 : (Unification theorem [Rob65]) If two terms M and N are unifiable then they possess a most
general unifier (mgu) o such that: 1) o € U(M,N), 2)Vp € U(M,N) o < p. Most general unifiers of two
terms are equivalent modulo =.

For example, let M = f(z, g(y,z)) and N = f(h(y), g(u, h(u))), the most general unifier of M and N is
{z — h(g),u — y}.

The proof of the theorem is based on an unification algorithm:
INPUT: Two terms M and N
OUTPUT: unifiable? If yes produce a mgu.
We describe first the non-deterministic unification algorithm of Herbrand [Her30], which basically simplifies
a system of equations I', i.e. a multiset of pairs of terms, with the following three rules :

Dec (f(Ty,....,Tu), f(T}, ... T,)))UT = (T, T)) U ..U (T, T,)UT

Triv (v,v)UT =T



Var (v, T)UI' = (v,T)UTe ifveV(T),v ¢ V(T),0={v T}

(the same rule applies to (T,v) UT).

A pair (v, T) is in solved form in I if v has no other occurrence in I'. A system T is in solved form if all
its equations are in solved form. A variable is in solved form in I' if it has a unique occurrence in I in a pair
in solved form. The purpose of the test v € V(') in the third rule is to apply that rule only to equations
which are not in solved form. On the other hand the test v & V(T') is a fundamental operation called the
occur check. It eliminates equations of the form v = T[v] which have no solution on finite terms.

THEOREM 2 : (Soundness) If I' =* I = {(v1,Th), ..., (vn,Ts)} is in solved form then o/ = {v; —
Ti,...,vn «— Tp} is an idempotent mgu of T,

PRrRoOOF : By induction on the length of transformation sequences, and by remarking that if I' == I then
ury=uI’). =

THEOREM 3 : (Termination and Completeness) Any sequence of transformations terminates. Fur-
thermore if T is unifiable, let § € U(T), then T =>* I’ with I'' in solved form and or: < 8.

PRrooF : The proof that every sequence of transformations terminates is based on a complexity measure,
¢(I') = (ny,s), where n, is the number of variables which are not in solved form, and s is the sum of the
size of the terms in I'. By considering the lexicographic ordering on (n,, s) it is easy to check that each
transformation decreases strictly the complexity of the system.

Completeness is an easy consequence of the fact that the transformations are sound, and if T" is unifiable
and no rule applies to I’ then I is in solved form. =

Robinson’s algorithm is obtained from Herbrand’s non-deterministic algorithm by representing the sys-
tem I' by a stack and by transforming I' always with the rule which applies to the equation at the top of the
stack (ignoring equations in solved form). If no rule applies the algorithm stops with a failure, due either to
an occur check, or to a clash if Dec does not apply. Under this control, terms are traversed in preorder from
left to right.

Robinson’s algorithm takes exponential time in the following well-known example:

M = f(vo,v1, ..., Un-1,v0), N = f(9(vi,v1), 9(v2,v2), ..., 9(n, ¥n), v0). Each variable v;, i < n, is substituted
by a term of size 2"~**! — 1, the unification of the last argument vy takes 2"t! — 1 comparisons. On the
other hand if V is finite with cardinality v, the worst-case time complexity of Robinson’s algorithm is a
polynomial of order v. On M and N = f(g(v1,...,v1),...,9(¥y_1, ..., v%»_1), o) Robinson’s algorithm needs
O(n") comparisons.

DEFINITION We say that a pair of trees is consistent if it is reducible by rules Dec and Triv to a system
of pairs that are either in solved form or reducible by rule Var. Inconsistent pairs of trees fail to unify
before any substitution from Var is applied, that is either by a clash in the first decompositions, or by a the
occurrence of a variable leaf in the corresponding subterm.

In the next section we show that family of unifiable pairs of trees is exponentially negligible. For that
reason, we are interested also in a variant of Herbrand-Robinson’s algorithm in which substitutions in I’ (with
rule Var) are postponed until all the initial trees have been decomposed and checked for a clash or a direct
occurrence. Let us call this variant Robinson’s algorithm with substitution delaying (RD). On inconsistent
pairs of binary trees we have four exclusive cases of failure: 1) clash at top level, 2) direct occurrence of
a variable, 3) decomposition at top level with failure in the first arguments, or 4) failure in the second
arguments if the first arguments are consistent. Thus the cost formula are:

URD (c, c') = URD(C, T) = URD (T, C) = URD(f(Tl y Tz), g(T{, TZI)) =1 (clash)
Urp(v,T) = Urp(T,v) = occ(T) (cost of the occur check)
Urp (f(T1, T2), f(T1,T3)) = 1 + Urp(Th, T})

if (T1, T{) is inconsistent,

URD(f(TI’T2)! f(Tl’) é)) =1+ 2(lTll + ITIII + 1) + URD(T%TZ;)w

if (T, T}) is consistent;
where v (resp. ¢, T') stands for a variable (resp. a constant, a composed term), and [T denotes the number
of internal nodes of T (the total number of nodes of T, internal and external, is thus 2|T| + 1). In section
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1V, we deduce from these formula that the average cost of Robinson’s algorithm with substitution delaying
on arbitrary pairs of terms tends to a constant cgp.

2.1.2 Linear unification algorithms

Linear unification algorithms are based on a more compact representation of substitutions in triangular
form.

PROPOSITION : Any idempotent substitution can be represented by a substitution in triangular form :
[z1 —~T1,....zn « Tp) where Vi, 1 <i<nVj<iz; g V(T3).

For instance the exponential size mgu of the previous example can be represented in a linear size
triangular form: [v, — g{v1,v1), ..., Y/a—1 + g(vn,v,)]. Triangular forms correspond also to the representation
of substitutions by indirections on the variable nodes of a directed acyclic graph (dag) representing the terms
to unify. Sharing of common subtrees is possible though the indirections on variables after substitution.
Therefore in order to obtain a linear unification algorithm we can restate the unification problem as:
INPUT: Two terms M and N (or a dag with 2 particular nodes M and N)

OUTPUT: Are M and N unifiable? If yes produce a mgu in triangular form (or a representation of the dag
after unification)

The idea of Martelli and Montanari’s algorithm as well as Paterson and Wegman’s linear algorithm is
to apply the rule Var only to a variable which has no other occurrence in the system. Such a variable must
exist if the system is unifiable. In this way the occur check is built-in and substitutions are eliminated. Rules
Dec and Triv are kept unchanged while Var is replaced by two rules:

Merge (v,v)UT = (v,v')UTo
ifveV(I),v eV(D),v#v, 0= {v—1}

Select {(v,TI), ceey (v,Tn)} Ul = {('U, C), (T],Tz), veey (Tl,T,,)} url
ifn>2,vegV({[),andfor1<i<n,vgV(T;), T, ¢V,
where C is the common part of the terms Ty, ..., T,
(the same rule applies to (T3, v)).
We emphasize the point that in order to find solved forms of linear size it is necessary in the Select
rule to retain for v the common part of the T}’s instead of one of them, be it the least. For instance with

T'= {f(z1, f(z2,...f(zn,a)...)), F(f(...f(a,2n)...,22),21)}

the mgu in solved form is [z — f(x2,22),...,Zn-1 — f(zn,Zn),zn — f(a,a)], while not computing the
common part for the z;’s leads to a solved form of quadratic size. Of course the actual computation of the
common part in rule Select should be mixed with the decompositions of the T;’s by the Dec rule.

The usual control is ((Dec U Triv U Merge)* Select)*. That is the equations are fully decomposed
before a set of pairs with a variable in common, called a multiequation, is selected. We call this non-
deterministic algorithm Herbrand’s algorithm with oracle (HO). The oracle determines when rule Select can
be applied, that is when a variable v has no other occurrence in T.

The proof of correctness and completencss follows in all points the previous proof of Herbrand’s algo-
rithm. In particular termination is proved with the same complexity measure. The crux of the algorithm is
the property due to [MM82] that if I' is formed of pairs (v, T') not reducible by rule Select, then there is a
cycle in the occur check relation in the terms of I', which implies that T in not unifiable.

On inconsistent pairs of terms Herbrand’s algorithm with oracle has the same cost formula as Urp
except on pairs variable-term, since the occur check is replaced by the oracle which determines the existence
or not of a multiequation to reduce. We have
Uno(v,T) = Unyo(T,v) = 1 (no occur check, no selection)

In section IV, we show that the average cost of Herbrand’s algorithm with oracle on inconsistent pairs of
terms is a constant ¢gro < crp.

Martelli and Montanari’s algorithm and Paterson and Wegman'’s algorithm can be derived from Her-
brand’s algorithm with oracle, the difference being in the way the oracle is implemented. In Martelli and
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Montanari’s algorithm each variable possess a counter which indicates the number of its occurrences inside
the terms of I'' When the counter gets to 0 rule Select can be applied. In this way the worst-case time
complexity is in O(n + vlog v) where n is the size of the terms and v is the number of distinct variables in
the terms [MM82). The initialization of counters needs to traverse the initial terms in linear time. In order
to keep a constant average case complexity on arbitrary pairs of terms, one can try to miz the initialization
phase with the first decompositions, and when reaching a leaf in a term, continue to traverse the other term
for initializing properly the counters. With this provision the cost formula on inconsistent pairs of terms
of Martellt and Montanari’s algorithm are the same as in Herbrand’s algorithm with oracle except on pairs
variable-term due to the initialization of counters.
Umm(v,T) = Unm(T,v) =2|T| + 1

However we show in section 1V, that even with this provision the average number of steps on arbitrary
pairs of terms is still linear in the size of the initial terms. The mixing of decompositions (Dec) with
compactifications (Select) as suggested in [MM82] to improve efficiency on non-unifying data does not
change the theoretical average case complexity. The only way to restore a constant average case complexity
on arbitrary pairs of trees is to add occur checks to the initialization of counters for variables after the
computation of the first frontier.

In Paterson and Wegman’s algorithm the oracle is implemented by a judicious bottom-up traversal of
the dag. The worst-case complexity is in O(n), however whether its average case complexity on arbitrary
pairs of terms is a constant or not is unknown.

2.2. Binary tree model
From now on, we consider binary trees B built with ! binary symbols, v variables and ¢ constants.

Example : With f and g two symbols with arity 2, a constant a and # and y two variables, we can form

the tertm T = f(z, g(a, y))
We define the size of a term as the number of its internal nodes of its usual tree representation.

Example : We have here |[T]| = 2.

To make it clearer, we shall denote the families of pairs of trees with a double capital letter. Thus BB
denotes the family of pairs of arbitrary trees of B.

Remark : All the following calculations and results are detailed in [AIb90].

IIT. Characteristic families of pairs of trees

3.1. Definitions

Our aim 1s to count the number of unifiable pairs of trees and then to analyze the different causes of failure
to unification.
In order to count the family U of unifiable pairs of trees, we shall bound it with, as a lower bound, a
family of clearly unifiable pairs of trees : family VB recursively defined in the following way :
VB = (v,v')+(c,c) + (c,v) + (v,0)
+ (v, T)+ (T, v) with v € T and |T| > 1
and with, as an upper bound, the family of consistent pairs of trees ££. In £E, there are neither
direct clashes nor direct occurrences. The failure causes can come but from clashes or occurrences due to
substitutions. This family can be defined as follows:
EE = (v,0) + (c,¢) + (c,0) + (v,)
+ (v, T)+ (T,v) with v ¢ T and |T| > 1
+ (f(T1,T2), f(T'1,T'2)) with (T'1,71) and (T2,7T'2) € £€

Example : f ( f(z,y), z)and f ( f(f(y,2), f(z,¥)) , f(w,w) ) are a non consistent pair of trees because
of the direct occurrence y — f(z,y)



whereas f ( f(z,y), z)and f ( f(f(y,2), f(z,2)), f(w,w) ) are a consistent but non-unifiable pair of trees
because of the indirect occurrence due to substitution o : z — f(y, 2).

Thus we get:
VBcCUUu CEE

We shall prove that families ££ and VB have the same order of magnitude. This gives the exact asymptotical
order of magnitude for UU/. Moreover, we shall see that the constants of bound are close to (the limit of
their ratio tends to 1), we thus have a very correct numerical bound of the number of unifiable pairs of trees.

Now we study the causes of failure for unification. We recursively define the complementary family FF
of inconsistent pairs of trees as:

FF =(c¢,)+ (v,T)+(T,v) with v € T and |T| > 1
+ (6, 7Y+ (T,¢) with T€e B and |T| > 1
+ (f(T1,T2),9(T"1,T'2)) with T1,T2,T"1,T°2 € B
+ (f(T1,T2), f(T'1,T'2)) with (T'1,T'1) € FF and (T2,T'2) € BB
+ (F(11,T2), §(T1, T'2)) with (T1,T71) € £€ and (T2,T'2) € FF

The failures in FF are due to direct left occurrences and clashes i.e. the first cause of failure detected
by an algorithm using a preorder traversal for trees is either an occurrence or a clash. In order to clarify
the causes of failure for unification we shall distinguish the inconsistent pairs of trees because of a direct left
occurrence FO and because of a direct left clash FC (note that a pair of trees may fail for both reasons, the
detection of the first cause of failure depending on the algorithm that is used).

We thus define

FO =(vT)+(T,v) withv €T and |T|> 1
+ (f(T1,T2), f(T'1,T'2)) with (T'1,7'1) € FO and (T2, T'2) € BB
+ (f(T1,T2), {(T'1,T'2)) with (T1,T’1) € £€ and (T2,T'2) € ¥O
FC =(c,)+ (¢, T)+(T,¢) with T € B and |T| > 1
+ (f(T1,T2), g(T'1,T'2)) with T1,72,7'1,T'2 € B
+ (f(T1,T2), f(T'1,T"2)) with (T'1,7'1) € ¥C and (T2,T'2) € BB
+ (f(T1,T2), £(T'1,T'2)) with (T1,7"1) € £€ and (T2,T'2) € FC
We have:

FF=F0+FC=BB/EE

In FO, there is no direct clash and in FC there is no direct occurrence but, since there may be indirect
failures in ££ and BB, there may be indirect clashes and occurrences in these families. Thus to get a more
detailed study, we shall introduce the family of pairs of trees which do not fail because of a direct clash: NC.
This family remains of the same order of magnitude as BB and thus its complementary in BB is an upper
bound for the set of pairs of trees that fail because of a clash. We define recursively this family as follows:

NC = (v,v')+ (c,¢) + (c,v) + (v,¢)
+(v,T) + (T, v) with |T) > 1
+ (f(T1,T2), f(T'1,T'2)) with (T1,7'1) and (T2,7'2) € NC

3.2. Algebraic analysis

For each of the previous families, we determine the number z,, of trees T or of pairs of trees (T}, Tz) of size
n (we define |[(T1, T2)| = |T1| + |T2|)- The generating function corresponding to family X is given by

X(2) = anz" = Z AT
n>0 Tex

(See [FV87] for the theory and use of generating functions).
From the definitions of the previous families we get the following equations: B(z) = (v + ¢) + {zB(z)?

thus it follows that
1 -4 -1
B(z):—‘/ z(v+c)

2z

The generating function of pairs of arbitrary terms is BB(z) = B(z)*.
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We introduce some useful series for the following computations; thus the generating function of trees of
size at least 1 is B¥(z) := lzB(z)%. The generating function of trees without a given variable is By,_1(z) =
v—1+c+1zB,_1(z). And the generating function of trees of size at least 1 and without a given variable is
B}_|(2) =12B,_1(2)2.

We also define the trees with occurrence of a given variable C(z) = 1+412C(2)B(z) +1zB,_,(2)C(z) and the
trees with the occurrence of a given variable and of size at least 1 C*(z) := [2C(z)B(z) + lzB, _1(2)C(z).

The generating function of the family of clearly unifiable pairs of trees verify VB(z) = v? 4+ ¢ + 2vc +
2vB}_,(2).

Finally, we can obtain the generating function for family of consistent pairs of trees £€ that is EE(z) =
v2 4+ ¢+ 2ve + 2vB}_,(2) 4+ 122 EE(2)? or

\/l +4v(v — 2)122 — 4zv — 4lcz? + 4zvy/1 —4lz(v+c—1) -1
EE(z) = - 2|22

We also have the equations for the generating functions for ¥, ¥O, ¥C and NC (the explicit expressions
are too long to be written):

FF(z) = (¢ —¢) + 2vC*(2) + 2¢B* (2) + (1> = 1)22B(2)* + 122 FF(2)(EE(z) + BB(z))
FO(z) = 2vC*(2) + 122 FO(z)(BB(z) + EE(2))
FC(z) = (c* = ¢) + 2¢B*(2) + (I = )22 B(2)* 4 122 FC(z)(BB(z) + EE(z))
NC()=(v+ c)2 +2vB*(2) + Iz2NC(z)2
We easily verify that
BB(z) = EE(z) + FF(2) and FF(z)=FO(z)+ FC(z)

3.3. Asymptotic analysis

We use singularity analysis, we know that

("1 - z/p)* = ;%:__;_)(1 + 0(%))

and transfert lemmas (see [FV87]).

The singularity with the smallest modulus of generating functions BB(z), FF(z), FO(z), FC(z) and
NC(z) is z = z72—. On the other hand, the singularity with the smallest modulus of generating functions

Ai(v+e)
EE(z), VB(z) (and therefore UU(z)) is z = m. We thus obtain

[="]BB(z) = 4(v + )2 (4l(v + ¢))" ":/3: (1 + o(%)) = ["|FF(z)

(EE(z) is exponentially negligible with respect to BB(z) and F F(z)).

(T e rar 2 (140(1)

[2"]FO(z) =8 v I (v + ¢)?

f ™
[2"|FC(z) = L”}“_le (2(v Fo)l=1)+2d + (812 —le + 2vc1;- (v+e)?( - 1))>
n=3/2
x (4(v +¢))" N (1 + O(%))
n _ 4(v + c)?vVl L n-3/2 1
("IN C(2) = \/41(v +¢)? — 3v2 — 4vc — c(4l(v +¢) v (1 + O(n))

with f = (v +¢)(2 = 1) + VI(4l(v + ¢)2 + 4v /v + ¢ — 3v2 — dvc — 2v —¢)
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And

[")VB(z) = 2(v + ¢ — 1)1,%%?-_1_)22,,-3/2(1 N 0(%))

= (4l(v +\/c7_r— )" n-3/2 (1 +0 (%))

Wi(w+ec—1)7" Wotce—1))" s 1
VAl(v+c—1)2 = 3v2 + 2v—4dvc —¢ VT (1+0(n>)

o (o)

[-"JEE(z) =

3.4. Results

3.4.1 Unifiable pairs of trees
We have succeeded to bound on both sides [2"]JUU(z):

oWl te )" t/c{ )" ,-s2 (1 +0 (%)) < ["UU(e) < 6, A +\/C7_r )" s (1 +0 (%))

We thus have the correct asymptotic order of magnitude for [2"]UU(z), and moreover, numerically, we note
that Co/C) =~ 1! We have 1 < C,/C; <€ 1.2 and even

The bound is all the better as [ is large (for 3 or 4 already : for ¢ = 2, v = 2, I = 3 we have C;/C; = 1.10,
forc=3,v=3,1 =06 we have C/Cy = 1.05, for ¢ = 10, v = 4, I = 10 we have C»/C; = 1.01).

Summing up, we can state the following theorem:

THEOREM 4 : If we consider a uniform distribution on pairs of binary trees with 1 internal symbols, v
variables and c constants, then
- the number of unifiable pairs of trees of total size n is:

© ((4i(v +c - 1)"n})

- the ratio between the number of unifiable pairs of trees and the number of pairs of arbitrary trees
o ( (v +c-1 )")
v+c

which means that for sufficiently large n almost all pairs of trees are non-unifiable and that we have a
good asymptotical and numerical bound for the number of unifiable pairs of trees.

(©: “of the same asymptotic order as”).

3.4.2 The causes of failure

We Consider the ratio

and represent its variation in the following three-dimensional picture:

9
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Figure 1 : Variation of ¢y, forc=2,2<v<10and2<1<10

Figure 1 shows off that numerically we always have more clashes than occurrences and this proportion
increases with ¢ and . We can note that even when v is small, the number of clashes still remains larger
than the number of occurrences : this phenomenon is due to the presence of constants at the leaves of the
terms because of the uniform distribution model.

Finally, in order to study with precision the clash failures, we can define the ratios:
.= \FC| _ |FC|
° BBl |FF|

and

_INC] - v/l
(BB| VAl(v +¢)? —3v2 —4dvc—c¢

Tc+=1

This will enable us to bound on both sides the pairs of trees that fail with a direct clash. We represent on
the following drawing the proportions with respect to BB of the families #C and BB\ NC.
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Figure 2 : Variation of 7. and 7.y forc =2, v=3and2<1<10

The proportion of pairs of trees that fail with a direct clash is located between the two curves of figure
2. We notice that we get a good bound for the failures due to a clash and this bound is all the better as [ is

large. We can verify that

lim 7, = 232 = Jim ,
P Tc_?(v-{-c) Timoo Y

Summing up, we have the following theorem:

THEOREM 5 : The families of pairs of trees which are non unifiable because of a direct left fail FF, FO
and FC and the family of pairs of trees without any direct clash NC have the same order of magnitude as
the family of pairs of arbitrary trees BB. In this model, where the number of variables is finite, we have a
good estimation of the failures due to a clash. In this model, the occurrence is not negligible with respect
to the clash but remains numerically less important.

We can interpret these combinatorial results: the asymptotic analysis leads us to consider large binary
trees thus with many leaves. This fact yields to the repetition of identical variables and therefore to a non
negligible proportion of occurrences. In PROLOG (where there is no occur-check and where one unifies
many small terms, see [SS86]), we can have potentially an infinity of variables (i.e. the number of variables
can vary with the size n of the pair of terms) and that cannot of course be modelized with a finite v.

Thus it is interesting to reconsider the phenomenon of occurrence (the clash is, as we have seen, well
studied in the model with bounded v). In section V, we shall modelize terms with patterns formed with an
infinite number of variables up to variable renaming. We shall then analyze the influence of this model on
the probability of occurrence. Before that, we conclude the study of the model of binary trees with a finite
number of variables by giving the average cost of unification algorithms in this model.

IV. Average cost of unification

In this section, we present the average cost of the different unification algorithms detailed in section 1I. We
first define the notion of the average cost of an algorithm on a family of input data and then, using the

11



results of previous section, we prove that the average cost of an unification algorithm on family of pairs of
trees BB is the same as the average cost on family FF of pairs of trees that fail directly. Then we obtain
that the average cost of the occur-check is constant. In chapter 4.2, we compute the precise average cost
of the Robinson’s algorithm with substitution delaying that is constant cgp. In chapter 4.3, we compute
the average cost of the Herbrand’s unmification algorithm with oracle on the Select rule, that is constant
cyo (that modelizes also Martelli Montanari’s algorithm after the linear initialization phase of counters). In
chapter 4.4, we compute the average cost of Martelli Montanari’s algorithm with the initialization of counters
mixed with first decompositions (therefore eliminating the linear initialization phase) and we obtain that the
average cost on arbitrary pairs of trees still remains linear. In chapter 4.5, we draw some conclusions about
all this study.

4.1. Average cost

4.1.1 Definition

The average cost spent to unify two terms with total size n belonging to a family of pairs of terms XX is

defined with:
o= z:|T1H-|T:|=n T(Tl ’ T2)

n
zz,

where 7(T}, Tz) denotes the total number of steps during the unification process of T} and T3 and zz, denotes
the number of pairs of terms of family X' X" of total size n.

4.1.2 The cost on BB is equal to the cost on FF

Indeed, we have

LEMMA : The average cost of an unification algorithm on arbitrary pairs of terms is the same as on
non-unifiable pairs of trees because of a direct failure.

It means that the average time of the algorithm is spent to detect direct failures.

ProOOF : We know from theorem 4 that the number of pairs of trees in ££ is exponentially negligible with
respect to BB. Moreover, the worst case complexity of any unification algorithm is polynomially bounded

in a model where the number of variables v is finite (exactly O(n")). Consequently the main contribution
to the average cost of unification on arbitrary pairs of trees is the contribution of direct failure. =

4.1.3 Average cost of the occur-check

The cost to check the occurrence of a variable v in a term T of B can recursively be defined as follows:
oce(c) = oce(v) = 1

_ | 1+ oce(Th), ifreT;
oce(f(Th,T3)) = { 14 oce(Th) + oce(Tz), otherwise.

If we denote O(z) = Y qep0cc(T)zIT! we can split this generating function O(z) = 04(z) + O2(z) with
O1(2) = Y zer ocey (T)z!T! and Oy(2) = dcer occa(T)2\T!; ocey and occy being recursively defined in the
same way as occ.

We obtain the generating functions:

O1(z)=v+ec~1+4 l(zB,,_l(z)2 + 22B,_1(2)01(2))
02(2) = 14+ {(2C(2)B(z) + zB(2)02(z) + 2By _1(2)C(z) + 2C(2)041(2) + 2By, _1(2)02(z)
and asymptotically

0(z) = —4(v + ) 2(VoFe+ )W al(o 4 9) + O(Z_QTUL—C) ) = 0s(2)

12



Hence, we derive the constant average cost for the occur-check :

_ [z"10(2) _ [2"]0a(2) _ Vv+e(Vv+e
b= BMIBG) © BrIct) C VYT vvEetD

Remark : In the specific case where | = v = ¢ = 1 of [DL89), we actually find again k, = 4 + 2v/2.

4.2. Average cost of Robinson’s algorithm with substitution delaying

We use the recursive definition of the cost of the algorithm given in section II. Once more, we can express
Urp(T,T') for |T| + |T'| = n as the n** coefficient of the generating function Ugp(z) which verifies the
following algebraic equation:

Urp(z) = ¢® — ¢+ 20(02(2) — 1) + 2¢B*(2) + (I? = 1)22B%(2)
+ 1(22B%(2)FF(z) + 2> B*URrp(2))
+ I(z2EE(2)FF(z) + 22°FF(z)(EE(2) + 2EE'(2)) + 2>EE(2)Urp(2)

The singularity with smallest modulus of Ugp(2) is again z = ﬁ(ﬂl—_ﬁj. Asymptotic analysis yields to

1
= -_— -_—
Urp(z) = K1\/1 —4lz(v+¢)+ O(2 4l(v+c))
whence

[:")URb(2) = Ka(4l(v + ¢))"n>/? (1 +0 (%»

with K, and K, constants depending on [/, v and ¢.
The coefficient [2"]Urp(2) is of the same asymptotic order as [z"]|FF(z) = [2"]BB(z), we thus have:

THEOREM 6 : The average cost of Robinson’s algorithm with substitution delaying on arbitrary pairs of
trees is a constant cgp.

The explicit expression of ¢gp in its more “compacted form™ obtained with the symbolic computation
system Maple (see [CGG+88]) needs 54 lines ! We just note its variation with I, v and ¢.
- v and ¢ remaining fixed, the leading term in cgp behaves like /1,
- 1 and ¢ remaining fixed, the leading term in crp behaves like v3/2,
- I and v remaining fixed, the leading term in cgp behaves like /c.
Numerically for | = 2, v = 2 and ¢ = 2 we have cgp ~ 28.38.

4.3. Average cost of Herbrand’s algorithm with oracle

The recursive expression Uyo(T,T') of the average cost of the algorithm on a pair of trees (T, T') € FF is
identical to the one of Urp(T,T') with the only difference that:

Uno(v,T) = upo(T,v) = 1 since the oracle determines the application or the non-application of Select
rule.

Once more, we can express Uyo(T,T") for |T|+|T”’| = n as the n*? coefficient of the generating function
Uno(z) which verifies the following algebraic equation:

Uno(z) = ¢ —c+ 20C*(2) + 2cB*(2) + (I* = 1)2°B*(2)
+ (22 B*(2) FF(2) + 22 B*Ugo(z))
+(22EE(2)FF(2) + 2:2FF(2)(EE(z) + zEE'(2)) + 22 EE(2)Uno(z)
The singularity with smallest modulus of Uyo(z) is again z = ZT(ol—+3' Asymptotic analysis yields to

1

Uno(2) = K3/1 —4lz(v+c)+ O(z—m )
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whence

["Uno(z) = Ka(4l(v + ))n=/? (1 + 0(%))

with K3 and K4 constants depending on I, v and c.
The coefficient [z"]Ugo(z) is of the same asymptotic order as [2"]|FF(z) = [z"]BB(z), we thus have:

THEOREM T : The average cost of Herbrand’s algorithm with oracle on arbitrary pairs of trees is a constant
CHO-

Nota : Notice that cyo < cgrp.
The explicit expression of constant c¢yo is once more too long to be written. We shall just note its

variation with [, v and c.
- v and ¢ remaining fixed, the leading term in cyo behaves like V1,
- 1 and c remaining fixed, the leading term in cyo behaves like v,
- 1 and v remaining fixed, the leading term in cyo behaves like \/c.
Numerically for | = 2, v = 2 and ¢ = 2 we have cygo ~ 8.46.

4.4. Average cost of Martelli Montanari’s algorithm with initialization
phase mixed with first decomposition
The recursive expression Uprps(T,T”) of the average cost of the algorithm on a pair of trees (T,T') € FF
is identical to the one of Urp(T,T’) with the only difference that:

Umm(v,T) = uym(T,v) = 2|T| + 1 since the algorithm requires a complete tree traversal of T for the
initialization of the counters. We shall prove that this variant of the classical Martelli Montanari’s algorithm
has still a linear average cost on the family of arbitrary pairs of trees.

Once more, we can express Upa (T, T") for |T|+|T’| = n as the n** coefficient of the generating function
Um s (z) which verifies the following algebraic equation:
Umm(z) = & — ¢+ 4v2CF(2) + 20CH (2) + 2eB*(2) + (I = )22 BY(2)
+ (22 BX(2)FF(2) + 22 B2 Upmm(2))
+ (z22EE(2)FF(2) + 222FF(2)(2)(EE(z) + 2EE'(2)) 4+ 22 EE(2)Upm(2)
The singularity with smallest modulus of Upsar(2) is again z = WvITE)" But this time, asymptotic analysis

yields to
—16v(v 4 ¢)213/2 1 1

2w+ )32 — (v + )W+ VX /1 —alz(v + ¢) + O(z_‘il(v +c) )

with X = 4l(v +¢)*=3(v + ¢)® + 2c(v + ¢) + 4(v + c)3/2—-4\/v + ¢ ¢c—2v. Hence
—16v(v + ¢)?13/? (4lv + )" _1/2( (1))
"|U. = 14 0| -
10 2) 5o+ P (vt i+ VX E +Oa

The coefficient [2"}Usmm(z) has not the same polynomial power of n as [z"]FF(z) = [2"]BB(z), thus we
obtain :

Umm(z) =

THEOREM 8 : The average cost of Martelli Monatanari algorithm with initialization phase mixed with first
decomposition is linear equal to :

¢ n<1+0<-1-)) = il n(l-&-O(l))
MM n)) " 20 + )2~ (v+ )i+ VX n
with X = 4l(v + ¢)*=3(v + ¢)® + 2c(v + ¢) + 4(v + )/ *—4y/u F ¢ c—2v.

We have the variation of carar in function of I, v and ¢ :
v and ¢ being fixed, the leading term in cppr is 2v/(v + ¢),

14



[ and c being fixed, the leading term in carps is 413/2/(2P3/2—/1 + /4 =3),
I and v being fixed, the leading term in cprpr is 413/2v/((2P/2 =1 + VAT =1 )c).
Numerically for { = v = ¢ = 2 we get cppr = 0.83.

4.5. Conclusions

We can draw some conclusions from the previous results on the average complexity of unification algorithms.
In fact, clashes are not sufficient to lead to a constant average cost : it is necessary to use an efficient occur-
check (1.e. without a total traversal of subterms). Then, the variant of Robinson’s algorithm, that we called
with substitution delaying, appears to be the most efficient unification algorithm on arbitrary pairs of trees
with an uniform distribution since its average cost is constant and it does not require specific data structures.
Finally, on unifiable pairs of trees, it is easy to realize that the average cost of any unification algorithm
(without oracle of course), is at least linear since the algorithm requires a total traversal of T for family VB.

V. Model with an infinity of variables

Note that all the following combinatorial computations can be performed with an assistant algorithms
analyzer such as Lamda-Upsilon-Omega (see [FSZ89]).

5.1. Terms with an infinity of variables up to renaming

Our aim in this section is to study the influence of a model with a non-bounded number of variables on
the occurrence phenomenon. In order to simplify the following computations, we thus shall consider terms
without constant and with only one internal binary symbol denoted *. We modelize terms with patterns
formed with a binary tree structure and with variables at the leaves with equality up to variable renaming.
For example, there are only two patterns of size 1 (the size of of pattern is still the number of its internal
nodes):

*(z,z) or =*(z,y)

it illustrates the fact that the leaves of these elementary patterns are either equal or different.
We have the following combinatorial theorem:

THEOREM 9 : The number of patterns of size n is:
Cn Bn+l
where C,, is the n*® Catalan number and B, the n** Bell number.

We know that Cy = 741 (%) and B, = 02 ().

PROOF : Cj, is the number of binary trees with n internal nodes and B, is usually defined as the number
of set partitions. There is a bijective correspondence between set partitions and lists of variables up to
renaming. We can associate to each variable the set of the places it takes in the list. For example, the
corresponding set partition of the list (z,y,y,2,t,2z,2,y) is {{1,6},{2,3,8},{4,7},{5}}. =

We now determine the average number of distinct variables in a pattern of size n. Resulting from the
bijective correspondence above, this number is also the average number of classes in a set partition. Thus
we easily get:

THEOREM 10 : The average number of distinct variables in a pattern with size n Is:
n

—(1+0(1).

"zlo

This theorem shows off that V;; — oo with n, and that phenomenon cannot be modelized with a finite
number of variables v. This fundamental result justifies the present study of this section.
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5.2. Influence on the occurrence

Now, we reconsider the probability of occurrence in a model where v may increase with the size of the term.
We consider basic pairs of trees (v,T) with T a binary tree of size n and therefore with n+1 variable leaves
belonging to a set of v available variables. The total number of such pairs is vC,,v®*+! and the total number
of pairs for which there is no occurrence is vCp(v — 1)"*!, the ratio is thus (1 — 2)*+! and we get :

THEOREM 11 : The probability for a pair (v, T} of total size n to be non unifiable because of an occurrence
of variable v in T is:

ln
P(n,v):l——(l—;) +1

- Thus, if v remains constant, the probability of occurrence when n — oo tends to 1. This is the
case of the previous model and this expresses again the importance of the occurr-check we obtained.

- However, the same phenomenon appears with an infinity of variables in the case where v is of
the same order as n/In(n), which corresponds to the average number of distinct variables for the previous
terms with variable renaming. In that case, the probability of occurrence behaves like P =1 — ;’;

Remark : We can derive this last result with a direct combinatorial computation considering pairs of
patterns up to variable renaming (see [Alb90]).

- When the number of available variables v is of the same order as the size of the term n, we get
P(n,n)=1-(1-4)ntl —1-1

- Finally, as soon as v is of the order of n!+* with « > 0, the probability of occurrence P(n,v)
tends to 0.

VI. Conclusion

Under a uniform distribution law for binary trees formed with a finile set of variables V, the family
of unifiable pairs of trees is exponentially negligible with respect to family of arbitrary pairs of trees. The
different causes of failure have been analyzed, and the analysis of the occur check has been extended to the
case of an infinite set of variables. We proved that the probability that a variable occurs in a term of size n
is 1~ (1= 2)"*! where v is the number of variables, and therefore if v is of the order of the average number
of distinct variables in a term of size n, or if v is a constant as in section III, the probability that a variable
occurs in a term tends to 1 when the size of the term tends to the infinity. On the other hand as soon as
the number of variables is superlinear (n!* with o > 0) that probability tends to 0.

We have shown that when V is finite, Robinson’s algorithm with substitution delaying has a constant
average cost over random pairs of trees. On the other hand over random pairs of trees various variants of
Martelli and Montanari’s algorithm all have a linear average cost in this model. The point is that failures by
clash are not sufficient to lead to a constant average cost, an efficient occur check (1.e. without a complete
traversal of subterms) is necessary. The average case complexity of Paterson and Wegman’s algorithm on
random pairs of trees as well as the average case complexity of Robinson’s algorithm in a completely general
framework (bounding it by a constant over non-unifiable terms, and by a polynomial over unifiable terms)
remain open.

The asymptotical analysis is performed by considering arbitrary large terms. This can be criticized
since in practice not very large terms are unified, but instead large sequences of small terms are unified.
The problem of unifying an in-line sequence of terms is closer to common practice. Note that due to the
composition of substitutions the use of a linear unification algorithm does not result in a linear algorithm
for unifying sequences of terms. The worst-case time complexity of the algorithm proposed in [MM86] for
executing a sequence of unify-deunify operations is O(n In(In(n))). One approach for the average case com-
plexity analysis of such sequences is to consider a forest of pairs of binary trees and perform the asymptotical
analysis on the size of the forest, as in [AF88].
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