
AN INTEGRATED ENVIRONMENT FOR
COMPUTER-AIDED CONTROL ENGINEERING

John Hickey, Digital Equipment Corp., Clonmel, Co. "npperary, Ireland.
John Ringwood, Dublin City University, Glasnevin, Dublin, Ireland.

This paper describes the development of a Computer-Aided Control Engineering package

to support the complete design cycle. It briefly sumrnarises the ideal Control-Engineering

process model used as the basis of defining the requirements of the package and sllmmaries

the shortcomings of current state-of-the-art packages against it. Then it describes the ar-

chitecture designed and a prototype implementation called MSDI to support the design

cycle for control systems encompassing modelling of the plant to be controlled, specifica-
tion of the final objectives or performance, design of the required controllers and their

implementation in hardware and sofLware. The advantages of using an object-oriented de-

sign approach are discussed together with some of the software engineering aspects. Some

aspects of the package are illustrated through test cases.

1 INTRODUCTION

Many software packages are currently available which assist in the design of control sys-

tems. In general, the bulk of commercial packages address only the design/analysis com-

ponent of the i~tal design cycle and can be classified as Computer-Aided Control System

(CACSD) packages. A guide to many of the currently popular packages can be found in

[1]. Packages that support the complete engineering of a controller can be classified as

computer-aided control engineering (CACE) packages. In an effort to develop a complete

CACE package, first a control engineering process model was formulated by reviewing gen-

eral design theory and applying the control domain constraints. The model refined from
this process is shown in Figure 1 [3].

Figure 1: Control System Design Process Model

I
I
I
I
I
] Analysis

~, - Stability

t
t

I
!

I
I

t

Model l ing

- Linee~,zat ion
- Identifwattion
- Mode l Build
- Mode l Reduction

- Sensi t ivi ty Obeervabili ty~ut]t lx31labili ty
- I)ynamic/Sta t i r BehavJeor - Pole P l a c e m e n t / O p t i m a l

- S ta te S] ~ e / Y~,Tuen=y D c t n a i e
A �9 - S I S O / M I M O

I
I

Implementation L

- R e a l - T i m e L a n g u a g e s
-]-]ardwme
- D (g t u r ~ t a f i o e

I

|

669

The design specification sets the criteria or objective of the control system design. I t needs

to be accurate and complete to allow the ul t imate design meet the desired requirements.

This specification is generally non-static and changes during the design process as the

designer understands the constraints and costs better.

The model is the language or tool we use to discuss and evaluate various design options.

This model takes many different forms from the rigorous mathematical f ramework of state

space theory and frequency domain t ransfer functions to semi-formal s ta tements about

operation. I t can be developed using identification techniques or from the underlying l a w s

of nature. In practice, we usually only use one, i.e. the mathematical framework, in

formal discussions and decisions despite the fact tha t an informal one also exists tha t is

just as important to the success of the design [2]. This informal model is usually handled

conceptually by the designer as he performs his task and is usually closely related to the

formal one but cannot be directly expressed in tha t framework e.g accuracy and limitations

of formal model.

The synthesis/analysis/evaluation feedback loop in control system design is where the var-

ious design strategies are evaluated to see their effect on the model. This cycle requires

the ability to reason about and manipulate the model, to decompose, recombine, extend,

reduce, analyse and synthesize changes. Evaluation in control design is usually done

through simulation. Thi.,; can be considered an analysis of performance. For this reasor,,

the evaluation block can be combined into the analysis block as analysis of dynamic/static

behaviour.

The controller implementation consists of hardware and software combinations. Both have

a significant impact on the design viability in such terms as speed and wordsize [4]. These

constraints need to to be factored into the design process to ensure its ul t imate success.

Production of design documentation is considered part of the implementation.

To be effective, the model for the CACE process needs to encompass model formulation,

design specification, analysis and design methodologies and implementation. These com-

ponents need to be accessed through a flexible and consistent user-interface. The ideal

model developed for CACE is shown in Figure 2.

Figure 2: CACE Process Model

User-Interface [

r I

I L t ~F-'I '

~'1 ~ ' ~ , 1 I I I ' l l ,I
~- I I \ - " L ' ~ - " '

Decttmentttien I

AI

This model is broken into two main sections, numerical algorithms and AI algorithms. This

is to reduce the overall complexity as many of the AI techniques tha t will be required in the

670

various design phases of modelling, specification, etc. will be essentially the same. This

structure will allow the incorporation of numerical software already available in an easy

manner. The advances in computing hardware and compiler technology make optimising

algorithms for max. speed less important than overall functionality and flexibility.

The design-base represents a combination of both the usual database facilities plus AI fea-

tures such as rule-bases, theorem-provers, e tc . . All the information known on a design is

incorporated here e.g., the models, design decisions, why they were taken, rules of practice,

e tc . . This allows a design's history to be reviewed and analysed plus gives direct support

to the documentation facility that allows customised reports to be generated.

Table 1: Requirements for a Modern CACE Package

System
Component Key Functions Major Attributes Needed

User Interface Schematic Capture
Dialogue Facility
High-Level Graphics
Macros
Consistent
Help Features
Failure Response

Block-Diagrams, SignaI-Rowgraphs, Performance graphs
Expression-based Syntax, Matiab-like
Windowing, Plotting functions
Command Macros, procedures, model macros
Structured language
Online, expandable
Clear error mes,~ages

Modelling Construction

Transformation

Schematic, Control-type models e.g. State Space, Transfer Function;
identification
Discretization, State-Space <-> Transfer Function, Linaarize

Specification Capture
Validation

Specification Language
Multi-Level - Behavioural, Implementation Level

Design SISO
MIMO
Simulation
Non-Linear Techniques
Analysis

Pole Placement, PID, Optimal, Observer
Pole Placement, Optimal, INA, Observer
Time, Frequency Response
Linearisation, Simulation, Describing Function
Pole/Zeros, Stability, Sensitivity

implementation Simulation Hardware Limitations - computation time, reduced precision, Software
Code-Generation Controllers, Interlace Routines, Jacketing Routines

Documentation Generation Design Decisions, Final Structure

Database Facilities Control Data-Structures Real, Complex, Matrices, Transfer Functions, State Space systems
Management Joumaliing, Modifying
Intadaos to Foreign Code Data, Procedures

Misc. Facilities Design Rule Checker
Expert Assistant

The major problems with existing packages are that they tend to be methodology focused
(on a limited sub-set of the design cycle), provide inadequate data structures, the front-
ends tend to be alphanumeric where the Engineer enters his already developed model so

671

the system can use it. Little support is usually given for developing the model, part icularly

in the area of handling the "informal model". The controller is usually designed without

reference to the the final implementation technology or consistency checks to validate de-

sign assumptions and actions. Generally the documentation facilities are very poor with

little recording of design decisions. Most of the currently used CACSD packages were de-

signed around MATLAB and concepts that prevailed at the early 1980s. Current efforts,

such as the ECSTASY and CES projects [5,6] are at tempting to overcome some of these

disadvantages. An evaluation of some current packages against the CACE model are given

in [6]. These shortcoming were felt to be significant enough to war ran t the development

of a new package which we have called MSDI. The prototype implementat ion has all the

key functionality defined in Table 1.

2 Software Engineering Issues

The implementation language for the MSDI package needed to support intensive I/O ac-

tivity (alphanumeric plus graphical), intensive computational activity, database manipula-

tion, Al paradigms formulation and large system development. Using the characteristics

required of a CACE package and the principles of software engineering Fortran, Pascal,

C, C++, Ada, Lisp and Prologue were evaluated for suitability for this project. Ada was

selected as the language best suited to implement a modern CACE package. I t neares t

rival, C++, failed mainly in the area of readability and the availability of good compilers.

Details of this evaluation are contained in [3].

The main advantage of Ada over other languages was its powerful implementat ion of mod-

ern software concepts like strong typing, concurrence, modularity, maintainability, read-

ability, operator overloading (the ability of of an operator such as +,- or * to have several

alternative meanings at a given point in the program). Also as Ada was originally designed

for embedded applications it was ideal to use to implement the designed controllers.

The te rm package used latter describes an Ada programme unit tha t forms a collection

of logically related entities providing resources to application progr~rnmes tha t ,call it. In

general a package implements a new data type and the operations tha t can be applied

to tha t data type. An example would be a complex matrix data type which can have

operations such as addition, subtraction and inversion. The package encapsulates (puts a

wall around) these resources so that the details of how an addition or inversion is performed

can be separated from the use of the function.

The controlled interface of Ada to other languages was very important as most of the

current numerical software is written in Fortran (Eispack, Linpack, etc.). I t would have

been foolish to have to re-write these types of packages jus t because of the adoption of a new

language. Thus Fortran was used as a secondary language throughout the numerical par ts

of the system where already implemented solutions to numeric problems were available.

For graphical routine development, VAX GKS, a device independent graphic package, was

used to ensure portability between computer systems and easy maintenance. VAX GKS was

considered the lowest level of a graphical entity. Thus terminal dependency was removed.

672

For AI routines, initially it was planned to use Prologue. But early in the project, two Ada

packages were obtained, ALISP and EXPERT which forefilled the needs of AI routine de-

velopment. ALISP was a generic package tha t provided the necessary facilities to emulate

the capabilities commonly used in AI but not directly supported in Ada. EXPERT provided

the facilities to do backward inferencing on a rulebase.

The design method used for software development was based on the object oriented method
developed in [7]. The method basically consists of five steps :

Identify the Objects and their Attributes This requires the identification of the major components of a problem space plus
their role in our model. This in our case included user-intedaca, database, etc.

Identify the Operations that affect each This requires the characterisation of the behaviour of the system or subcomponent
Object and the operations each Object and its objects. The semantics of the object is established by determining the
must initiate operations that may be meaningfully performed by the object or on the object.

Also this requires the identification of any constraints on time and space that
must be observed.

Establish the Visibility of each object in The purpose of this step is to capture the topology of objects from our model of
relation to each other the system. This requires defining what objects "see" and are "seen" by a given

object.

Establish the Interface of each Object This defines what can be viewed inside a module and outside. This is where a
module specification is produced in formal notation. For this formal notation the
Ada language itself was used. as its specification/body concepts lends itself to
this.

Implement each Object This is the detailed coding of the body of an object.

By using Ada to develop the CACE package much of the project management facilities were

already provided (in APSE)+ The other tools used to develop the package were the VAXset

tools (Language Sensitive Editor, Debugger, Programme Code Analyser) and XD-ADA

from System Designers to cross-compile code for target processors.

3 MSDI A R C H I T E C T U R E

Most current CACSD/CACE packages have been developed using a functional decomposi-

tion method with a typical architecture like the one in Figure 3. Functional architectural

design divides the CACE process into stages or functions seeking to modularize the system.

A major problem seen with this method is tha t it forces a concentration on the operations

to be performed, such as definition of a model or perform a numerical calculation.

Figure 3: MSDI Functional Architecture

I
Modell/ng

]

'i
I

I
I

l i ,+ ,
i

I I

I User-lnterface

t
I I

I i

'I " - + ~ I fi
I _ _ _ L I I

I I T [-- r - -
[i i] D.. .- ,-~I I I I j L I

This type of architecture tends towards m~ldug data global - instead of localising it where

it is used, thus making the system more resilient to change. Instead an object-orient

approach was used to develop the MSDI architecture.

673

3.1 Object-Oriented Architectural Design

The first pas s of object-oriented design (OOD) revea led two ma in objects, a complete system
en t i ty and a specification entity. A system en t i ty defines the cu r r en t r ep re sen t a t i on of a

design. I t inc ludes the p lant , the des igned control lers and the i r implementa t ions . This

includes bo th the formal model and aspects of the in fo rmal model. The system en t i t i e s

will change over t ime as we proceed th rough the des ign process, add ing control lers and

defining the i r implementa t ion . The opera t ions t h a t affect a system en t i ty and those t h a t

i t m u s t in i t i a t e a re :

a. Fo rmula t ion - defini t ion and bui ld ing of a system model f rom i t s components (i.e. m a i n l y

the defini t ion of the plant) .

b. Modification - addi t ion, delet ion and changing of components of a system.
c. Design - add i t ion of control ler components .

d. I m p l e m e n t a t i o n - addi t ion of imp lemen ta t ions of contro l ler components .

e. S imula t ion - s imu la t ing var ious s tages of t he system, behav ioura l and f inal imp lemen-

tat ion.

f. Ana lys i s - S tab i l i ty of a p lan t model, sensit ivi ty, pole/zero locations, etc.

g. Verification - ver i fying t h a t a system meets a specification.

h. Save/Res tora t ion - saving and recal l ing of a system to/from a file.

I. In i t i a l i sa t ion - in i t ia l i s ing a system to empty.

The specification en t i t i es opera t ions a t t r i bu t e s a re :

e. Fo rmu la t i on - definit ion and bui ld ing of specification entity.

b. Modification - Addi t ion, delet ion and changing pa r t s of the specification.

c. Profil ing - genera t ion of a specification profile, i.e. the t ime response and the f requency

response envelops i t specifies.

d. Save]Restora t ion - saving/recal l ing a specification to/from a file.

e. In i t i a l i sa t ion - In i t i a l i s ing specification to empty.

As can be seen the system ent i ty depends on the specif icat ion entity. The specif icat ion

en t i ty could have been inc luded as p a r t of the sys tem ent i ty defmit ion, b u t as much more

re sea rch t h a n u n d e r t a k e n to da te is needed on the specif icat ion side, i t was fel t be t t e r to

encapsu la te i t on i ts own for fu ture modification.

Table 2: Control Engineering Data Types
Data Type Typical Uses

Usually High Level Language Data Type :
Integer, Real, Boolean, String
Matrices : Real, Complex
Polynomials
Transfer Functions
Transfer Function Matrix
State-Space Representation
Domains
Trajectodse
Table
Non.Linear Descriptions

Low tevel functions

Analysis and design algorithms, model representations
Dynamical equations
SISO Model representations
MIMO representations
4-tuple representation of a dynamical model.
One-dimensional structure used for range descriptions
For time histories, signal and plot descriptions.
Parsing action, Frequency response
Non-linear model descriptions

674

As part of the object-oriented decomposition, data-types needed to support control system

engineering were identified. The lack of adequate data structures, as already outlined, is

one the most serious drawbacks of many control packages. Often the Complex Matrix is

the only data-structure supported. The MSDI architecture supports the control oriented

structures of Table 2.

3.2 System Diagram

The system entity is defined as a type called system diagram. The term system diagram is

used to differentiate it from a block diagram which is usually used to refer to the definition

of a model representation composed of transfer functions. The system diagram can be

composed of many different components such as state space models, transfer functions,

signal sources, and non-linear components.

The system diagram is used to build up a user's model of a system from atomic components,

composite components, structural interconnections and graphical attributes. An atomic

component is an instance of a functional representation (or model template) that can

be given a set of input values and can compute a set of output values via an evaluation

function (EvFn). This EvFn is an algorithmic definition of the behaviour of a component.

An atomic component is devoid of any structural information and cannot be divided into

any ,~maller element. Each atomic component can be thought of as a generic template

for a model that can have its parameters filled in to define its particular behaviour. An

example of an atomic component is a discrete state space model block which has its output

computed algorithmically from:

Xk+ 1 = ~.x k + T.u k (1)

Yk = C'xk + D'uk (2)

with u k being passed to the EvFn for a state space object. A particular instance of this

atomic component would define the values of ~, T, C, D, initial state and sample interval.

To achieve flexibility the MSDI architecture clearly delineates between the behavioural and

structural aspects of models. It provides a uniform structural modelling framework which

contains placeholders or templates for behavioural descriptions. The atomic components

defined for MSDI and their algorithmic form of EvFn are shown in Table 3.

A composite component is defined from a structured group of atomic components. Its EvFn

is defined from the way the atomic components are structured. An example of such a

composite component is two transfer functions in series. Normally, a composite component

will not be so simple, as various outputs of an atomic component will feed into different

component blocks. Some of these blocks may be non-llnear, such as a saturator, preventing

computation of EvFn into a nice simple equation. Such composite components have their

EvFn sectioned into an ordered list of atomic EvFns that are sequentially computed, with

individual outputs computed before they are needed for an input.

675

Table 3: MSDI Atomic Components and their Evaluation Functions

Atomic Ob)ect Name Evaluation Function Comment

Continuous State Space ~(t) = A.=(t) + B.=(t)

y(t) = C.=(t) + D.=(t)

Initial state and current

state contained in model.

Discrete State Space :~k,l = ~.xk + T.uk Initial state, current state and

yk = C.r + D.uk sample interval contained in model.

Continuous Transfer Function G(s) = Y(s)/U(s)

Discrete Transfer Function G(z) = Y(z)/U(z) Sample time included.

Gain y(t) - K.u(t) K is the gain constant.

1 Summer y(t) = ~ , . j Stgr~ u~(t) j - no. of inputs to summer. Sigr~ defines
whether P input is added or subtracted

Step Source y (t) - Magnitude

Pulse Source

Ramp Source

Sine-wave Source

Square-wave Source

White Noise Source

Colourad Noise Source

General Wave Source

Magnitude i f t<Width ;
y(t)= 0 i f t >Width;

y (t) = Rate.t

y(t) = Amplitude. sln(27rft) f, frequency in Hz.

y(t) = Amplitude.sigr=(sin~(2~rft)) f, frequency in Hz.

y (t) - Magnitude.random(t) + Bias random(t) is a random no. between -1 and 1.

y (t) - Magnitude.G(white noise) G(.) represents a filter

y (t) - Value(t); Taken from a file.

Saturators [t~k i f Sa~,~,<uk<Satm,, ; Max. and Min. Limits
yk = ~ Sat,,=== i f uk > Sat,,,== ;

Code Block y(t) - Fn(u(t)) Fn defines a compiled subroutine

Input Block y(t) - u(t) Defines an input connection to system diagram

Output Block y(t) - u(t) Defines an output connection to system dis-
gram

The structural framework is where component interconnections are defined. These in-

terconnections are made up by connecting input/output (I/O) ports of a component. This

connection is represented as an abstraction of a signal conductor. A port is defined as an

input (or sink node) or an output (or Source node). Output ports are considered the source

of a signal on a connection path and define the value of the signal on the path. Only one

676

source port can drive any one connection path. Each path must terminate at a sink or input

port. Therefore, such things as connecting an input-to-input or an output-to-output are not

defined. From this, an atomic component is seen to be composed as show in Figure 4:

Figure 4: Atomic Component Structure

This template is used to define the data type of each of the atomic components. An example

of this is shown in the definition of a state space model in Example 1.

Example 1: State Space Model Representation
type State Space_Atomic (Domain : Time Domain := Continuous;

No States : Natural := 0;
No, Inputs : Natural := 0;
No_Outputs : Natural := 0) is

record

State Space_Behaviour : State SpaceRep (Domain, NoStates, No_Inputs, No_Outputs);
Inp_Connection : IO(i .. No_Inputs);
Out_Connection : IO (I .. No_Outputs);

end record.

where State Space Behaviour defines a State Space Representational type
defined in equations (I) and (2).

Based on these atomic components, looking at the design from a bottom-up view, several

clear objects are seen to be required to support the MSDI system. Most of these data types

map directly onto atomic components. Atomic components, as well as being used to compose

a macro block (a composite component type), can be used to define other atomic components

that depend on them. An example of this is a discrete state space model, derived from a

continuous model, or an implementation of a controller derived from a controller model.

The system needs to monitor and maintain these dependencies as illustrated in Figure 5.

Figure 5: Dependency Structure

Parent

Instance 2

Children A

I Instance 3

Childem B

677

Table 4: Class of D e p e n d e n t C o m p o n e n t s

Atomic Component Parameter(s)

State Space Sample time, transfer function model
Transfer Function Sample time, state space model
Controller Linear model (i.e. state space, TF or macro)
Implementation Controller, hardware (i.e. wordlength, multiplication speed)

To achieve this, the architecture defines a class of atomic components, that can be instanced

with a model parameter - similar to the idea of a generic package in Ada. This class of

components is shown in Table 4. The difference between defining a state space model by (a)

defining ~, T, C, D and sample time and (b) discretizing a continuous state space model is

that (a) sets up an independent state space type while (b) creates a dependent state space

type which depends on the continuous model. To the user, (a) creates a new component and

adds a new Icon to the terminal surface, while (b) creates a new component but does not add

a new graphic representation or Icon to the terminal surface. If this continuous model is

deleted or changed, then the dependent discrete model is updated accordingly (i.e. deleted

or re-computed). These dependencies are maintained to free the designer from tracking

changes from one model into another, and to prevent errors from entering into a design

from the failure to update a dependent model. To ease manipulations within the package,

these dependencies are maintained both ways - i.e. parent-children and child-parent.

From previous description, the system diagram (SD) is composed of components that are

interconnected together to model a plant or system. It contains behavioural descriptions

of the components, structural information on how they are interconnected and graphical

data on how the model is pictorially presented to the user. Using the OOD approach, the

SD was modelled as being represented by three entities : behaviour, connection and iconic.

These are implemented through 3 separate packages called system form, connections and

icon respectively. The system form package provides the capabilities to create, modify and

delete behavioural representations. It solicits and presents this information as shown in

Figure 6. This type of form allows concise and clear data entry and display. The connections

package allows the user to select his I/O ports for connections and allows a connection to be

drawn between them by the user. These connections, from a user view, can start at either

an input or output port, the line drawn through various points, and finally terminated at

another port. The connections package checks the validity of the interconnection i.e. one

input port on path and one output port. The icon package provides the graphical attributes

facilities. It allows a user to position the graphic representation or icon of a component

on the display surface and to perform various manipulations on these icons such as select,

move and delete.

678

Figure 6: System Form

ttaa~: Sample ~

Svstem Matri~ : [1 2.1
-1 0.75]

lnnut M ~ x : [0
l]

Oumut Matri* : [1.1 0.1]

Sum 1 - yes
Sine2 *No

~ : [0
o]

l.nut T~e ~ II~ler

Output Type : volts

Thls is a =m~ple Iyltem form that repre=eats a diIcrete stile space
model. The model i* ~ o n d order with l input md I output.
The input is in dimmsions m/see while the output is in volts.

T h e f i na l architecture for the MSDI package is shown i n F i g u r e 7. Notice that this differs
f r o m most of the architectures used for existing CACSD packages. T h e O O D m e t h o d places

details of design method or simulation technique a t a m u c h l o w e r l eve l o f abstraction.

Figure 7: MSDI Architvcture

I Graphk E d i t ~ _ ~ t m l]

I

. i .

.~. ~.* ~ . .~2. ~. �9 .

They only become apparent as operations on the system diagram or components of the
system diagram . i.e. simulate the SD, design a controller for the SD, e t c . . This is as

it should be, as they are simply algorithmic procedures that operate on data passed to

them. These design methods, analysis methods, etc. are isolated into separate packages
and accessed as required. Adding a facility, say a new design method, is simple. Just add

a new procedure to the package and another option to the design menu and function name
to the commands.

6 7 9

4 U s e r I n t e r f a c e

Design of the user interface is perhaps the most difficult part in designing a CACE sys-

t e n I t requires a delicate balance among many alternatives and apparent ly conflicting

requirements. For example, an expert user usually prefers a terse comm~nd-driven mode

of interaction whereas a novice prefers menu-driven or a detailed question-and-answer

mode. In addition, a good user-interface should help turn a novice user into an expert

user in a relatively short time. The approach used for MSDI is to allow 2 modes of opera-

tion. The first a command-driven environment with control-based syntax, data-structures

and MSDI specific commands. The second, a menu-driven environment, using hierarchical

menus. To maintain flexibility, either environment can be called from the other by a single

command or key. The command mode is similar to the MATLAB interface, but support-

ing a more complete set of control oriented data types and removing some of MATI_AB's

language inconsistencies such as in polynomial/transfer function definition. An example of

how MATLAB defines transfer functions versus the MSDI form is shown for the t ransfer

function H(8) = '

The MATLAB definition is :

>sum- [0 1 0]
> dsnom - [I 2 -1]

while the MSDI form is much closer to the way it is written on paper:

> G(s) - {s} / {s^2 + 2"s^1 -i}

Other transfer/unction forms such as zero-pole-gain can also be entered directly. The in-

creased readability of this form ~s expected to overcome the increased number of keystrokes

needed to enter it. All mathematical operations are entered as close to their written form

as possible. Some examples are shown below:

Prod - A " x Matrix multiplication by a vector or rnaVix

Transpose - B' Matrix ~'anspose

O p e n L o o p = G " H Transfer function multiplication

The menu mode, implemented through what is called the graphic editor provides the same

functionality through point-and-click menus. The main screen in the MSDI prototype is

shown in Figure 8

Figure 8: MSDI Top-Level Menu
I ""^ " '1 " ' ' .ODsL

S P E C I P +

S e n s ~

I - - ~ ~-'
C =,uRl~__'l~anka I I ~ +,L- ,,,o~_~,,

DESIGN

I I~P I ,F2~NT

SAVE

RESTORE

ANALYSIS

SIMULATION

FREQ. RESP

P R I I ~

ATTRIBUTES

REPORT

CLEAR

b t e r no. o In t s for ~ c r o >>

I n t l l O|igL'Ul N&be >+ HOtOl: Ddve

680

The top-level menu allows the user to select the operation needed to be performed. The

available options, and what they do are:

Option Operation Performed

Model
Specify
Design
implement
Save
Restore

Analysis
Simulation
Freq. Response
Print
Attributes
Report
Clear

Enter modelling phase for the current system diagram.
Enter specification phase for the current system diagram.
Enter design phase for current system diagram.
Enter Implementation phase for current system diagram.
Save the current system diagram to a file.
Recall a current system diagram from a file.

Enter analysis phase for current system diagram.
Simulate current system diagram.
Compute frequency response of current system diagram.
Print a system diagram to a graphic printer.
Enter attributes setting menu to set system parameters.
Generate a design report.
Clear current system diagram to empty.

4.1 Modelling and Design

The prototype implementation allows schematic-capture of block diagrams of plants or

systems as the primary hierarchical method to describe models. The individual blocks can

be linear or non-linear built up using icon menus and defining the internal behaviour of

each block. All the MSDI atomic components defined in]:able 3 are implemented. Copying,

deleting, updating, combining of blocks, etc. is facilitated. The MSDI prototype allows

the capture of both the formal and "informal" (e.g. state accessibility) models of objects

and their constraints for direct use in design process through the system form. Model

transformation tools to support linearization, model reduction, frequency to state space

representations and vice versa and discretization, etc. are included in the prototype.

The design suite incorporates well-proven and numerically stable algorithms to support

design of linear, t ime-invariant , MIMO systems in both frequency and time domains. The

constraints of all design methods are built into the code to aid and warn the designer.
Facilities to include new methods on-line by building up c o m m a n d macros are available.

4.2 Specification and Verification

The specification component needs to support the building of the performance criteria tha t

a design needs to meet. To provide this functionality the MSDI prototype specification

component provides a set of"primary" indicaters/criteria of system performance (bandwidth

or pole locations, rise-time, max. overshoot, etc.) from which all other criteria can be

defined. The ability to add more to this pr imary set in a structured manner is avai lable ,

though it needs a lot more work to fine tune. A consistency checker identifies any conflicting

specifications that require trade-offs. I t is planned to add a "simulator" tha t allows the

specification entered to be graphically displayed in terms of its t ime and frequency domain

characteristics, The verification tools have been developed initially to run separately from

all other tools but ultimately will run in the background of a design session continuously

verifying actions in real-time. The current prototype has minimal verification tools (only

really a checker tha t verifies no simulation breached a specification condition). A lot more

research is needed to enhance these capabilities but as control engineering is currently a

681

well-defined body of knowledge it is believe that over the next few years the specification

/verification suite will approach the required level of capability.
4.3 Simulation

The simulation engine provided is designed to cover the needs of the designer at both the

behavioural and implementational levels. Continuous, discrete and hybrid simulation are

catered for. Both fast interactive mode of operation for initial design debugging and batch

mode of operation for detailed implementation simulation at lat ter stages of the design

process are provided. Both time domain and frequency response can be simulated. Facili-

ties to drive the simulation with deterministic and/or statistical stimuli are incorporated.

Simulation data can be examined and recorded by pointing at nodes of a schematic as well

as standard I/O recording. This can be used to dynamically collect data during a simulation

from various points of a system diagram, such as an actuator output or a s tate variable.

4.4 Implementation of Controllers

These facilities are designed to aid in the implementation phase of the design process. A

catalogue of hardware and sol, ware components are available for incorporation into an

implementation of a design. These components include details of their constraints and

limitations. This component library can be updated with new components (both hardware

and software) by the user. The prototype allows the user to define four types of hardware

types : microprocessor, A/D, D/A and PID controller. The parameters tha t the user can

define for these hardware components are shown in Table 5.

Table 5: Hardware Component Model Parameters

Hardware
Component Parameters

Microprocessor Wordlength, computation time for floating-point, fixed-point and integer operations, truncation method

A/D Conversion time, word-length, analog range
D/A Conversion time, word-length, analog range
PID Controller L, R and C

The software algorithms are direct implementations of the controllers designed. These

can be selected as optimised controller code for state feedback, state feedback with full or

reduced state estimation or a PID self-tuner. Alternatively they can be built up graphically

by the user to develop alternative controller strategies.

To analyse the effect of an implementation on the overall performance of the system sim-

ulation is used. This is called implementational simulation as the implementation, with

its finite arithmetic and wordlengths, and inherent conversion times, is driven by outputs

of the plant and desired settings. This is different from behavioural simulation where the

constant matrix is driven, in double precision arithmetic with delays to conversions and

computation time ignored.

Ada's ability to create new types made implementation simulation possible. The implemen-

tat ion simulation is based on converting a connection signal (which is a double precision

number) into the wordlength of the D/A, A/D and microprocessor. Fixed-point arithmetic

is the most widely used in practice because the high speeds tha t can be achieved compared

682

to floating point. The fixed point format supported in the prototype is the usual two's

complement representation. Here the decimal value of a number is:

r = 2-B [-bl-l.21-1+ l~Bobj.2"i] ,whcrebi~O, 1.

where bj, j= 0, ... , 1-2 represent the binary digits i.e. bits, bt_ 1 carries the sign information,

1 is the total wordlength, and B determines the location of the binary point.

To implement this fixed point type in the package, Ada's predefmed fixed-point type is used

declaring it to the range and absolute accuracy of the microprocessor. Then a representation

clause is used to ensure the declared type is exactly the size required. A representation

clause defines how a data type is mapped to the underlying machine. Example 2 illustrates

how this is accomplished.

Example 2: Simulating various wordlengths for Fixed Point arithmetic

No Bits : constant := 8; -- define no. of bits for

-- fixed-point type.

-- Define the max. and min. values in the range.
-- Note : Must account for sign-bit.

Min Value : constant := -2.0 ** (No Bits - 1

Hax~Value : constant := 2.0 ** (No,Bits - 1

range.

type Bit_type is delta 2.0 ** (- (No_Bits - i)

- I; -- Account for

-- nonsymmet ric

range Min_Value..Max Value;

-- Define the representation clause to ensure e~act No Bits used.

for Bit_type'small use (2.0 **(-(No_Bits - i));

This B i t T y p e may not be implemented in exactly the number of bits we define but the

compiler ensures that any arithmetic is scaled to use the absolute delta of ~vo-Bi~8-1. The

delta refers to the size of spacing between the model numbers of a fixed point type. Thus

any wordlength can be created as a new data type.

During simulation the continuous signal is converted by the A/D. I f saturation occurs (

i.e. continuous value outside defined range for the A/D) the m a ~ or min. of the A/Ds

analogue range is used. This simulates what would happen in a real piece of hardware. The

output of the A/D is the input converted to its fixed-point type. This quantizes the input as

happens in real hardware. The algorithm is executed using this input. T h e mathematics

of the algorithm are computed in the n~croprocessors wordlength. Then the output of the

controller algorithm is fed into the D/As which perform in a slr-~lar fashion to the A/Ds

but convert the fixed-point type to the continuous (i.e. double precision) type.

Computation delays are simulated by delaying outputting the result of the algorithm by

a certain time. This time is computed by the progrsmme as a sum of the delays in the

A/Ds, D/As and time spent performing computations in the algorithm. Overflow/underflow

condition handling can be user-defined. Obviously floating-point implementations can be

handled much easier.

683

5 Code G e n e r a t i o n

The prototype also supports the automatic generation of code for controller implemen-

tations. This code generation process first outputs a generic matrix package which will

support the mathematical operations required. Then the D/A and A/D driver progrsmmes

are written. These progrsrnrnes are entered by the user when he adds a A/D or D/A type

to the library. After this the control algorithm with the fixed-point or floating point type

is written output. The controller parameters are written into this procedure. This entire

file, written in Ada, can then be compiled using an Ada compiler. The package is tailored

to use XD-Ada, a package that can cross-compile to several target microprocessors.

This implementation support - both simulation and code generation - is seen as one of

the strong points of the prototype implementation. Using this method the implementation

effects on a controller's performance can be gauged. This is preferable to trying to analyt-

ically determlne the effects of round-off or using "hardware-in-the-loop" methods such as

used by Matrizz. Thus a "software breadboarding" of a controller can be carried out prior

to selecting, buying or building any hardware.

6 DESIGN EXAMPLES

The first plant model is a two-input and two output system. The model definition was

added in command-mode as follows :

> G l l (s) - { s - 1 } / ({ s + l } * { s + 2 } * l . 2 5)
> G 1 2 (s) - { s } / ({ s + l } * { s + 2 } * l . 2 5)
> G21(S) - { -6 }/({s+l}*{s+2}*l.25)
> G22(S) - { s-2 }/({s§)
>

> G(s) - [Gll(s) G12(s)
>> G21 (s) G22 (s)]

>

Some typical plots the package can generate such as primary indicators (i.e. the CVD

and SVD for frequency range of interest) and generalised nyquist diagram are shown in

Figure 9.

Figure 9: Design Example 1 : Primary Indlcators/Generallsed Nyqulst Diagram

,m, ,,,.. [,,+ J
, ; ! . ' o .+ ' . ' . . _ +] ~ , ~ _
. v m ~

-+:::; J . .
- + . o ~

*l.s, mml

t' "p ,~ lo

!++++[+ 2 ~:; ,.:,~

I d l l t t l d [t ~ (l i I 9) l , l l
~ " S t + t t o t (k l >> IN,I
hi. al. d r+i~l)) i l l

r 1 6 3

2 . 0 0

o . . - " . . . - - , ,
/ / o . ~

-o:- ~-.,-'_o.,,-UI6 ?/-,,. o.o,

The second example is based on the model developed in [81 The 7th order linear model of

bed one was used to demonstrate how to design a controller. The iconic representation of

the system diagram for this model is shown in Figure 10.

684

Figure 10: Design Example 2 : Reactor Diagram

: l a b a ~ wIIM~ : ~ad=l Md I = - mfA~lr slp~c l

, , �9 T ~ I r ~ l r

r

�9 ' i r

IATmUtqmlt

s.luQlull]l

A controller was design for the reactor model using the optimal control design facilities.
The controller was computed by defining Q and R for the cost function as follows :

> Q - diag([2.0 0.1 1.0 0.2 0.5 5.0 1.0])
> R - diag([5.0 1.0])

The designed feedback controller was given as :

K = [0.376684 0.53378 0.50994 0.15654 1.467645 -7.8578 9.636727
7.437257 0.34005 0.72053 0.68374 0.320174 0.2849 3.151921]

The step response for the compensated system is shown in Figure 11.

Figure 11: Design Example 2 : Step response of compensated plant

CE-13
0 . 0 6 " - O u t 3

0 . 0 3
O u t 1

0 . 0 1
i o I i t

1120 1160 2 ~ 0 0 ~ -'~:', " 0.40 0.80 T ; n ~ (s ~ . ~ [E + i]
-0.02 ,,

-0.04 ",

- 0 . 0 7 O u t ~1

7 Implementation Design Example

The last example of using the prototype is the design of a controller for a coupled-~n~
apparatus. The coupled-tAnk.~ apparatus is a laboratory experimental rig that captures

the basic characteristics of fluid level control problems [3]. The model for the plant was
derived using the identification facilities. A step was applied to the pump drive and 50

output measurements were made at 5 sec. intervals. The model identified was :

G(Z) ~ 1.946838E-2 z + 4.268818E-2

2

z -1.498736 z + 5.197121E-2

This model has poles at (0.9539167, 0.5448191299). This model was transformed into a
state space model. The representation of the system and response of the model to a unit

step response is shown in Figure 12.

685

Figure 12: Coupled-Tanks Representation and Open Loop Unit Step Response

s t ~ . o ~ ll.J.,~r 2

CF.*O J
3.00

~i. ,+,o

l . s o

1 . 2 0

o . e o

0 .oo
0 .20

-

0 . 6 0 0.00 0.*0 r+~ (l ~ .) CE*$;l

A controller was designed using pole placement. The desired poles were set to (0.6 +/- 0.2).
The controller state feedback matrix computed was :

K " [0.370287919734865 -0.I012640238418579]

The step response of the compensated closed loop plant is shown in Figure 13.

Figure 13: State Feedback Compensated Plant Step response

CE§

2 .00

0 .92

- 0 . 16

- 0 . 70

~o.._+ ~
+ + I ' 60 3 20 ' " + . 80 8 ,40 8 .00

) +4 I , T i m e (l l o c .) " s

Then an implementation was defined using a 12 bit D/A and a 8 bit A/D with the mi-

croprocessor being defined as 4 bit, 8 bit and 32 bit in turn. The simulation of these
implementations for a unit step response are shown in Figure 14.

The reason for the difference in performance between the three implementations was
caused by the different wordlengths used. Roundoff occurs both in the controller parame-
ters and for the calculations made during the test runs (and can be examined by the user).

The differences in the coefficients of the feedback gain matrix K is shown in Table 6. Notice
that the coei~icients have changed significantly for the 4 bit wordlength implementation.

I
1 . 0 0

Table 6: Coefficients In 4, 8 and 32 bit controllers
Wordlength K(1,1) K(1,2)

4 0,250 0.000
8 0.3671875 -0.093750
32 0.370267919734865 -0.1012640238418579

The roundoffin the feedback gain matrix is really pronounced in the 4 bit implementat io~

This together with the roundoffinvolved in the computations is the reason for the changed
performance. Based on this, a m;n;mum of an 8-bit wordlength microprocessor should be
used to implement this controller.

686

Figure 14: Simulation of 4, 8 and 32 bit based state-feedback controllers

CF.*0]

1 . 0 0

0 .72

0 .q4

0. |6

- 0 . 1 ~

- 0 . # 0
i/ 4.80 6.'10 8 .00 L.60 3.20 T ; ~ (s o ~ .) t ~ * 2 ~

4 Bit Wordlength

{:F.*O J
2 .00

t . q6

0 .92

o. ~8

- 0 . I 6

* 0 . ?0

~ - , :

* , ', ' 60 5 .~0 ~,80 6 40 8 .00
', ,* .' T ; ~ (s a c .) CK*2~

8 Bit Wordlength

I I F . t 0]

2 . 0 0

1 �9 ~ 6

0 . 9 2

0 .38

- 0 . 1 6

- 0 . ? 0

i '

', ~ * , I 60 $ 20 q .80 6 .~0 8 0 0

32 Bit Wordlength

The code generation facility in the prototype was used to produce an implementation of the
controllers and was run on the test apparatus using 4, 8 and 32 bit fix-point mathematics.

The actual response obtained was as predicated by the simulation of the implementations
[3]. The computation t ime for the coupled-tanl~.q example was not a factor. The sample
time of 5 sec. far exceeds the time to perform the simple calculations, even for the case of

output feedback. This facility would be useful where a very fast process such as a robot is
being investigated.

8 Conclusions and Future Research

A prototype package was presented that implemented am architecture to support the CACE

process model. This prototype concentrated on developing the system diagram object. A

control-based syntax was used for the input parser to allow the user enter data in a way as

close as possible to the way he would write it on paper. This prototype provided facilities for

the simulation of a controller's implementation and a code generation facility to increase

an engineer's productivity. This code generation facility relieves the engineer of the need
to write new code every time he wants to implement a controller. A few brief examples
illustrated the way the package could help in the various stages of the design process.

687

The prototype contains over 65,000 lines of Ada code and the relative sizes of its major
components are shown in Table 7.

Table 7: Relative Size of Major Components MSDI Prototype

Function Size

User-lntarface 34 %
Numerical Algorithms 26 %
Graphical Software 28 %
Symbolic Software 2%
Database / Error handling, Memory Management 10 %

The performance of the MSDI package needs to be judged on its impact on the overall
design cycle. This impact cannot be measured directly without a significant amount of
surveying and usage of the MSDI system. This measuring of performance, the enhancing
of the specification/verification facilities and the porting to X-windows are the next steps
in the package's development.

9 REFERENCES

1. Jamshidi, M. and Herget C.J., (Eds), "Computer-Aided Control Systems Engineering",
North Holland, 1985.

2. Denham, M., "Design Issues for CACSD Systems", Proc. of IEEE, Vol 72 No. 12, pp.
1714-1723, Dec. 1984.

3. Hickey, J., "An Integrated Environment for Computer-Aided Control Engineering",
M.Eng Thesis, DCU, Dublin, Ireland, 1989.

4. Hanselmann, H., "Implementation of Digital Controllers - A Survey", Automatica, Vol.
23, No. 1, pp. 7-32, 1987.

5. Munro, N-, "Ecstasy - A Control System CAD Environment!', Proc. of Control'88, Ox-
ford, UK, 1988.

6. Hickey, J., "Survey of Current CACSD Packages", Research Report CTRU8804, Control
Technology Research "Unit, Dublin City University, Jan. 1988.

7. Booch, G., "Software Engineering with Ada" , Benjamin/Cllmmlngs Publishing Com-
pany, 1986

S. Edmunds, J.M., "A Design Study using the Characteristic Locus Method", in Design of
Modern Control Systems, IEE Control Engineering Series 20, Peter Peregrinus Ltd.,
1982

