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Abs t r ac t .  This paper describes an approach to capturing the relation be- 
tween circuits and their behaviours within a formM theory. The method ex- 
ploits dependent types to achieve a rigorous yet theoretically simple connec- 
tion between circuits (treated as graphs) and their behavioural specifications 
(treated as predicates). An example is given of a behavioural extraction func- 
tion and it is shown how a type for modules can be defined that is sufficiently 
fine to guarantee that the behaviour of a module will satisfy its behavioural 
specification. The method is discussed in relation to VHDL and in relation to 
formal synthesis, (a process whereby one starts with a behavioural specifica- 
tion and, using an interactive goal-directed approach, ends up with a circuit 
and a formal proof that it satisfies the given behavioural specification). 

1 I n t r o d u c t i o n  

The aim of hardware verification is to establish that  the behaviour of a given circuit 
satisfies a given behavioural specification. The problem divides naturally into two 
tasks: " 

- Firstly, given a (well-formed) circuit and given the behavioural specifications of 
each of its component  parts, determining the behavioural specification of the 
overall circuit, and 

- Secondly, showing that  this computed behavioural specification is stronger than 
the given behavioural specification. 

With  most  approaches to formal verification the structure of the circuit is represented 
only informally (for example, as a circuit diagram) and so this means that  the first 
of the above tasks can only be undertaken informally. For many  purposes, for ex- 
ample,  when working with an idealised, two-valued, voltage-driven digital logic, this 
approach is perfectly adequate. This is because the intension (or form) of the te rm 
whose extension (or value) describes a (well-formed) circuit 's behavioural specifica- 
tion corresponds closely to the structure of the circuit. Briefly stated, the behavioural  
specification of the overall circuit (described as a predicate on the signals at  the cir- 
cuit 's  ports) may be obtained by taking the conjunction of the terms tha t  describe 
the behavioural specifications of the individual components  and using existential 
quantification to hide any internal signals. Since the relation between structure and 
behaviour is so simple, there is little opportuni ty  for error in inferring the relation- 
ship and so little is lost by adopting an informal approach. With  other kinds of digital 
logic (for example, tr i-state logic) and with circuit structures that  are parametr ized,  
then the relation between structures and behaviours is rather more complex and 
there are significant gains to be had in formalising the relationship. 
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In this paper  we will be describing an approach to relating structure and be- 
haviour that  exploits the very fine type structure that  a dependently-typed higher- 
order logic offers, (Dependent types are explained below.) As we shall show, the 
particular merits of the approach are its rigorous natures and its relative theoretical 
simplicity. In order to place it in the context of conventional CAD methods,  we wilt 
describe it using concepts and terminology taken from V H D L  (such as entity, in- 
terface and implementation). Later, we will show how it relates to aspects of V H D L  
and how it can be mechanically translated to and from V H D L .  

2 B a c k g r o u n d  

As background to this paper we briefly 1 review two earlier approaches (with which 
this paper shares many features) to the problem of relating structure and behaviour 
within a formal framework. 

The principal features of the first approach [HD86] are: 

- The formalism used is a typed higher-order logic. 
- Circuits (in general, hierarchically structured) are direclly specified within the 

logic in terms of their essential properties. 
- The type discipline of the logic is used to enforce the well-formedness of circuits. 
- There is a formal link between the structure of circuits and their behaviour. 

Whilst this approach is both direct and simple, it does, however, have some serious 
limitations, namely: 

- Circuits are specified by properties and not as values. This is generally inconve- 
nient since often an exact (ie, 'categorical ')  description of a circuit is required 
rather than a ' loose' one. 

- The approach is valid only for idealised, voltage-driven 2-state logic. 
- Since the theory is axiomatic in nature, errors in specifications may give rise to 

inconsistency. 

A very much more ambit ious approach to relating structure and behaviour is 
described in [BHY92]. The principal features of this second approach are: 

- A module ( that  is, a circuit) is represented by a constant,  basically a list com- 
prising the module name, lists of the names of its input ports and its output  
ports, and an occurrence list specifying the internal structure of the module. 

- These datastructures are similar in form to the abstract  syntax of the repre- 
sentation of the corresponding modules in a conventional hardware description 
language. 

- Tri-state logic is catered for. 
- Generic circuit modules (for example, modules parametr ized by their word length) 

are represented by functions that,  when applied to a concrete value of the generic 
parameter ,  yield a concrete module representation. 

1 A version of this paper giving a much fuller review of these two earlier approaches is 
available from the authors. 
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- The formalism used is the Boyer-Moore logic (a weakly typed, first-order system 
with a LisP-like syntax). 

Whilst the approach has been used to conduct some impressive, large-scale cor- 
rectness proofs, it is, however, not without some disadvantages. Perhaps the three 
main ones are: 

- the complexity of its structure-to-behaviour mapping function, DUAL-E1/AL (which 
results in a general lack of transparency and in increased complexity of proofs); 

- the absence of strong typing (which makes descriptions of objects and functions 
verbose and difficult to follow); 

- the absence of a user-accessible metalanguage by which deduction in the Boyer- 
Moore system may be directed. 

It was, nevertheless, the description of this general approach and of the possibilities 
it opened up which reawakened our interest in formally linking structures and be- 
haviours. The method described in the following sections inherits features from both 
this approach and from the earlier one outlined above. 

3 D e p e n d e n t  T y p e s  

The main theme of this paper is the way in which a dependently-typed logic may be 
used to allow the structure and behaviour of circuits to be intimately related to each 
other within a strongly-typed formal logic. The concepts we describe were actually 
tested using the VErtITAS logic and so we begin by surnmarising, very briefly, its main 
features. We note, however, that the same approach could equally well be developed 
in other dependently-typed logics such as NuPRL [C86] or ISABELLE [PT90] and 
even (though with some limitations) by modelling a dependently-typed logic within 
an ordinary polymorphically-typed one, as in [JM92]. 

VERITAS [HDL90, HD92] is a higher-order logic whose distinctive feature is that 
its type structure includes dependent types, subtypes and datatypes. It is compu- 
tationally implemented [HDH92] and the notation used in this paper is, with a few 
minor exceptions, identical to that which the logic both accepts and generates. In 
the remainder of this section we develop the various definitions and concepts we 
shall need later on. 

D a t a t y p e s  The natural numbers, nat,  may be introduced as a datatype by 

d a t a t y p e  nat  = 0 I n a t 1  

Here, the so-called successor function has been introduced as a postfixed operator 
(prime). Thus, the first few numbers may be defined by 1 g 0', 2 -~ 1', and so on. 

All terms in the logic are total. Function may be defined by primitive recursion 
over datatypes. For example, the addition function (defined as a binary operator 
'+') may be defined by 

d e f i n e n + O = n [ n + m ' = ( n + m ) ' e n d  

Functions may also be defined by abstraction as for example in tw ice  n ~ n + n. 
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Subtypes may be defined by specifying their characteristic predicate. For exam- 
ple, the subtype bit of nat may be defined as 

bit ~ {n:na t  I n  < 2} 

T y p e s  Types are themselves terms and hence functions may  take types as 
arguments  or yield types as their result. For example,  the function N defined by 
N n ~ {re :nat  I m < n} takes a number n and yields the subtype of nat that  
comprises numbers in the range 0 to n - 1. Since types are terms, they themselves 
have types. The type of all ordinary types is U0, the universe of (small) types. 

Terms in the logic do not have unique types - -  rather, the te rm formation rules 
of the logic specify that  certain term-type combinations (sometimes called 'judg- 
ments ' )  are well-formed. For example, all of the following typed terms are well 
formed: l: nat, l: bit, l: N ( 2 + 2 ) .  

V e c t o r s  Vectors, that  is, one-dimensional arrays, may be represented as func- 
tions over their index types. For example, the type byte defined by byte -~ N 8 --~ bit 
describes the type of 8-bit binary words. If  B is a symbol of type byte, then the 
elements of B may be accessed by application, thus B 0, B 1, up to B 7. Appli- 
cation in VERITAS may alternatively be denoted by subscription, and so the same 
collection of bits may also be expressed as B0, B1, up to BT. 

Whilst vectors can easily be defined by A-abstraction, it is convenient to be able 
to describe literal vectors using conventional mathemat ica l  notation. Thus, we will 

often write S, for instance, either v g or v = (a, b, c} to describe the vector v 

whose components are v0 = a, Vl = b, v2 = e. 
D e p e n d e n t  T y p e s  Dependent types [C86] are a natural  generalisation.of the 

ordinary x and ~ types that  allow finer, more expressive types to be defined. A type 
of the form [z: S] ~ T~ is a dependenl, function type (sometimes called a H-type) .  
An application consisting of a function f :  ([x: S] ~ T~) applied to a term a: S is a 
te rm f a whose type is Ta. Thus, the type of an application depends on the value of 
the argument.  If, as a special case, the type T~ is independent of x, then an ordinary 
(i.e., non-dependent) function type results. 

In a similar way, dependent product types may be defined. These have the form 
[z: S] x T~. A term of this type has two components;  the first is of the form a: S 
and the second (whose type depends on the value of the first) is of the form b: Ta. 
A typical example of a dependent product type is the type [n: nat] x N n, and a 
typical element of this type is (5, 3), since 5: nat and 3: N 5. 

R e c o r d s  In addition to vectors whose elements are all of the same type one can 
also, by using dependent types, define vectors whose elements are of heterogeneous 
types. Such vectors we term records. Suppose that  f :  (N n --* U0) is the function that  
defines the type fi of the ith element of a record with n components.  Then the type 
of the overall record is [i: N n] ~ f i. Notice that  this type itself is rather similar 3 
to a vector and so we introduce the notation H ( . . . )  to abbreviate  such types. For 

2 The "vertical" form of vector notation is not at present supported by computational 
implementations of the logic. 

3 Technically, the only difference is that it contains a / /  binder rather than a A one. 
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example, given three typed terms, a: s, b: t and c: u, the type of the record (a, b, c) 
may be written as H(s, t, u). 

4 Relat ing  Structures  and Behaviours  

Our aim is to be able to describe, with clarity and precision, the structures of circuits, 
the behaviour of circuits and the relation between structures and behaviours. We 
will do this by developing, within the VEaITAS logic, a strongly-typed Theory of 
Structures and Behaviours (abbrev. TSB) .  

The relation between structures and behaviours is, of course, strongly influenced 
by the particular kind of digital technology by which the circuit is implemented. In 
order to illustrate the general principles in as simple a setting as possible, we shall 
describe the development of the theory for an ideal two-level, voltage-driven, fully 
synchronous technology. We note, however, that  the real gains from this approach 
only become manifest when working with non-ideal, tri-state technologies. We have 
developed the theory for such a technology; it is alluded to in a later section. 

Log ic  levels  We will take the two logic levels to be identified with the values 
0 and 1 of type bit. We will assume that all inputs are two-level signals and that  all 
latches are in a two-level state at time t = 0. Given these assumptions, and under 
the further assumption that  the circuit is well-formed (a property that  we will be 
formally defining) then we can assume that  all signal levels within the circuit remain 
as two-level ones. Throughout,  we will identify time with the natural numbers, that  
is, time ~ nat. 

R e l a t i o n  to  V H D L  So as to allow the T S B  approach to be related to con- 
temporary engineering practice, we will adopt certain features of V H D L  4 and, later, 
we shall describe how T S B  may be translated into a dialect of VHDL.  The ability 
to undertake such translation is essential [B92] if a formal method is ever to be able 
to be used in industrial design. 

Following the general VHDL approach, we shall work in terms of design entities 
(or entities for short) which we will consider as having two aspects, an interface 
that  describes an entity's external aspects, and an implementation that  describes its 
internal structure. We shall extend VHDL,  however, by requiring the interface to 
describe not only the entity's structural aspects but also its behavioural specification. 

4.1 I n t e r f a c e s  

The interface that  an entity (in a voltage-driven technology) presents to the external 
world consists of a set of ports each of which has a mode (that specifies whether it 
is an input or output  port) and has a base type and which carries a signal. If the 
base type of the port is b, then the signal at the port will be of type time --* b. The 
behaviour of the entity is characterised by a predicate defined on the signals at its 
ports. 

4 VHDL is a widely used hardware description language [VHDL87] distinguished by a 
syntax that is somewhat prolix and a semantics that whilst not particularly expressive 
is nevertheless, when viewed formally, found to be of Byzantine complexity . . .  
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We formalise the notion of an interface by introducing a type interface. In framing 
the definition for this type we shall aim (by exploiting dependent types) to capture 
the exact relationship between, on the one hand, the number and types of the ports 
of the entity and, on the other hand, the type of its behavioural predicate. Formally, 
an entity interface is a 4-tuple consisting of: 

- A number, np, specifying the number of ports. Given this number we shall assume 
that  the ports are identified with elements of the set N np and that  we refer to 
ports by their indices rather than by their names. Thus if, for example, np had 
the value 4, then the ports would be labelled by indices 0 through to 3. 

- A port-mode mapping, pro, from the port index set N n p  to the two-element 
type mode defined by the declaration d a t a t y p e  mode = input  I output .  

- A port-type mapping, pt, from the port index set N n p  to the type U0 of (small) 
types. This mapping will represent the types of the signal levels (eg, bit) at the 
ports. Thus, the type of the signal (as distinct from the type of the signal levels) 
at port 2 would be t ime  ---* pt2. 

- A behavioural specification, spec, that takes the form of a predicate over the 
signals at the ports of the entity. The definition we are about to present of 
the type of spec provides a particularly interesting illustration of the use of 
dependent types. Indeed, without dependent types it would not be possible to 
express this type at all. We build up the definition in stages. First, note that the 
signal at port i is of type t ime  ~ pti. Thus, if the signals at all of the np ports 
of the entity are bundled together to form a record (ie, a heterogeneously-typed 
vector), the type of this record is [i: N n p ]  --~ ( t ime ---, pti) .  Thus, the type of 
the overall behavioural specification is 

spec: ([i: N np] --* t ime  ~ pti) --~ bool 

Thus, the type interface of interfaces is given by the following dependent Carte- 
sian product 

interface ~ [np: nat] x 
( N n p  ~ mode) x 
[pt: (N np ---, U0)]x 
(([i: g np] --, t ime  ~ pt i) ~ bool) 

Number of ports 
Port modes 
Port types 
Behavioural predicate 

To illustrate this definition, first, as a very simple example, consider the interface 
(Figure I(A) ) for a one-bit latch 

latch_intf  : interface -~ 
2, 
( input,  output},  
(bit, bit), 
,~,': H ( ( t i m e  ---* bit), ( t ime --* bit)}. 

V t : t ime .  (rl)  t' = (ro) t 

Number of ports 
Port modes 
Port types 
Behavioural predicate 
(Recollect that t '  means t + 1) 

For a second example, this time illustrating a more diverse collection of types, con- 
sider the interface (Figure I(B)) for an ALU unit. 
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:bit ~ - - 1 ~  : b i t  

(n) (B) 

l:byte 1 :byte 

0 1 
2 

3 

I :byte * byte 

:opcode 

Fig. 1. Typical interfaces. (A) is for a 1-bit latch, and (B) is for a simple ALU. 

Assume the declaration d a t a t y p e  op_code = add [ sub [ muir [ div, and assume 
that a behavioural predicate alu_behav has been defined. The interface for the ALU 
is then defined as 

alu_intf : interface 
4, 
(input, input, input, output),  
(byte, byte, op_code, (byte • byte)), 
)~r. alu_behav (to,  rl , r2, r3) 

where the type of the record r is 

r : H ( ( l i m e  ~ byte), ( t ime ~ byte), ( t ime ~ op_code), ( t ime ~ byte • byte)) 

5 C o n t e x t s  

Before we can go on and describe circuits we need to have a type-secure way of 
describing the interfaces of the component entities from which particular circuits 
will be built. For this, we introduce the notion of a context - -  essentially a sequence 
of interfaces. It is convenient to represent a context by an ordered pair whose first 
element, nk,  specifies the number of kinds of interface in the context and whose 
second element is a vector (of length nk)  of interfaces. Thus, the type context  is 
defined as 

context ~- [nk: ,tat] • (W nk --+interface) 

A typical example of a context (which we shall adopt as our standard context for 
other examples) is 

std_cxt ~ 4, { not_int f  , and_int f  , or_int f  , latch_intf) 

The first element of this pair specifies that  the context contains some 4 interfaces; the 
second element (a vector) of the pair specifies the actual interfaces themselves. As 

usual, the elenaents of the vector are accessed b~application. For example, the 0 th 
element (a NOT-gate interface) of the context would be referenced by the application 
(snd std_cxt) O. 
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6 Circui t s  

We use the term circuit to mean a set of components connected, via their ports, to 
a set of nodes. Circuits are thus essentially labelled, directed graphs. Figure 2 shows 
a typical circuit. 

We formalise the notion of a circuit by introducing a type circuit .  As with the 
definition of the type interface above, we aim, by the use of dependent types, to 
capture the notion with precision. Formally, we define a circuit to be a 6-tuple 
consisting of: 

- A context, cxt: context, that  specifies the set of component interfaces from which 
the circuit is constructed. We introduce the following subsidary definitions: 

�9 The number  of interface kinds in the context, nk: nat, defined by nk 

fs t  czt. 
�9 The type, kind: UO, of interface kinds, defined by kind -~ N nk. 

�9 The kind to interface function, ki: kind ~ interface, that  maps an interface 
kind to an actual interface, defined by ki ~ snd cxt. 

- A number, nc: nat,  that specifies the number  of components in the Circuit. 
- A number, nn: nat,  that specifies the number  of nodes in the circuit. We intro- 

duce the following subsidary definitions: 
�9 The type comp: UO of components ,  defined by comp -~ N nc. 

�9 The type, node: UO, of nodes ,  defined by node ~- N nn.  

- A function, ck: comp --* kind,  that specifies the kind of a component.  We intro- 
duce the following subsidary definition: 

�9 The component to port- type function, cp ~ comp ~ UO, defined by cp -~ 
N o [st o ki o ck. 

- A function, nt: node --* UO, that specifies the node types. 
- A function w: [c: comp] ---* cp c --~ node that  specifies the wiring of the circuit. 

Thus, the type circuit  is given by the following dependent Cartesian product: 

circuit  ~ [cxt: context] x Context 
le t  nk = f st cxt in 
le t  k ind  = N nk  in 
le t  ki  = snd cxt in 
[he: nat] x 
[nn: nat] x 

le t  comp = N nc in 
le t  node = N nn  in 
[ck: comp ~ k ind]x  

le t  cp = N o f st o ki o ck in  

[nt: node ---* U0] x 
([c: comp] --, cp c ~ n o d e )  

Number of components 
Number of nodes 

Component kind function 

Node types 
Wiring 

This type definition is not nearly as complicated a.s it may, at first sight, seem! 
For example, the T S B  representation of the circuit shown in Figure 2. is given by 
the tuple (cxt,  nc, nn,  ck, nt,  w), where 
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0 0 

: : 1 

2 

Fig. 2. A circuit consisting of two NOT gates connected to an AND gate. 

- cx t  is the standard context std_cxt  that  contains, in order, the interfaces for a 
NOT gate, an AND gate, an OR gate and a latch. 

- nc, the number  of components in the circuit, is 3. 

- nn,  the number  of nodes in the circuit, is 5. 

- ck, the component  kind map,  is the vector (0, 1, 0) which indicates that  the first 
component  in the circuit is a NOT gate, the second an AND gate, and the third 

' a  NOT gate. 

- nt ,  the node type function that  specifies the type of each node in the circuit, is 
the vector (bit, bit, bit, bit, bit). 

- w, the wiring function, is the array (i.e., a vector of vectors) 

(0,1) ] 
<1,3,4) / 
(2, 3) j 

This array describes the way that  the ports of each component  are connected to 
the nodes. In this case it indicates that  port  0 of component  0 is connected to 
node 0 and port  1 to node 1, and that  port  0 of component  1 is connected to 
node 1, port  2 to node 3, and so on. 

Thus, the T S B  representation, cir,  for the circuit in Figure 2 is simply 

cir ~- (s td_cxt ,  3, 5, 

[ bit 1 

, |b i t | ,  (1,3,4)/ 
Ibitl (2,3> j 
[bitj 

As a second example,  one with a richer set of types, consider the ALU circuit 
shown in Figure 3. If we assume the existence of a context, cxt ,  containing interface 
definitions for the three components then the description of the circuit as a T S B  
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value is 

"byte 
byte 

alu_circuit ~ (cxt, 3,7, , byte x byte , 1(4, 5, 6) | ) 
bit [ (2, 3> ] 
bit 
op_code 

(where a, b and c are the indices of the three components in the context cxt).  

O•te 
/ ~ b y t e  

( . ) \  4 

2 +:byte: * byte 
/ 

(c) [--- 

3 ~ :byte * byte 

Fig. 3. An ALU circuit. 

(b) 
4 :bit ~ _ _ ~ o  = pcode 

5 -:bit 

7 W e l l - f o r m e d  C i r c u i t s  

So far, the definition of the type circuit has ensured that  the circuits being described 
are well-formed in a graph-theoretic sense. However, before we can reason about the 
behaviour of circuits, we need to ensure that  they are also well-formed with respect 
to a particular technology. 

For the present case (a two-state, voltage-driven synchronous technology) this 
involves establishing that: 

- Each node is driven by exactly one output port. 
- The type of each port is identical to the type of the node to which it is connected. 
- There are no asynchronous loops (that is, if all latches are removed, then the 

remaining circuitry is purely combinational). 

Predicates may be defined to check each of these conditions. For example, a good 
way to test the first condition is to assert the existence of a 'back-wiring' function, 
bw: node --~ [c: eomp] x cp c such that, for any node n, the value of bw n is a pair (c, p) 
defining a component c and a port p on that  component with the property that: (a) 
the port p is an output port, and (b) that port is connected (as specified by the wiring 
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function w) to node n. Specified formally, this predicate, well_driven: circuit --* bool 
is defined by the expression 

3bw: node ---+ [c: cornp] x cp c. 
Yn: node. 

le t  (c;p)  = bw n in 
le t  int f  = (snd cxt) (ck c) in 
le t  (np; prn; pt; spec) = int f  in  
(prn p = output) A (w c p = n) 

Component and port 
Find component interface 
Find port-mode function 
Check conditions 

(where the various subsidiary definitions (such as node, comp, cp, etc) are exactly 
as defined earlier). 

Checking the second of the above conditions (viz, that  interconnected ports and 
nodes have identical types) is trivial. Checking the third condition (absence of asyn- 
chronous loops) is a lnore interesting task. A good way to test for this property 
is to assert the existence of a labelling (using elements of nat) on the nodes such 
that no asynchronous component (that is, any component apart  from a latch) has 
an input port connected to a node labelled with a number greater than or equal to 
the number labelling a node to which any of its output  ports are connected. Such a 
predicate is not difficult to define. 

Given the collection of well-formedness predicates for the technology, we define 
a subtype wf_circuir of the type circuit that comprises only those circuits that are 
deemed to be well-formed 

wf_circuit ~- {c: circuit I well_formed c} 

8 B e h a v i o u r a l  E x t r a c t i o n  

The real payoff from the TSB approach with its use of dependent types comes when 
we consider the task of relating a circuit's behaviour to its structure. Informally, we 
wish to define a function behaviour of type wf_circuit ---* behav_spec where the type 
behav_spec signifies a predicate over the record of signals at the nodes of the circuit. 
Thus, to a closer degree of approximation we require the function to have the type 
wf_circuit ~ record_of_signals ---* bool. Formally, however, we need to capture the 
relation between the collection of signal base types (as described within wf_circuit) 
and the type record_of_signals. We achieve this by giving behaviour the dependent 
type 

behaviour: 
[(cxl; nc; nn; ck; nt; w): wf_circuit] ~ ([i: N nn] ~ time --+ (nt i)) ~ bool 

That  is, it takes a well-formed circuit with nn nodes (whose base types are defined by 
the vector nt) and it yields a predicate over a record_of_signals type. For example, if 
the node base types for a two-node circuit were (bit, byte) then the individual signal 
types would be ( t ime --* bit) and ( t ime ---, type) and so the type of this record would 
be l I ( ( t ime  ~ bit), ( t ime ~ byte)). 
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The definition of the function is really surprisingly simple. We present it first 
and then discuss it line by line 

behaviour (cxt; nc; nn; ck; at; w) A 
$r: ([i: N nn] ---* t ime --~ (at i)). 

Yc: N nc 
le t  k =  ck c in  
le t  in t f  = (sad cxt) k in  
le t  (np; pm; pt; spec) = in t f  in  
le t  s: ([i: N np] ---* t ime --~ (pt i)) = ;~i: N np. r (w c j )  in  
s p e c s  

The first line introduces a bound variable r, a record that  indicates that the signal 
at node i is of type ri. For example, if nt 0 were bit, then the signal at node 0 would 
be of type t i m e  ---* bit. The next line, Vc: N nc, specifies that  the bound variable c 
ranges over all components in the circuit. The next line, k = ck c, defines k as being 
the interface kind of component c, and the following line defines the interface in t f  of 
that  component. The next line splits in t f  into its four elements, namely np (number 
of ports), pm (port modes), pt (port types) and spec (behavioural predicate). 

The penultimate line introduces s as being the record of signals at the ports of 
component c. It is obtained from r (the record of signals at the nodes of the overall 
circuit) by using the wiring function w to specify to which node that port j of 
component c is connected. The final line, spec s, asserts that  this record of signals s 
must satisfy the behavioural specification spec (of component c). 

A significant fact to notice about this definition is its entire definition is given 
here --- it does not rely upon any subsidiary functions at all. 

9 I m p l e m e n t a t i o n s  

In general, the internal structures of circuits are not visible; only their interface is 
seen. Thus we now need to discuss how to encapulate circuits to give interfaces. 
This involves no more than defining an association between the ports of the inter- 
face and the nodes of the circuit. Formally, we do this by introducing a new type, 
implementat ion ,  defined by 

implementa t ion  A 
[(rip; pro; pt; spee): interface] x 
[(cxt; nc; nn; ck; at; w): circuit] x 
( N n p  ~ N nn) 

Interface 
Circuit 
Port to node wiring function 

Tha t  is, an implementation is an interface (with np ports), a circuit (with nn nodes) 
and a function associating ports with nodes. As with circuits, we need to define 
a subtype wf_implementa t ion  of well-formed implementations (essentially identical 
considerations as before apply) before we can reason about  behavioural aspects of 
implementations. 
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9.1 A c t u a l  b e h a v i o u r  o f  an  i m p l e m e n t a t i o n  

Given that  an implementation is well-formed, we can infer its behaviour by using the 
following function, behav. This function is defined in terms of behaviour (the function 
that  operates on well-formed circuits). Its definition is not particularly complex 

behav impl ~- 
le t  (intf; cir; p n w ) =  impl in 
le t  (np; pm; pt; spec) = intf in  
le t  (cxt; nc; nn; ck; nt; w) = cir in 
Av: [m: N n p ]  ---+ time --~ pt m. 

3u: [n: N nn] --+ time ---, nt n. 
(behaviour cir) u A 
Vj: N n p .  vj = u (pnwj) 

The first line of this definition splits the implemenation impl into its three compo- 
nents, namely intf (the interface), cir (the circuit) and pnw (the port-node wiring 
function). The next two lines split intf and cir into their components. The next 
line introduces a record v comprising the signals at the ports of the interface. The 
next line existentially quantifies (ie, "hides") the record u of signals at the nodes 
of the circuit. The penultimate line asserts that  this record of signals satisfies the 
behavioural specification of the circuit (as given by the predicate (behaviour cir)). 
The last line asserts the identity of the external signals v with the internal ones, u, 
as seen through the port-node wiring function. 

9.2 E n t i t i e s  

We now have two definitions for the behaviour of a (well-formed) implementation: 

- Its behavioural specification (as given by the spec component of its interface); 
- Its actual behaviour (as inferred by the above function, behav, from its internal 

structure). 

In order to bring these two definitions into line, we introduce the notion of an entity 
(as a subtype of implementation). An entity is defined to be an implementation 
whose actual behaviour satisfies the behavioural specification of its interface. Thus 
we introduce the definition 

entity ~ { impl: implementation I well_behaved impl} 

where the predicate well_behaved is defined by 

well_behaved impl -~ 
le t  ( intf ; cir; paw) = impl in  
le t  (np,pm; [t; spec) = intf  in  
Vv: [m: N np] ---+ time --+ pt m. 

behav impl v ~ spec v 

The first two lines of this definition extract the component parts of the interface, intf, 
the next line quantifies over the appropriate signal types and the final line asserts 
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that  the behaviour of the implementation satisfies the behavioural specification of 
the interface. 

This definition for the type entity is perhaps the most important  concept in 
this paper. This type describes both the structural and behavioural properties of an 
interface and it also describes the structural properties of an implementation whcih is 
guaranteed, by the type discipline of the logic, to satisfy the interface specifications. 
The interface type, by virtue of describing both structural and behavioural properties 
of an interface, provides the means to achieve a complete separation between the 
concerns of the implementor of an entity and the users of that  entity. 

9.3 T r a n s l a t i o n  to  V H D L  

There is a sufficient degree of correspondence between this T S B  notion of "entity" 
and the VHDL one to be able to expresss a T S B  entity into a VHDL-liek notation. 
We have written a function (in STANDARD ML, the metalanguage in which VER.ITAS is 
defined rather than in VERITAS itself) that  performs this translation. As an example, 
the translation of a (very simple) T S B  entity (a NAND-gate realised using an AND 
gate and a NOT gate) into V H D L  looks like: 

entity nandgate is 
port (pl : input bit, p2 : inputbit, p3 : outputbit); 
spe c 

(Vt:time. (I)3 t) = 1 - (pl t) x (p2 t)) 
end; 

end nandgate; 

architecture nand_impl of  nandgate is 
signal p4 : bit; 

begin 
GO; andgate portmap (pl, p2, p4); 
G1; notgate portmap (p4, p3); 

end nand_impl; 

(The Mphameric names are specified as separate inputs to the translation function; 
the T S B  notation does not at present include alphameric strings.) 

10  D i s c u s s i o n  

The development of the TSB approach has been described relative to a.n ideal, 
voltage-driven, two-state technology. Whilst this has allowed us to focus on the 
type-theory aspects of the approach, it also tends to somewhat trivialise it. Its full 
potential only becomes apparent when dealing with tri-state technologies and with 
parameterized circuitry (a point emphasised in [BHY92] in connection with their 
HDL notation). 

We have developed a "fairly rigorous" T S B  theory for tri-state technologies. Its 
main differences from the present approach is that  the signals at the ports are no 
longer plain voltages but are instead (voltage, Thevenin-impedance) pairs, and are 
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bi-directional in nature. In fact, there is no reason why the same approach should 
not also be used to reason about properties of completely analogue circuits. 

All of the functions described in this paper have (with minor changes) been 
type-checked using a computational implementation of the VEaITAS system. Doing 
this involved the development of many new "tactics" (functions used for guiding 
the process of type-checking and theorem proving) and their development was a far 
from trivial task. However, given these tactics, many definitions of the general kind 
described in this paper can now be type-checked ahnost entirely automatically. 

As noted in [HLD89, F90] there are many advantages in combining the pro- 
cesses of design and of formal verification, yielding an approach known as formal 
synthesis. We have been exploring using the T S B  approach with a formal synthesis 
design editor. Early signs are that the combination will be a fruitful one. The design 
process starts off with the proof editor being provided with a T S B  context (alias 
V H D L  library) and a T S B  interface specification. The user, by interactively select- 
ing techniques (alias tactics), refines the original interface into an interconnected set 
of simpler ones, and ultimately into primitive ones that can be found in the con- 
text. At each stage the proof editor generates the necessary theorems to justify the 
refinement. The end result of the process is a T S B  entity - -  that is, an interface 
(identical to the original one) and an implementation whose structure and behaviour 
are guaranteed to satisfy the interface specification. 

An important  aspect of formal verification is the idea of relating behaviours at 
differing levels of abstraction. We believe that  similar notions of abstraction will be 
equally valuable in the structural domain. For example, one may wish to relate the 
structural views of an adder at the level of individual bits and at the level of busses. 
There is also interesting work to be done in studying how structural and behavioural 
abstraction interact with each other. 

The comparison between the present approach and its antecedents described 
earlier in this paper is an interesting one; features are inherited from both. Even 
if one concedes that  the use of higher-order logic with dependent types does bring 
about  aesthetic gains over the development of a similar approach in a simpler logic 
(for example, Boyer-Moore), it is still, in the authors '  opinion, a very open question 
as to whether these theoretical gains can be translated into practical ones. Thus far, 
our own computational trials have been limited to very simple circuits and it is not 
clear how both the computational load and the amount  of human guidance required 
will scale with increasing size of circuit. 

As a final point, we note that it may be that  the greatest gains arising froln 
developing approaches such as the T S B  one described here will not be in supporting 
formal verification but rather in providing the theoretical framework that  will allow 
future generations of hardware design languages to be developed on a less ad hoc 
basis that  at present. If this can be achieved, the gains could be significant. 
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