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This paper describes the development of a Computer-Aided Control Engineering package 

to support the complete design cycle. It briefly sumrnarises the ideal Control-Engineering 

process model used as the basis of defining the requirements of the package and sllmmaries 

the shortcomings of current state-of-the-art packages against it. Then it  describes the ar- 

chitecture designed and a prototype implementation called MSDI to support the design 

cycle for control systems encompassing modelling of the plant to be controlled, specifica- 
tion of the final objectives or performance, design of the required controllers and their  

implementation in hardware and sofLware. The advantages of using an object-oriented de- 

sign approach are discussed together with some of the software engineering aspects. Some 

aspects of the package are illustrated through test cases. 

1 INTRODUCTION 

Many software packages are currently available which assist in the design of control sys- 

tems. In general, the bulk of commercial packages address only the design/analysis com- 

ponent of the i~tal design cycle and can be classified as Computer-Aided Control System 

(CACSD) packages. A guide to many of the currently popular packages can be found in 

[1]. Packages that  support the complete engineering of a controller can be classified as 

computer-aided control engineering (CACE) packages. In an effort to develop a complete 

CACE package, first a control engineering process model was formulated by reviewing gen- 

eral design theory and applying the control domain constraints. The model refined from 
this process is shown in Figure 1 [3]. 

Figure 1: Control System Design Process Model 
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The design specification sets the criteria or objective of the control system design. I t  needs 

to be accurate and complete to allow the ul t imate design meet the desired requirements.  

This specification is generally non-static and changes during the design process as the 

designer understands the constraints and costs better. 

The model is the language or tool we use to discuss and evaluate various design options. 

This model takes many different forms from the rigorous mathematical  f ramework of state 

space theory and frequency domain t ransfer  functions to semi-formal s ta tements  about 

operation. I t  can be developed using identification techniques or from the underlying l a w s  

of nature. In practice, we usually only use one, i.e. the mathematical  framework, in 

formal discussions and decisions despite the fact tha t  an informal one also exists tha t  is 

just  as important  to the success of the design [2]. This informal model is usually handled 

conceptually by the designer as he performs his task and is usually closely related to the 

formal one but cannot be directly expressed in tha t  framework e.g accuracy and limitations 

of formal model. 

The synthesis/analysis/evaluation feedback loop in control system design is where the var- 

ious design strategies are evaluated to see their  effect on the model. This cycle requires 

the ability to reason about and manipulate the model, to decompose, recombine, extend, 

reduce, analyse and synthesize changes. Evaluation in control design is usually done 

through simulation. Thi.,; can be considered an analysis of performance. For this reasor,, 

the evaluation block can be combined into the analysis block as analysis of dynamic/static 

behaviour. 

The controller implementation consists of hardware and software combinations. Both have 

a significant impact on the design viability in such terms as speed and wordsize [4]. These 

constraints need to to be factored into the design process to ensure its ul t imate success. 

Production of design documentation is considered part  of the implementation. 

To be effective, the model for the CACE process needs to encompass model formulation, 

design specification, analysis and design methodologies and implementation. These com- 

ponents need to be accessed through a flexible and consistent user-interface. The ideal 

model developed for CACE is shown in Figure 2. 

Figure 2: CACE Process Model 
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This model is broken into two main sections, numerical algorithms and AI algorithms. This 

is to reduce the overall complexity as many  of the AI techniques tha t  will be required in the 
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various design phases of modelling, specification, etc. will be essentially the same. This 

structure will allow the incorporation of numerical software already available in an easy 

manner. The advances in computing hardware and compiler technology make optimising 

algorithms for max. speed less important than overall functionality and flexibility. 

The design-base represents a combination of both the usual database facilities plus AI fea- 

tures such as rule-bases, theorem-provers, e tc . .  All the information known on a design is 

incorporated here e.g., the models, design decisions, why they were taken, rules of practice, 

e tc . .  This allows a design's history to be reviewed and analysed plus gives direct support 

to the documentation facility that allows customised reports to be generated. 

Table 1: Requirements for a Modern CACE Package 

System 
Component Key Functions Major Attributes Needed 

User Interface Schematic Capture 
Dialogue Facility 
High-Level Graphics 
Macros 
Consistent 
Help Features 
Failure Response 

Block-Diagrams, SignaI-Rowgraphs, Performance graphs 
Expression-based Syntax, Matiab-like 
Windowing, Plotting functions 
Command Macros, procedures, model macros 
Structured language 
Online, expandable 
Clear error mes,~ages 

Modelling Construction 

Transformation 

Schematic, Control-type models e.g. State Space, Transfer Function; 
identification 
Discretization, State-Space <-> Transfer Function, Linaarize 

Specification Capture 
Validation 

Specification Language 
Multi-Level - Behavioural, Implementation Level 

Design SISO 
MIMO 
Simulation 
Non-Linear Techniques 
Analysis 

Pole Placement, PID, Optimal, Observer 
Pole Placement, Optimal, INA, Observer 
Time, Frequency Response 
Linearisation, Simulation, Describing Function 
Pole/Zeros, Stability, Sensitivity 

implementation Simulation Hardware Limitations - computation time, reduced precision, Software 
Code-Generation Controllers, Interlace Routines, Jacketing Routines 

Documentation Generation Design Decisions, Final Structure 

Database Facilities Control Data-Structures Real, Complex, Matrices, Transfer Functions, State Space systems 
Management Joumaliing, Modifying 
Intadaos to Foreign Code Data, Procedures 

Misc. Facilities Design Rule Checker 
Expert Assistant 

The major problems with existing packages are that they tend to be methodology focused 
(on a limited sub-set of the design cycle), provide inadequate data structures, the front- 
ends tend to be alphanumeric where the Engineer enters his already developed model so 
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the system can use it. Little support is usually given for developing the model, part icularly 

in the area of handling the "informal model". The controller is usually designed without 

reference to the the final implementation technology or consistency checks to validate de- 

sign assumptions and actions. Generally the documentation facilities are very poor with 

little recording of design decisions. Most of the currently used CACSD packages were de- 

signed around MATLAB and concepts that  prevailed at the early 1980s. Current  efforts, 

such as the ECSTASY and CES projects [5,6] are at tempting to overcome some of these 

disadvantages. An evaluation of some current packages against the CACE model are given 

in [6]. These shortcoming were felt to be significant enough to war ran t  the development 

of a new package which we have called MSDI. The prototype implementat ion has all the 

key functionality defined in Table 1. 

2 Software Engineering Issues 

The implementation language for the MSDI package needed to support  intensive I/O ac- 

tivity (alphanumeric plus graphical), intensive computational activity, database manipula-  

tion, Al paradigms formulation and large system development. Using the characteristics 

required of a CACE package and the principles of software engineering Fortran, Pascal, 

C, C++, Ada, Lisp and Prologue were evaluated for suitability for this project. Ada was 

selected as the language best suited to implement a modern CACE package. I t  neares t  

rival, C++, failed mainly in the area of readability and the availability of good compilers. 

Details of this evaluation are contained in [3]. 

The main advantage of Ada over other languages was its powerful implementat ion of mod- 

ern software concepts like strong typing, concurrence, modularity, maintainability, read- 

ability, operator overloading (the ability of of an operator such as +,- or * to have several 

alternative meanings at a given point in the program). Also as Ada was originally designed 

for embedded applications it was ideal to use to implement the designed controllers. 

The te rm package used latter describes an Ada programme unit  tha t  forms a collection 

of logically related entities providing resources to application progr~rnmes tha t  ,call it. In  

general a package implements a new data type and the operations tha t  can be applied 

to tha t  data type. An example would be a complex matrix data type which can have 

operations such as addition, subtraction and inversion. The package encapsulates (puts a 

wall around) these resources so that  the details of how an addition or inversion is performed 

can be separated from the use of the function. 

The controlled interface of Ada to other languages was very important  as most of the 

current  numerical software is written in Fortran (Eispack, Linpack, etc.). I t  would have 

been foolish to have to re-write these types of packages jus t  because of the adoption of a new 

language. Thus Fortran was used as a secondary language throughout the numerical par ts  

of the system where already implemented solutions to numeric problems were available. 

For graphical routine development, VAX GKS, a device independent graphic package, was 

used to ensure portability between computer systems and easy maintenance. VAX GKS was 

considered the lowest level of a graphical entity. Thus terminal  dependency was removed. 



672 

For AI routines, initially it was planned to use Prologue. But early in the project, two Ada 

packages were obtained, ALISP and EXPERT which forefilled the needs of AI routine de- 

velopment. ALISP was a generic package tha t  provided the necessary facilities to emulate 

the capabilities commonly used in AI but not directly supported in Ada. EXPERT provided 

the facilities to do backward inferencing on a rulebase. 

The design method used for software development was based on the object oriented method 
developed in [7]. The method basically consists of five steps : 

Identify the Objects and their Attributes This requires the identification of the major components of a problem space plus 
their role in our model. This in our case included user-intedaca, database, etc. 

Identify the Operations that affect each This requires the characterisation of the behaviour of the system or subcomponent 
Object and the operations each Object and its objects. The semantics of the object is established by determining the 
must initiate operations that may be meaningfully performed by the object or on the object. 

Also this requires the identification of any constraints on time and space that 
must be observed. 

Establish the Visibility of each object in The purpose of this step is to capture the topology of objects from our model of 
relation to each other the system. This requires defining what objects "see" and are  "seen" by a given 

object. 

Establish the Interface of each Object This defines what can be viewed inside a module and outside. This is where a 
module specification is produced in formal notation. For this formal notation the 
Ada language itself was used. as its specification/body concepts lends itself to 
this. 

Implement each Object This is the detailed coding of the body of an object. 

By using Ada to develop the CACE package much of the project management  facilities were 

already provided ( in APSE )+ The other tools used to develop the package were the VAXset 

tools ( Language Sensitive Editor, Debugger, Programme Code Analyser ) and XD-ADA 

from System Designers to cross-compile code for target  processors. 

3 MSDI A R C H I T E C T U R E  

Most current CACSD/CACE packages have been developed using a functional decomposi- 

tion method with a typical architecture like the one in Figure 3. Functional architectural 

design divides the CACE process into stages or functions seeking to modularize the system. 

A major problem seen with this method is tha t  it forces a concentration on the operations 

to be performed, such as definition of a model or perform a numerical calculation. 

Figure 3: MSDI Functional Architecture 
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This type of architecture tends towards m~ldug data global - instead of localising it where 

it  is used, thus making the system more resilient to change. Instead an object-orient 

approach was used to develop the MSDI architecture. 
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3.1 Object-Oriented Architectural Design 

The first  pas s  of object-oriented design (OOD) revea led  two ma in  objects, a complete system 
en t i ty  and a specification entity. A system en t i ty  defines the  cu r r en t  r ep re sen t a t i on  of  a 

design. I t  inc ludes  the  p lant ,  the  des igned control lers  and  the i r  implementa t ions .  This  

includes  bo th  the  formal  model  and  aspects  of  the  in fo rmal  model.  The  system en t i t i e s  

will  change over t ime as  we proceed th rough  the  des ign  process,  add ing  control lers  and  

defining the i r  implementa t ion .  The opera t ions  t h a t  affect a system en t i ty  and  those  t h a t  

i t  m u s t  in i t i a t e  a re  : 

a. Fo rmula t ion  - defini t ion and bui ld ing  of  a system model  f rom i t s  components  (i.e. m a i n l y  

the  defini t ion of the  plant) .  

b. Modification - addi t ion,  delet ion and changing  of components  of a system. 
c. Design - add i t ion  of control ler  components .  

d. I m p l e m e n t a t i o n  - addi t ion  of imp lemen ta t ions  of contro l ler  components .  

e. S imula t ion  - s imu la t ing  var ious  s tages  of t he  system, behav ioura l  and  f inal  imp lemen-  

tat ion.  

f. Ana lys i s  - S tab i l i ty  of a p lan t  model,  sensit ivi ty,  pole/zero locations,  etc. 

g. Verification - ver i fying t h a t  a system meets  a specification. 

h. Save/Res tora t ion  - saving  and recal l ing  of a system to/from a file. 

I. In i t i a l i sa t ion  - in i t ia l i s ing  a system to empty. 

The specification en t i t i es  opera t ions  a t t r i bu t e s  a re  : 

e. Fo rmu la t i on  - definit ion and bui ld ing  of specification entity.  

b. Modification - Addi t ion,  delet ion and  changing  pa r t s  of the  specification. 

c. Profil ing - genera t ion  of a specification profile, i.e. the  t ime  response  and  the  f requency 

response  envelops i t  specifies. 

d. Save]Restora t ion - saving/recal l ing a specification to/from a file. 

e. In i t i a l i sa t ion  - In i t i a l i s ing  specification to empty. 

As can be seen  the  system ent i ty  depends  on the  specif icat ion entity.  The specif icat ion 

en t i ty  could have  been  inc luded as p a r t  of the  sys tem ent i ty  defmit ion,  b u t  as  much  more  

re sea rch  t h a n  u n d e r t a k e n  to da te  is  needed  on the  specif icat ion side, i t  was  fel t  be t t e r  to 

encapsu la te  i t  on i ts  own for fu ture  modification.  

Table 2: Control Engineering Data Types 
Data Type Typical Uses 

Usually High Level Language Data Type : 
Integer, Real, Boolean, String 
Matrices : Real, Complex 
Polynomials 
Transfer Functions 
Transfer Function Matrix 
State-Space Representation 
Domains 
Trajectodse 
Table 
Non.Linear Descriptions 

Low tevel functions 

Analysis and design algorithms, model representations 
Dynamical equations 
SISO Model representations 
MIMO representations 
4-tuple representation of a dynamical model. 
One-dimensional structure used for range descriptions 
For time histories, signal and plot descriptions. 
Parsing action, Frequency response 
Non-linear model descriptions 
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As part of the object-oriented decomposition, data-types needed to support control system 

engineering were identified. The lack of adequate data structures, as already outlined, is 

one the most serious drawbacks of many control packages. Often the Complex Matrix is 

the only data-structure supported. The MSDI architecture supports the control oriented 

structures of Table 2. 

3.2 System Diagram 

The system entity is defined as a type called system diagram. The term system diagram is 

used to differentiate it from a block diagram which is usually used to refer to the definition 

of a model representation composed of transfer functions. The system diagram can be 

composed of many different components such as state space models, transfer functions, 

signal sources, and non-linear components. 

The system diagram is used to build up a user's model of a system from atomic components, 

composite components, structural interconnections and graphical attributes. An atomic 

component is an instance of a functional representation ( or model template ) that  can 

be given a set of input values and can compute a set of output values via an evaluation 

function (EvFn). This EvFn is an algorithmic definition of the behaviour of a component. 

An atomic component is devoid of any structural information and cannot be divided into 

any ,~maller element. Each atomic component can be thought of as a generic template 

for a model that can have its parameters filled in to define its particular behaviour. An 

example of an atomic component is a discrete state space model block which has its output 

computed algorithmically from: 

Xk+ 1 = ~.x k + T.u k (1) 

Yk = C'xk + D'uk (2) 

with u k being passed to the EvFn for a state space object. A particular instance of this 

atomic component would define the values of ~, T, C, D, initial state and sample interval. 

To achieve flexibility the MSDI architecture clearly delineates between the behavioural and 

structural aspects of models. It provides a uniform structural modelling framework which 

contains placeholders or templates for behavioural descriptions. The atomic components 

defined for MSDI and their algorithmic form of EvFn are shown in Table 3. 

A composite component is defined from a structured group of atomic components. Its EvFn 

is defined from the way the atomic components are structured. An example of such a 

composite component is two transfer functions in series. Normally, a composite component 

will not be so simple, as various outputs of an atomic component will feed into different 

component blocks. Some of these blocks may be non-llnear, such as a saturator, preventing 

computation of EvFn into a nice simple equation. Such composite components have their 

EvFn sectioned into an ordered list of atomic EvFns that  are sequentially computed, with 

individual outputs computed before they are needed for an input. 
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Table 3: MSDI Atomic Components and their Evaluation Functions 

Atomic Ob)ect Name Evaluation Function Comment 

Continuous State Space ~(t) = A.=(t) + B.=(t) 

y(t) = C.=(t) + D.=(t) 

Initial state and current 

state contained in model. 

Discrete State Space :~k,l = ~.xk + T.uk Initial state, current state and 

yk = C.r + D.uk sample interval contained in model. 

Continuous Transfer Function G(s) = Y(s)/U(s) 

Discrete Transfer Function G(z) = Y(z)/U(z) Sample time included. 

Gain y(t) - K.u(t) K is the gain constant. 

1 Summer y(t) = ~ , . j  Stgr~ u~(t) j - no. of inputs to summer. Sigr~ defines 
whether P input is added or subtracted 

Step Source y ( t )  - Magnitude 

Pulse Source 

Ramp Source 

Sine-wave Source 

Square-wave Source 

White Noise Source 

Colourad Noise Source 

General Wave Source 

Magnitude i f  t<Width ; 
y(t)= 0 i f t  >Width;  

y ( t )  = Rate.t 

y(t) = Amplitude. sln(27rft) f, frequency in Hz. 

y(t) = Amplitude.sigr=(sin~(2~rft)) f, frequency in Hz. 

y ( t )  - Magnitude.random(t) + Bias random(t) is a random no. between -1 and 1. 

y ( t )  - Magnitude.G( white noise ) G(.) represents a filter 

y ( t )  - Value(t); Taken from a file. 

Saturators [ t~k i f  Sa~,~,<uk<Satm,, ; Max. and Min. Limits 
yk = ~ Sat,,=== i f  uk > Sat,,,== ; 

Code Block y(t) - Fn(u(t) ) Fn defines a compiled subroutine 

Input Block y(t) - u(t) Defines an input connection to system diagram 

Output Block y(t) - u(t) Defines an output connection to system dis- 
gram 

The structural framework is where component interconnections are defined. These in- 

terconnections are made up by connecting input/output (I/O) ports of a component. This 

connection is represented as an abstraction of a signal conductor. A port is defined as an 

input (or sink node) or an output (or Source node). Output ports are considered the source 

of a signal on a connection path and define the value of the signal on the path. Only one 
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source port can drive any one connection path. Each path must terminate at a sink or input 

port. Therefore, such things as connecting an input-to-input or an output-to-output are not 

defined. From this, an atomic component is seen to be composed as show in Figure 4: 

Figure 4: Atomic Component Structure 

This template is used to define the data type of each of the atomic components. An example 

of this is shown in the definition of a state space model in Example 1. 

Example 1: State Space Model Representation 
type State Space_Atomic ( Domain : Time Domain := Continuous; 

No States : Natural := 0; 
No, Inputs : Natural := 0; 
No_Outputs : Natural := 0 ) is 

record 

State Space_Behaviour : State SpaceRep ( Domain, NoStates, No_Inputs, No_Outputs ); 
Inp_Connection : IO( i .. No_Inputs ); 
Out_Connection : IO ( I .. No_Outputs ); 

end record. 

where State Space Behaviour defines a State Space Representational type 
defined in equations (I) and (2). 

Based on these atomic components, looking at the design from a bottom-up view, several 

clear objects are seen to be required to support the MSDI system. Most of these data types 

map directly onto atomic components. Atomic components, as well as being used to compose 

a macro block (a composite component type), can be used to define other atomic components 

that depend on them. An example of this is a discrete state space model, derived from a 

continuous model, or an implementation of a controller derived from a controller model. 

The system needs to monitor and maintain these dependencies as illustrated in Figure 5. 

Figure 5: Dependency Structure 
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Table 4: Class of D e p e n d e n t  C o m p o n e n t s  

Atomic Component Parameter(s) 

State Space Sample time, transfer function model 
Transfer Function Sample time, state space model 
Controller Linear model ( i.e. state space, TF or macro ) 
Implementation Controller, hardware ( i.e. wordlength, multiplication speed ) 

To achieve this, the architecture defines a class of atomic components, that  can be instanced 

with a model parameter - similar to the idea of a generic package in Ada. This class of 

components is shown in Table 4. The difference between defining a state space model by (a) 

defining ~, T, C, D and sample time and (b) discretizing a continuous state space model is 

that  (a) sets up an independent state space type while (b) creates a dependent state space 

type which depends on the continuous model. To the user, (a) creates a new component and 

adds a new Icon to the terminal surface, while (b) creates a new component but does not add 

a new graphic representation or Icon to the terminal surface. If  this continuous model is 

deleted or changed, then the dependent discrete model is updated accordingly ( i.e. deleted 

or re-computed ). These dependencies are maintained to free the designer from tracking 

changes from one model into another, and to prevent errors from entering into a design 

from the failure to update a dependent model. To ease manipulations within the package, 

these dependencies are maintained both ways - i.e. parent-children and child-parent. 

From previous description, the system diagram (SD) is composed of components that  are 

interconnected together to model a plant or system. It  contains behavioural descriptions 

of the components, structural information on how they are interconnected and graphical 

data on how the model is pictorially presented to the user. Using the OOD approach, the 

SD was modelled as being represented by three entities : behaviour, connection and iconic. 

These are implemented through 3 separate packages called system form, connections and 

icon respectively. The system form package provides the capabilities to create, modify and 

delete behavioural representations. It solicits and presents this information as shown in 

Figure 6. This type of form allows concise and clear data entry and display. The connections 

package allows the user to select his I/O ports for connections and allows a connection to be 

drawn between them by the user. These connections, from a user view, can start  at either 

an input or output port, the line drawn through various points, and finally terminated at 

another port. The connections package checks the validity of the interconnection i.e. one 

input port on path and one output port. The icon package provides the graphical attributes 

facilities. It  allows a user to position the graphic representation or icon of a component 

on the display surface and to perform various manipulations on these icons such as select, 

move and delete. 
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Figure 6: System Form 

ttaa~: Sample ~ 

Svstem Matri~ : [ 1 2.1 
-1 0.75 ] 

lnnut M ~ x  : [ 0 
l ]  

Oumut Matri* : [ 1.1 0.1 ] 

Sum 1 - yes 
Sine2 *No 

~ : [ 0  
o ]  

l.nut T~e ~ II~ler 

Output Type : volts 

Thls is a =m~ple Iyltem form that repre=eats a diIcrete stile space 
model. The model i* ~ o n d  order with l input md I output. 
The input is in dimmsions m/see while the output is in volts. 

T h e  f i na l  architecture for the MSDI package is shown i n  F i g u r e  7. Notice that this differs 
f r o m  most of the architectures used for existing CACSD packages. T h e  O O D  m e t h o d  places 

details of design method or simulation technique a t  a m u c h  l o w e r  l eve l  o f  abstraction. 

Figure 7: MSDI Architvcture 
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They only become apparent as operations on the system diagram or components of  the 
system diagram . i.e. simulate the SD, design a controller for the SD, e t c . .  This is as 

it should be, as they are simply algorithmic procedures that operate on data passed to 

them. These design methods, analysis methods, etc. are isolated into separate packages 
and accessed as required. Adding a facility, say a new design method, is simple. Just  add 

a new procedure to the package and another option to the design menu and function name 
to the commands. 
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4 U s e r  I n t e r f a c e  

Design of the user interface is perhaps the most difficult part  in designing a CACE sys- 

t e n  I t  requires a delicate balance among many  alternatives and apparent ly conflicting 

requirements. For example, an expert user usually prefers a terse comm~nd-driven mode 

of interaction whereas a novice prefers menu-driven or a detailed question-and-answer 

mode. In addition, a good user-interface should help turn a novice user into an expert 

user in a relatively short time. The approach used for MSDI is to allow 2 modes of opera- 

tion. The first a command-driven environment with control-based syntax, data-structures 

and MSDI specific commands. The second, a menu-driven environment, using hierarchical 

menus. To maintain flexibility, either environment can be called from the other by a single 

command or key. The command mode is similar to the MATLAB interface, but  support- 

ing a more complete set of control oriented data types and removing some of MATI_AB's 

language inconsistencies such as in polynomial/transfer function definition. An example of 

how MATLAB defines transfer functions versus the MSDI form is shown for the t ransfer  

function H(8)  = ' 

The MATLAB definition is : 

>sum- [ 0 1 0 ] 
> dsnom - [ I 2 -1 ] 

while the MSDI form is much closer to the way it is written on paper: 

> G(s) - {s} / {s^2 + 2"s^1 -i} 

Other transfer/unction forms such as zero-pole-gain can also be entered directly. The in- 

creased readability of this form ~s expected to overcome the increased number of keystrokes 

needed to enter it. All mathematical operations are entered as close to their written form 

as possible. Some examples are shown below: 

Prod - A "  x Matrix multiplication by a vector or rnaVix 

Transpose - B' Matrix ~'anspose 

O p e n L o o p  = G " H Transfer function multiplication 

The menu mode, implemented through what  is called the graphic editor provides the same 

functionality through point-and-click menus. The main screen in the MSDI prototype is 

shown in Figure 8 

Figure 8: MSDI Top-Level Menu 
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The top-level menu allows the user to select the operation needed to be performed. The 

available options, and what they do are: 

Option Operation Performed 

Model 
Specify 
Design 
implement 
Save 
Restore 

Analysis 
Simulation 
Freq. Response 
Print 
Attributes 
Report 
Clear 

Enter modelling phase for the current system diagram. 
Enter specification phase for the current system diagram. 
Enter design phase for current system diagram. 
Enter Implementation phase for current system diagram. 
Save the current system diagram to a file. 
Recall a current system diagram from a file. 

Enter analysis phase for current system diagram. 
Simulate current system diagram. 
Compute frequency response of current system diagram. 
Print a system diagram to a graphic printer. 
Enter attributes setting menu to set system parameters. 
Generate a design report. 
Clear current system diagram to empty. 

4.1 Modelling and Design 

The prototype implementation allows schematic-capture of block diagrams of plants or 

systems as the primary hierarchical method to describe models. The individual blocks can 

be linear or non-linear built up using icon menus and defining the internal  behaviour of 

each block. All the MSDI atomic components defined in ]:able 3 are implemented. Copying, 

deleting, updating, combining of blocks, etc. is facilitated. The MSDI prototype allows 

the capture of both the formal and "informal" (e.g. state accessibility) models of objects 

and their constraints for direct use in design process through the system form. Model 

transformation tools to support linearization, model reduction, frequency to state space 

representations and vice versa and discretization, etc. are included in the prototype. 

The design suite incorporates well-proven and numerically stable algorithms to support 

design of linear, t ime-invariant ,  MIMO systems in both frequency and time domains. The 

constraints of all design methods are built into the code to aid and warn the designer. 
Facilities to include new methods on-line by building up c o m m a n d  macros  are available. 

4.2 Specification and Verification 

The specification component needs to support the building of the performance criteria tha t  

a design needs to meet. To provide this functionality the MSDI prototype specification 

component provides a set of"primary" indicaters/criteria of system performance (bandwidth 

or pole locations, rise-time, max. overshoot, etc. ) from which all other criteria can be 

defined. The ability to add more to this pr imary set in a structured manner  is avai lable ,  

though it needs a lot more work to fine tune. A consistency checker identifies any conflicting 

specifications that  require trade-offs. I t  is planned to add a "simulator" tha t  allows the 

specification entered to be graphically displayed in terms of its t ime and frequency domain 

characteristics, The verification tools have been developed initially to run  separately from 

all other tools but  ultimately will run in the background of a design session continuously 

verifying actions in real-time. The current prototype has minimal verification tools (only 

really a checker tha t  verifies no simulation breached a specification condition). A lot more 

research is needed to enhance these capabilities but  as control engineering is currently a 
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well-defined body of knowledge it is believe that  over the next few years the specification 

/verification suite will approach the required level of capability. 
4.3 Simulation 

The simulation engine provided is designed to cover the needs of the designer at  both the 

behavioural and implementational levels. Continuous, discrete and hybrid simulation are 

catered for. Both fast interactive mode of operation for initial design debugging and batch 

mode of operation for detailed implementation simulation at lat ter  stages of the design 

process are provided. Both time domain and frequency response can be simulated. Facili- 

ties to drive the simulation with deterministic and/or statistical stimuli are incorporated. 

Simulation data can be examined and recorded by pointing at  nodes of a schematic as well 

as standard I/O recording. This can be used to dynamically collect data during a simulation 

from various points of a system diagram, such as an actuator output or a s tate  variable. 

4.4 Implementation of Controllers 

These facilities are designed to aid in the implementation phase of the design process. A 

catalogue of hardware and sol, ware components are available for incorporation into an 

implementation of a design. These components include details of their  constraints and 

limitations. This component library can be updated with new components (both hardware 

and software) by the user. The prototype allows the user to define four types of hardware 

types : microprocessor, A/D, D/A and PID controller. The parameters  tha t  the user can 

define for these hardware components are shown in Table 5. 

Table 5: Hardware Component Model Parameters 

Hardware 
Component Parameters 

Microprocessor Wordlength, computation time for floating-point, fixed-point and integer operations, truncation method 

A/D Conversion time, word-length, analog range 
D/A Conversion time, word-length, analog range 
PID Controller L, R and C 

The software algorithms are direct implementations of the controllers designed. These 

can be selected as optimised controller code for state feedback, state feedback with full or 

reduced state estimation or a PID self-tuner. Alternatively they can be built  up graphically 

by the user to develop alternative controller strategies. 

To analyse the effect of an implementation on the overall performance of the system sim- 

ulation is used. This is called implementational simulation as the implementation, with 

its finite arithmetic and wordlengths, and inherent conversion times, is driven by outputs 

of the plant and desired settings. This is different from behavioural simulation where the 

constant matrix is driven, in double precision arithmetic with delays to conversions and 

computation time ignored. 

Ada's ability to create new types made implementation simulation possible. The implemen- 

tat ion simulation is based on converting a connection signal ( which is a double precision 

number  ) into the wordlength of the D/A, A/D and microprocessor. Fixed-point arithmetic 

is the most widely used in practice because the high speeds tha t  can be achieved compared 
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to floating point. The fixed point format supported in the prototype is the usual two's 

complement representation. Here the decimal value of a number  is: 

r = 2-B [-bl-l.21-1+ l~Bobj.2"i] ,whcrebi~O, 1. 

where bj, j= 0, ... , 1-2 represent the binary digits i.e. bits, bt_ 1 carries the sign information, 

1 is the total wordlength, and B determines the location of the binary point. 

To implement this fixed point type in the package, Ada's predefmed fixed-point type is used 

declaring it to the range and absolute accuracy of the microprocessor. Then a representation 

clause is used to ensure the declared type is exactly the size required. A representation 

clause defines how a data type is mapped to the underlying machine. Example 2 illustrates 

how this is accomplished. 

Example 2: Simulating various wordlengths for Fixed Point arithmetic 

No Bits : constant := 8; -- define no. of bits for 

-- fixed-point type. 

-- Define the max. and min. values in the range. 
-- Note : Must account for sign-bit. 

Min Value : constant := -2.0 ** ( No Bits - 1 

Hax~Value : constant := 2.0 ** ( No,Bits - 1 

range. 

type Bit_type is delta 2.0 ** ( - (No_Bits - i) 

- I; -- Account for 

-- nonsymmet ric 

range Min_Value..Max Value; 

-- Define the representation clause to ensure e~act No Bits used. 

for Bit_type'small use ( 2.0 **( -(No_Bits - i) ); 

This B i t T y p e  may not be implemented in exactly the number of bits we define but the 

compiler ensures that  any arithmetic is scaled to use the absolute delta of ~vo-Bi~8-1. The 

delta refers to the size of spacing between the model numbers of a fixed point type. Thus 

any wordlength can be created as a new data type. 

During simulation the continuous signal is converted by the A/D. I f  saturation occurs ( 

i.e. continuous value outside defined range for the A/D ) the m a ~  or min. of the A/Ds 

analogue range is used. This simulates what  would happen in a real piece of hardware. The 

output of the A/D is the input converted to its fixed-point type. This quantizes the input as 

happens in real hardware. The algorithm is executed using this input. T h e  mathematics 

of the algorithm are computed in the n~croprocessors wordlength. Then the output of the 

controller algorithm is fed into the D/As which perform in a slr-~lar fashion to the A/Ds 

but  convert the fixed-point type to the continuous ( i.e. double precision ) type. 

Computation delays are simulated by delaying outputting the result  of the algorithm by 

a certain time. This time is computed by the progrsmme as a sum of the delays in the 

A/Ds, D/As and time spent performing computations in the algorithm. Overflow/underflow 

condition handling can be user-defined. Obviously floating-point implementations can be 

handled much easier. 
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5 Code G e n e r a t i o n  

The prototype also supports the automatic generation of code for controller implemen- 

tations. This code generation process first outputs a generic matrix package which will 

support the mathematical operations required. Then the D/A and A/D driver progrsmmes 

are written. These progrsrnrnes are entered by the user when he adds a A/D or D/A type 

to the library. After this the control algorithm with the fixed-point or floating point type 

is written output. The controller parameters are written into this procedure. This entire 

file, written in Ada, can then be compiled using an Ada compiler. The package is tailored 

to use XD-Ada, a package that  can cross-compile to several target microprocessors. 

This implementation support - both simulation and code generation - is seen as one of 

the strong points of the prototype implementation. Using this method the implementation 

effects on a controller's performance can be gauged. This is preferable to trying to analyt- 

ically determlne the effects of round-off or using "hardware-in-the-loop" methods such as 

used by Matrizz. Thus a "software breadboarding" of a controller can be carried out prior 

to selecting, buying or building any hardware. 

6 DESIGN EXAMPLES 

The first plant model is a two-input and two output system. The model definition was 

added in command-mode as follows : 

> G l l ( s )  - { s - 1  } / (  { s + l } * { s + 2 } * l . 2 5  ) 
> G 1 2 ( s )  - { s } / (  { s + l } * { s + 2 } * l . 2 5  ) 
> G21(S) - { -6 }/( {s+l}*{s+2}*l.25 ) 
> G22(S) - { s-2 }/( {s§ ) 
> 

> G(s) - [ Gll(s) G12(s) 
>> G21 (s) G22 (s) ] 

> 

Some typical plots the package can generate such as primary indicators (i.e. the CVD 

and SVD for frequency range of interest) and generalised nyquist diagram are shown in 

Figure 9. 

Figure 9: Design Example 1 : Primary Indlcators/Generallsed Nyqulst Diagram 
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The second example is based on the model developed in [81 The 7th order linear model of 

bed one was used to demonstrate how to design a controller. The iconic representation of 

the system diagram for this model is shown in Figure 10. 
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Figure 10: Design Example 2 : Reactor Diagram 
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A controller was design for the reactor model using the optimal control design facilities. 
The controller was computed by defining Q and R for the cost function as follows : 

> Q - diag( [ 2.0 0.1 1.0 0.2 0.5 5.0 1.0 ] ) 
> R - diag( [ 5.0 1.0 ] ) 

The designed feedback controller was given as : 

K = [ 0.376684 0.53378 0.50994 0.15654 1.467645 -7.8578 9.636727 
7.437257 0.34005 0.72053 0.68374 0.320174 0.2849 3.151921 ] 

The step response for the compensated system is shown in Figure 11. 

Figure 11: Design Example 2 : Step response of compensated plant 
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7 Implementation Design Example 

The last example of using the prototype is the design of a controller for a coupled-~n~ 
apparatus. The coupled-tAnk.~ apparatus is a laboratory experimental rig that captures 

the basic characteristics of fluid level control problems [3]. The model for the plant was  
derived using the identification facilities. A step was applied to the pump drive and 50 

output measurements were made at 5 sec. intervals. The model identified was  : 

G(Z) ~ 1.946838E-2 z + 4.268818E-2 

2 

z -1.498736 z + 5.197121E-2 

This model has poles at ( 0.9539167, 0.5448191299 ). This model was transformed into a 
state space model. The representation of the system and response of the model to a unit  

step response is shown in Figure 12. 
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Figure 12: Coupled-Tanks Representation and Open Loop Unit Step Response 
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A controller was designed using pole placement. The desired poles were set  to (0.6 +/- 0.2). 
The controller state feedback matrix computed was : 

K " [ 0.370287919734865 -0.I012640238418579 ] 

The step response of the compensated closed loop plant is shown in Figure 13. 

Figure 13: State Feedback Compensated Plant Step response 
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Then an implementation was defined using a 12 bit D/A and a 8 bit A/D with the mi- 

croprocessor being defined as 4 bit, 8 bit and 32 bit in turn. The simulation of these 
implementations for a unit  step response are shown in Figure 14. 

The reason for the difference in performance between the three implementations was 
caused by the different wordlengths used. Roundoff occurs both in the controller parame- 
ters and for the calculations made during the test  runs (and can be examined by the user). 

The differences in the coefficients of the feedback gain matrix K is shown in Table 6. Notice 
that the coei~icients have changed significantly for the 4 bit wordlength implementation. 

I 
1 . 0 0  

Table 6: Coefficients In 4, 8 and 32 bit controllers 
Wordlength K(1,1) K(1,2) 

4 0,250 0.000 
8 0.3671875 -0.093750 
32 0.370267919734865 -0.1012640238418579 

The roundoffin the feedback gain matrix is really pronounced in the 4 bit implementat io~ 

This together with the roundoffinvolved in the computations is the reason for the changed 
performance. Based on this, a m;n;mum of an 8-bit wordlength microprocessor should be 
used to implement this controller. 
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Figure 14: Simulation of 4, 8 and 32 bit based state-feedback controllers 
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The code generation facility in the prototype was used to produce an implementation of  the 
controllers and was  run on the test apparatus using 4, 8 and 32 bit fix-point mathematics.  

The actual response obtained was as predicated by the simulation of the implementations 
[3]. The computation t ime for the coupled-tanl~.q example was not a factor. The sample 
time of 5 sec. far exceeds the time to perform the simple calculations, even for the case of 

output feedback. This facility would be useful where a very fast process such as a robot is 
being investigated. 

8 Conclusions and Future Research 

A prototype package was presented that implemented am architecture to support the CACE 

process model. This prototype concentrated on developing the system diagram object. A 

control-based syntax was used for the input parser to allow the user enter data in a way  as 

close as possible to the way he would write it on paper. This prototype provided facilities for 

the simulation of a controller's implementation and a code generation facility to increase 

an engineer's productivity. This code generation facility relieves the engineer of the need 
to write new code every time he wants to implement a controller. A few brief examples 
illustrated the way the package could help in the various stages of  the design process. 
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The prototype contains over 65,000 lines of Ada code and the relative sizes of its major 
components are shown in Table 7. 

Table 7: Relative Size of Major Components MSDI Prototype 

Function Size 

User-lntarface 34 % 
Numerical Algorithms 26 % 
Graphical Software 28 % 
Symbolic Software 2% 
Database / Error handling, Memory Management 10 % 

The performance of the MSDI package needs to be judged on its impact on the overall 
design cycle. This impact cannot be measured directly without a significant amount of 
surveying and usage of the MSDI system. This measuring of performance, the enhancing 
of the specification/verification facilities and the porting to X-windows are the next steps 
in the package's development. 
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