
Temporal Analysis of T ime Bounded Digital
Systems

Alan R. Martello and Steven P. Levitan

University of Pittsburgh, Department of Electrical Engineering, Pittsburgh, PA 15261

Abs t rac t . To perform verification of digital systems with time bounded
delays, it is essential to characterize the space of all possible system be-
haviors. In this paper, we describe our analysis technique which accepts
a behavioral specification of the timing of a digital system and generates
the set of all possible behaviors for the system. The ability to represent
and reason about time ranges for events is a distinguishing characteris-
tic of our technique and gives our analysis method both its power and
complexity.

1 Introduction

Our research focuses on the analysis of digital system descriptions which include
time bounded delays. This analysis is part of the problem of verification: given
behavioral specifications of a system, check that no possible behavior of the
system would violate any requirement constraints imposed on the system. The
requirements may come either from the designer or from the needs of the com-
ponents (e.g., setup and hold constraints) which make up the system. In general,
our model of digital systems with time bounded delays allows for the specifica-
tion of digital systems, the generation of all possible system behaviors given this
specification and an initial system state, and the analysis of the resulting system
behaviors.

In this paper we focus on the key part of this analysis, the generation of all
possible system behaviors from a system specification. We are primarily con-
cerned with the temporal behavior of digital systems, not their function. We are
only concerned with "data values" to the extent that one signal could enable or
disable the occurrence of an event on another signal in the system.

Attempts to reason about digital systems have been ongoing[i-3]. Various
methods for modeling systems with time delay have been proposed and for-
mal verification methods investigated[4-7]. Methods based on simulation have
also been used to verify circuits[8,9]. Other recent work has taken a symbolic
approach to a t tempt to reason about circuits[10,11] and our earlier work[12,
13] investigated a more simplistic verification technique upon which this work is
based. Recent work in asynchronous verification [14] performs an analysis similar
to our search process and also depends on the need to perform bifurcations (or
splits) as system behaviors are generated.

28

2 O v e r v i e w ~z E x a m p l e

To provide an overview of our analysis technique, we present an example of an
RS latch constructed from two nor gates, each with gate delay in the range 1 to 3
(Fig. l(a)), and with the system behavioral specification shown in Fig. l(b). The
RS latch starts with R, S, and Q low and with QBAR high. A rising transition
occurs on S at t = 0. Figure l(c) illustrates the timing waveform for this input
transition of the latch.

S ~ ~ I ~ QBAR

R ~ I Q

R T when -~QBAR ~ Q.t (1,3)
R]. when -~QBAR ~ qT (1,3)
QBARI when ~R ~ Q]. (1,3)
QBAR,J. when "-,R --+ QT (1,3)
QT when RVQBAR

Q~ when RVQBAR (1,1)
Q~ when -~RA-~QBAR --+

QT when -~RA~QBAR (I,i)
St" when ~Q --~ QBAR]. (1,3)
S.J. when -~Q --* QBARI" (1,3)
QT when -~S --* QBAR~ (1,3)
Q~ when -~S --* QBART (1,3)
QBART when SVQ --~

QBARI when SVQ (1,1)
QBAR~ when -~SA-~Q --~

QBART when --~SA'-~Q (i , i)
(a) (b) (c)

, ~ , R
, , . , . , ~

S i ~ i ~

QBAR i i i

Fig. 1. RS Latch (a), behavioral description (causalities) (b), and timing waveform (c)

If we were doing verification of the latch, we would be checking this wave-
form against a system requirement like "Q must rise within 5 of S rising." This
requirement may be imposed by other modules in the system or by external con-
straints on the system. In order to perform verification, all system requirements
are compared with all system behaviors generated, to verify proper system op-
eration. The most difficult part of this verification process is the generation of
all possible system behaviors.

In order to generate all possible system behaviors for digital systems with
time bounded delays, we must enumerate (or search) the space of all possible
interactions among signals which often have mutual interdependencies on their
transitions. The search space is bounded by identifying system states which
have previously occurred, effectively handling cycles and reconvergent behaviors.
Conversely, the size of the search space grows based on the interaction among
signals and the time ranges associated with their interdependent transitions.

As an example of such a search space explosion, we revisit the RS latch previ-
ously shown. The gates which comprise the latch in this example have gate delays

29

of 1 to 3 and both inputs fall from the "illegal input state" at t = 0. The four
behaviors shown in Fig. 2 are representative of the 26 behaviors resulting from
our analysis of 128 system states (taking 16.90 cpu seconds on a Sparcstation 2).
The many behaviors explored are caused by the splitting or bifurcation of nodes
in the search space of possible behaviors. From one starting state and initial
transitions of R and S the search space grows, caused by alternative interactions
based on system state and dissection of the time ranges.

S ! ! ! ! ! ! ! ! ! ! !

Q i i l i Q
Q B A : . , . Q B A

0 1 2 3 4 5 0 1 2 3 4

Q i :ill
Q B A Q B A

Fig. 2. Sampling of system behaviors if both S and R fall at t = 0

Our research shows that a useful model for the analysis and verification
of digital systems must include both time ranges and signal interaction based
on system state. The interaction of these two elements implies bifurcation and
growth of the space of system behaviors which must be explored in this analysis.
The next section provides a formal description of our specification and analysis
technique followed by an overview of the algorithm developed to perform this
analysis}

3 B a c k g r o u n d &: D e f i n i t i o n s

For our analysis we define a system as a collection of components and the signals
which interconnect them. To characterize the behavior of the system we define
the system specification in terms of the events which occur on the signals of the
system. In this work, the analysis process is dependent on an underlying assump-
tion that the system is completely specified (i.e., all information regarding the
system is known). This assumption is necessary and sufficient for the generation
of all possible system behaviors. It is necessary since permitt ing the possibility

1 The complete algorithm is fully specified in [15].

30

of unknown information in the system effecting its operation may result in the
generation of system behaviors which cannot occur or the absence of system
behaviors which can occur.

A partially specified system is one where not all information is known about
how all signals in the system interact. Taken to an extreme, this implies that
signals may change values in an undetermined manner, at any time, precluding
the possibility of generating all possible system behaviors. The assumption that
the system is fully specified is sufficient for the generation of all possible system
behaviors. If all information is known about the system, then by definition no
unanticipated action can occur in the system which affects the generation of
possible system behaviors, within the scope of the model used.

We capture the specification as a set of causalities, each describing under
what circumstances an event on one signal "causes" an event on another signal
in the system. Informally causalities are of the form: "clock rising when D is high
causes Q to go high after 10-20ns when reset is low." More formally we describe
the temporal specification of the system using the following definitions.

D e f i n i t i o n 1. The specification of the system is the set of all causal relationships
among the signals of the system: C = {c I c = (~1, ~ , ~)}; i.e. the set of causalities
are the rules by which an event on one signal causes an event on another signal.

D e f i n i t i o n 2 . A causality, c =. (c1,~2,8c) where ~1 and r are two guarded
events and 8c - (ac, tic) is a time range.

For a given causality, the second event, E2, is specified to occur within 8c
relative to the first event, ~1. The time range ~c must contain two positive values.

A causality reflects a characteristic of the system being verified; it specifies
that if ~1 is enabled, e2 will occur provided it is also enabled within the t ime
range $c after el-

D e f i n i t i o n 3 . A guarded event, ~ = (s, e, w), is an event, e, on a signal, s, and
an enabling expression, w, which identifies when the event is enabled. A guarded
event is enabled at some time t if the enabling expression evaluates to true at
time t - 1.

D e f i n i t i o n 4 . A time range, 6, specifies a time window for events where 8 -=-
(min, max) and rain < max.

Time is treated as a discrete quantity measured in an integral number of
arbitrary time units. Time ranges are specified relative to some time, t. The fact
that t ime is not continuous is not a strong constraint since the unit by which time
is interpreted can be made arbitrarily small, approaching a closer approximation
of continuous time, if needed.

D e f i n i t i o n 5 . A signal, s, is an information channel which is used to intercon-
nect modules. Signals may connect multiple modules or a module to itself. The
set of all values any signal may have is {high, low} = {true, false} - {1, 0}.

31

A signal is a physical entity (e.g., a wire) or a virtual identifier (e.g., a vari-
able) which can have two values, high and low.

D e f i n i t i o n 6. An event, e, is a rising or falling transition of a signal which occurs
instantaneously.

There is no rise time or fall time associated with events, however, events
themselves can occur at any point within a time range. This time range may have
a zero width in which case the event occurs at a specific time. The transition of
s from high to low is called the event s falling (s~) and the transition of signal
s from low to high is the event s rising (sT).

D e f i n i t i o n 7. An enabling expression (also referred to as a when clause), w, is a
(possibly null) set of conjunctive (i.e., logical "and") expressions of signal names.

D e f i n i t i o n 8 . A causal graph is an augmented signal transition graph (STG)
where the nodes are events and the directed arcs are the causalities (causal
relationships between events). The graph is augmented such that the arcs contain
the two enabling expressions, wl and w2, and the time range, df specified by the
causality. Multiple arcs may exist between any two nodes in the graph.

With the causal graph and a set of initial conditions, it is possible to construct
a system history graph which describes all possible behaviors of the system. The
algorithm for the construction of the history is given in the next section. Once
a history graph is generated, it is possible to traverse the graph to generate a
visual representation (timing diagram) of each system history.

D e f i n i t i o n 9 . A system history graph, 7/, is a directed graph which describes
all possible behaviors from an initial state. Each node in the history graph is a
dynamic state, 7), and the arcs specify a temporal ordering of the states.

D e f i n i t i o n 10. A dynamic state of the system is 7) ==. (S, 7 9, t, So, "Po, (ds-flags))
where S is the static state of the system, 7) is the set of pending transitions, So
is the initial static state when 7) is created, 7)o is the initial dynamic state
when 7) is created, t is the time of the earliest occurring transition in 7)0, and
(ds-flags) - (ProcessedFlag) is used in the construction of 7/. We say that t
is the time at which 7) occurs.

The dynamic state holds all the information about the state of the system.
Therefore, given any dynamic state (and the causal graph), all possible behaviors
evolving from that state can be determined.

For any two dynamic states, 7)i and Dj, we define 7)i = Dj if 8o:i = 8o:j
and :P0:i "- :P0:j. Tha t is, these two states are equivalent such that the entire set
of derivable system behaviors which can evolve from each of them is identical.
Note that for all transitions in a dynamic state, all times are relative to t for
that state.

The history graph is complete when Vi, all successors (children) to 7)i already
appear in the graph or there are no successors to 7)i. We call such a node a
terminal node. The predecessor o f /) / , called 7)i's parent, is identified as :D R.

The history graph has the following properties.

32

- There is a single starting dynamic state, :Do; this is the only node with no
parent.

- vi # j, :D~ # :Dj.
- vi # 0, t~ < ti.

D e f i n i t i o n l l . The static state of the system, S, is the last transition for all
signals in the system relative to t, the time of the dynamic state: S =-_ {l(si) I
Vsignals, si }. The static system state is a snapshot of the most recent transition
for every signal in the system relative to t.

De f in i t i on12 . A signal transition, r, is a tuple (r 8, 80, ~/, ~c, (st-flags)) where
r is a guarded event, 8 ~ (a,fl) is the current time range for the transition,
80 - (c~0, fl0) is the initial time range for the transition, 71 is a unique serial
number for the transition, 7/c is the serial number for the transition which caused
this transition, and (st-flags) - (TryFalseFlag, DidOccurFlag) are used in
processing the transition.

D e f i n i t i o n l 3 . A pending signal transition, p, is a signal transition with a > 0

which may occur in the future.

Pending transitions are created which match the right hand side of a causality
when an enabled transition occurs which matches the event specified by the left
hand side of a causality. The set of all pending transitions in the system for a
particular dynamic state, :D, is 7 9.

D e f i n i t i o n l 4 . The last transition for a signal, l(s), relative to t is a signal
transition 7" such that fl < 0 and/3 is a maximum relative to t.

D e f i n i t i o n l 5 . A system history is defined as any path through the completed
system history graph from the starting node, Do to a terminal node.

4 A l g o r i t h m

The behavior of the system is completely specified by the history graph, 7-/.
The construction of the history graph from the causal graph begins with the
specification of an initial state, :Do. Given this initial state, the main processing
loop of the algorithm simply chooses any node in the graph which has not yet
been processed and processes that node.

Pending transitions in the current dynamic state are processed by first test-
ing if the transition is enabled, moving enabled transitions to the static state,
and possibly creating a a bifurcation in the history graph. A bifurcation is a
splitting of a dynamic state, :D, in the system history graph into two separate
dynamic states. The composition (or union) of the two dynamic states is equiva-
lent to the original dynamic state. The split is necessary to disambiguate possible
system history alternatives. The procedure specified by ProcessNode shown in
Fig. 3 handles the processing of a given history node, :D, which has not yet been
processed.

33

1 ProcessNode(D) {
2 foreaeh p E 7 ~ s.t. ~ = 0 {
3 if (TransitionOccurred?(p, ~)) { ProcessCausalities(p, D) }
4 o~, *-- 1
5 RemoveTransitionlfApplicable(p, 79) }
6 # check if done processing, i.e. 2) has no pending transitions
7 i f (P = 0) { r e t u r n }
8 # create the new node by copying the parent
9 Vnew ~ (S, 7 ~, t, S, V, (false))

10 # find the time offset between the new node and its parent
11 tDelta ~-- min(~ E P)
12 # set the new time for the new node
13 tnew ~-" tDelta + t
14 # adjust all times in l)n,w to be relative to tnew rather than t
15 foreaeh a, fl E Snew,79n,~,,So 7~0 subtract tDelta
16 # make sure a node the same as 2),~,, doesn't already exist
17 if (3l)i E 7t s . t . Di = :D,,,w) {
18 point :D to :Pi, destroy /3 r e tu rn }
19 else { point :D to :D r e tu rn } }

Fig. 3. Procedure to process a dynamic history node

First, all pending transitions which might occur at t (i.e., c~ = 0) are processed
(line 2). If the pending transition occurred, causalities which are enabled by the
transition are processed, possibly creating additional pending transitions (line
3). If a particular transition occurs, the causality graph is checked for all new
transitions which may be caused by this transition and the new transitions are
added to 7). Finally, all pending transitions processed are removed from 79 if
they can no longer occur (i.e., fl = 0) (line 5).

Next, the node is checked for pending transitions. If no pending transitions
are present, then no further processing need be performed o n /) (line 7). I f /) has
pending events, then a successor (child node) to 7) is created by copying S into
both S,~ew and SO:nero and copying 7) into both 79new and 790:new (line 9). The
initial copies are saved in S0:new and 790:,~ew to permit backtracking or rollback
of time to a previous state during history bifurcation. Next, the time of/)new is
determined by taking the minimum starting time for all pending events in/)new
and all times in/)new are adjusted to be relative to tnew (lines 11-15).

A check is then made to see if/)new is equivalent to a node which already
exists in the graph, /)i (i.e. if So and 790 of the two history nodes match). If
/)new is equivalent to /) i , then no new histories would be generated by processing
/)new, therefore/)new is destroyed and 7:) is pointed to /) i (line 18). If 1)new does
not match some other node,/)i: in the graph, then processing continues, linking
/),~ew into the history graph by pointing 79 to/)new (line 19).

T h e procedure TransitionOccurred? seen in Fig. 4 and Fig. 5 handles the
processing of a given transition, p E 79. First, a check is made to see if all signals
used in wp are defined. For each signal that is unknown, a bifurcation occurs

34

process a single transition pending now, p
1 TransitionOccurred?(p,/~) {
2 # check if all signals used in enabling expressions are defined
3 if ((SigLis t ~ReturnListOfUndefinedSignals(wp,:D))r null) {
4 SplitUndefinedEnablingSignals(p, SigList , l)) }
5 # only process p if it is enabled now (at t)
6 if (not Enablediow?(wp, ~/p, :D)) {
7 # try the false case as long as p did not cause its own
8 # enabling expression to become false
9 if (not TransitionCausedEnablingChange?(p, :D)) {

10 (TryFalseFlag) *- (true) }
11 # not enabled =~ no additional processing for p
12 r e tu rn false }
13 if (3pi E P s.t. api =0Af lp~f lp iA Pi is enabled A p ~ p i A s p = s p l) {
14 # split since both p and pi can occur
15 SphtOtherChangesPendingNow(p,/)) }
16 # check for another enabled transition, pi, pending now
17 # (a = 0) with direction opposite of p (T vs. Jr)
18 if (3pi 6 ~P s.t. otpi -~ 0 A pi is enabled Asp = sp, A ep # epi) {
19 # both p and Pi can occur, try the false case later
20 (TryFalseFlag) = (true) }

Fig. 4. Procedure to process a single transition - part 1

for the signal to take on a high and low value (lines 3-4). Next, the enabling
expression in p is checked to see if the event is enabled at t (line 6).

If p is not enabled, then a flag is set indicating that a bifurcation may be
necessary when p is removed from 79 (i.e., when fl = 0) and the processing o f p
is complete at t (line 12). If p can occur, then a test is made to see if another
transition is pending in 79, on the same signal s, of the same event event type as
e, which can occur now (a = 0) and is enabled (line 13). If all these conditions
are true, then a bifurcation in 7/occurs (line 15).

In Transit ionOccurred?, the next step is to check if another transition pending
now on p, is enabled, and is opposite to e (i.e., rising vs. falling) (line 18). If
such a transition is pending, then a flag is set in p indicating that a bifurcation
is necessary when p is removed from 79 (line 20). After this processing (after line
20), the dynamic state is updated to reflect the occurrence of p.

In the next part of T r a n s i t i o n O c c u r r e d ? shown in Fig. 5, if the transition
on sp in the static state, Tlast, has the same serial number, r I as p in the dynamic
state, then the current transition is the same as the past transition (line 24).
In this case, the ending time of the transition is simply updated in rlast if sp is
not used in any enabling expressions in 790 (line 33). If sp is used in an enabling
expression in 790, then a bifurcation is necessary to guarantee that the value of
sp is stable at the time used, t - 1 (line 29).

I fp does not match the past transition in S, there are two cases. The first case
is that p was already processed and some other intervening transition occurred
on p (line 37). If this first case is true and the the past transition on s and the

35

21 # f ind the previous transition in the static state S
22 "rlast #-- l (sp)

23 # check i f p is a continuation (elongates} r,~,t
24 if (ep = erz.,, A ~/p = ~lrt.,, A j3r~.,, = - -1) {
25 # the current transition is the same as the last transition,
26 # a split is needed if sp is used in any enabling expression
27 # in a pending transition in 7~o
28 if (SignalUsedInEnabfingExpressione(p, D)) {
29 Split SignalUsedInEnablingExpression(p, :D)
30 r e t u r n false }
31 else {
32 # elongate r,~st by one t ime unit
33 13~t.,~ *-- 13n~,t + 1
34 r e t u r n t rue } }
35 else {
36 # p is not a simple elongation of rtast
37 i f ((DidOccurFlag) = (true)) {
38 # try the false case if p and rta,t aren't directly related,
39 # i.e. if rt~st didn't cause p A p didn't cause r,~,t
40 if (not MutualCauseZ(rl~, t ,p ,D)) {
41 (TryFal seFlag) *- (true) }
42 # part of p already occurred, ignore p for now
43 r e t u r n false }
44 else {
45 # p did not previously occur, add the new transition
46 (DidOccur Flag) *-- (true)
47 peop~ *-- copy of p
48 apoop~ ~-- flp~o~y ~-- 0
49 r ~ l(sp) and replace r E S with pcopy
50 r e t u r n t rue }) }

Fig. 5. Procedure to process a single transition - part 2

pending transit ion on s, p, do not have a direct causal relationship, then set the
flag indicating a bifurcation is necessary when p is removed from T ~ (line 41).

The second case handled is if p did not previously occur, then the leading
edge of the pending transition is peeled from p and the last transit ion in S is
replaced by a new transition specified by the leading edge of p (lines 46-50).

The routine P r o c e s s C a u s a l i t i e s shown in Fig. 6 is executed only if p oc-
curred at t. In this case, all causalities which have p as their left hand side are
evaluated. For each such causality, the enabling expression is tested and each
causality with a true enabling expression on its left hand side has the transit ion
specified by its right hand side placed in a new pending transition, p , ~ (lines
7-10). A check if made to see if P , ew is an extension of an existing pending
transit ion in 7~; if so, the t ime is updated in the existing transit ion (lines 13-16).
Otherwise if a transition identical to P,~w does not already exist, then pn~w is
added to 7 ~ (line 21).

36

1 ProcessCausalities(p, :D) {
2 foreaeh c E g {
3 # check if all signals used in causality lhs are defined
4 i f ((SigList ~-ReturnListOfUndetinedSignals(wl,,, 7~))~ null) {
5 SpfitUndefinedEnablingSignals(p, SigList, ~) }
6 # check if the lhs transition of the causality occurred
7 i f (Sl ,c=sp A e l , c=ep A el is enabled) {
8 # the causality can occur, create a new pending transition
9 # specified by the rhs of the causality

10 p . ~ ,-- ((s2,~, e2,~, w2,.), 6~, ~., ~ ,~iq~. , ~p, (fa lse , f a l s e))
11 # check if the new transition caused is an extension
12 # of an existing transition
13 i f (3pi s.t. pi E P A epi = epne~ , A ~/c:pi = r/c:pn,, , A

14 (a r e + l) <_ap.. . A /~p, >qp A tip, < t i p . . .) {
15 # update the ending time of the transition
16 rio:p/ *-- tip, ~-- ~,,,~, }
17 e l s e {
18 # make sure p ~ , is not redundant in 7)
19 if (not(Bpi E 79 s.t. e m = ~p,,~ A n~:m = n~:p,,~)) {
20 # add new pending transition
21 add p ~ , to 79
22 # check if this pending transition already occurred
23 # and has been deleted from 79
24 if (3 r E S s.t. e~=ep~,~ A y~:~=y~:p~,~) {
25 (DidOccur Flag)p..~ -- (true)
26 ,7..~ } } } } } }

Fig. 6. Procedure to create new transitions from causalities

5 C o n c l u s i o n & S u m m a r y

The verification of digital circuits is a challenging problem. Our method of veri-
fying correct operation is to generate all possible signal interactions and then to
check that specified relationships hold between the signals (e.g., setup or hold
times). However, to accurately model digital systems, both bounded time ranges
and state (i.e., enabling expressions) are a necessity. The ability to represent
and reason about time ranges for events is a distinguishing characteristic of our
technique and gives our analysis both its power and complexity. Our approach
has been shown to significantly reduce the size of the search space over a "brute
force" approach (simulation using all possible combinations of gate delay) as
shown by the analysis of the C17 benchmark circuit in Fig. 7(a). The table
shown in (b) indicates a significant reduction in number of paths explored in
generating all possible system behaviors assuming each gate has the specified
propagation delay.

In this paper, we have presented a method for generating all possible system
behaviors of a bounded delay digital circuit model given a specification and ini-
tial conditions. Although our technique explicitly enumerates the entire space

37

Gate "Brute Force" Actual CPU
Delay # Paths # Paths sec.
(1,1) 1 1 0.23
(1,2) 64 6 2.02
(1,3) 729 10 6.70
(1,4) 4,096 24 22.3
(1,5) 15,625 42 76.6
(1,6) 46,656 63 234.9
(1,7) 117,649 88 563.0
(1,8) 262,144 117 1414
(1,9) 531,441 150 3343

(1,10) 1,000,000 187 6157
(,) (b)

Fig. 7. C17 schematic (a); "brute force" vs. actual number of paths through C17 (b)

of possible behaviors, we have shown that it is reasonable to analyze non-trivial
systems in a short period of time. Further, describing systems with causalities
is feasible for non-trivial systems. Causalities can often be derived directly from
vendor supplied component specifications. Although a large number of dynamic
states may be enumerated during the analysis, the automatic generation of tim-
ing diagrams from system histories makes it possible for a human to understand
the behavior of complex systems.

We have emphasized the generation of system behaviors from the specifica-
tion of digital circuits since this is key to any analysis, not only verification.
Our future work consists of investigating ways of automatically generating ap-
propriate initial states and transitions to enumerate all states which could result
in requirement violations, thus providing a total verification system for time
bounded digital circuits.

We gratefully acknowledge the support of this research by the National Sci-
ence Foundation grant number MIP-9102721.

R e f e r e n c e s

1. Thomas M. McWilliams, "Verification of Timing Constraints on Large Dig-
ital Systems," Proc. 17th Design Automation Conference (June, 1980).

2. Robert B. Hitchcock, St., "Timing Verification and the Timing Analysis Pro-
gram," Proc. 19th Design Automation Conference (June, 1982).

3. John J. Wallace, "On Automatic Verification of SLIDE Descriptions," Design
Research Center, Carnegie-Mellon University, DRC-01-2-80, Pittsburgh, PA,
Aug., 1979.

38

4. David E. Wallace, "Abstract Timing Verification for Synchronous Digital
Systems," Computer Science Division, Univ. of Calif. at Berkeley, UCB/CSD
88/425, Berkeley, CA, June 27, 1988.

5. David L. Dill, "Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits," Dept. of Computer Science, Carnegie-Mellon Univer-
sity, CMU-CS-88-119, Pittsburgh, PA, Feb., 1988.

6. M. Browne, E. Clarke, D. Dill & B. Mishra, "Automatic Verification of Se-
quential Circuits Using Temporal Logic," Dept. of Computer Science, Car-
negie-Mellon University, CMU-CS-85-100, Pittsburgh, PA, Dec., 1984.

7. Patrick C. McGeer & Robert K. Brayton, "Timing Analysis in Precharge /
Unate Networks," Proc. 27th Design Automation Conference (June, 1990).

8. Tod Amon ~: Gaetano Borriello, ',On the Specification of Timing Behavior,"
Proceedings of the 1990 ACM International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems (TAU '90), New York,
NY, SIGDA (Aug., 1990).

9. Dimitrie Doukas & Andrea S. LaPaugh, "CLOVER: A Timing Constraints
Verification System," Proceedings of the 1990 ACM International Workshop
on Timing lssues in the Specification and Synthesis of Digital Systems (TA U
190), New York, NY, SIGDA (Aug., 1990).

10. F. Mavaddat & T. Gahlinger, "On Deducing Tight Bounds from Partial
Timing Specifications," Proceedings of the 1990 ACM International Work-
shop on Timing Issues in the Specification and Synthesis of Digital Systems
(TAU '90), New York, NY, SIGDA (Aug., 1990).

11. Michael C. McFarland, "CPA: Giving an Account of Timed System Behav-
ior," Proceedings of the 1990 ACM In ternational Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems (TAU '90), New York,
NY, SIGDA (Aug., 1990).

12. Alan R. Martello & Steven P. Levitan, "Causal Timing Verification," Pro-
ceedings of the 1990 ACM International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU '90), New York, NY,
SIGDA (Aug., 1990).

13. Alan R. Martello, Steven P. Levitan & Donald M. Chiarulli, "Timing Ver-
ification Using HDTV," Proc. 27th Design Automation Conference (June,
1990).

14. Srinivas Devadas, Kurt Keutzer, Sharad Malik & Albert Wang, "Verification
of Asynchronous Interface Circuits with Bounded Wire Delays," Proc. 1992
Inter. Conf. for Computer-Aided Design (Nov., 1992).

15. Alan R. Martello, "Temporal Specification Verification," Dept. of Elect. Eng.,
University of Pittsburgh, PhD. Dissertation (in preparation).

