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1 I n t r o d u c t i o n  

In the past few years, researchers have developed powerful methods to aid in 
the construction of large asynchronous circuits [Marg0a, MBL+89, vB92, BS89, 
MBM89]. These methods are a significant departure from the traditional de- 
sign methodologies used in circuit development in they are automatic or semi- 
automatic techniques for synthesizing asynchronous circuits from high-level spec- 
ifications. 

All of these projects excepting [MBM89] use the same basic methodology. The 
circuit is specified as a set of concurrently executing processes that  can commu- 
nicate via fixed channels. Each process is constructed from simple programming 
language constructs that include variables ~ and assignments z := a, conditional 
branching, looping, and sequencing. The specification then undergoes a series 
of transformations to produce a circuit. 

While these methods have been around for the better part of a decade, there 
has been recent work that  makes progress toward showing the correctness of such 
a methodology may be rigorously established by formal means [SZ92, WBB92, 
vB92]. Thus, using these methods it is possible to design and implement provably 
correct asynchronous circuits. 

The asynchronous design method our work is based on is that  of Martin et 
al. [Marg0a, MBL+89]. Burns has described and implemented a circuit compiler 
[BM88] that uses this method to automatically translate specifications into cir- 
cuits. Preliminary results showing the correctness of this general methodology 
were reported by us in [SZ92]. 

The results in this paper rely on a standard model of asynchronous circuit 
behavior that  is speed-independent, fair and exhibits hazards under certain con- 
ditions. By speed independence we mean that  gates may delay arbitrarily but 
wire values propagate instantly from source to destination, and a wire is con- 
sidered to have only one value at a time. In the literature, this is also known as 
the isochronic forks assumption, where a forked signal arrives at all destinations 
simultaneously. Unlike other formal models for circuits in the literature, we make 
explicit assumptions that  gate delay cannot be infinite: if a gate is continuously 
enabled to switch, it will eventually switch (weak fairness assumption). Finally, 
we assume that  a gate may ignore a spike on an input if the output  of the gate 
does not depend on that  particular input. Any other spike will produce a hazard. 
Hazards should provably never occur in circuits produced. The weaknesses of the 
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model are the zero wire-delay assumption and allowance of arbi trary fan-in and 
fan-out.  

The paper  is structured as follows. We begin by defining C-CSP (Circuit 
CSP) in Section 2. In Section 3, we give C-CSP meaning via an operational 
semantics. Two distinguishing features of our presentation are that  we allow only 
fair computat ions and that  we formalize violations of mutual  exclusion on read- 
ing, writing, and synchronization. We define equivalence in Section 4 based 
on ideas of testing equivalence, and formalize what it means for the transfor- 
mations to be semantics-preserving. In Section 5, we formalize compilation as 
a 6-phase rewrite system for translating a high-level C-CSP specification into 
an asynchronous circuit implementat ion and show that  each rewriting phase 
is semantics preserving. A more complete version of this paper is available as 
[szgs]. 

2 T h e  C i r c u i t  L a n g u a g e  - -  C - C S P  

In this section we introduce C-CSP (Circuit-CSP), a language for specifying 
asynchronous circuits loosely based on [Hoa85, BM88]. We use the same lan- 
guage as the specification language, the intermediate language, and to express 
circuits. This decreases the overhead brought about  by performing explicit lan- 
guage translations. C-CSP is specified by the following grammar.  

c ::= t r u e  I fa lse  I ~ I p ?  I (e A e) I (e V e) I ~e 

c ::= s k i p  I �9 :=  e I c; c I [e ~ d . . .  le ~ d I * [c] I clio I P!  I P ?  I w i t h  d d o  c en, 
d : : = r ~ d l w ~ d l P t d l P ? d  I , 

We use e, c and d to range over boolean expressions, commands (also referred 
to as terms or processes), and declaration lists, respectively. ]) is the set of C- 
CSP variables; x, y, z . . .  E ]~ range over variables, and !~, !y, !z, ?y, ?y, ? z . . .  E ]; 
range over handshaking variables. The handshaking variables are only used in 
the implementat ion of handshaking protocols. 79a is the set of active port names; 
S!, P!, C!, D ! . . .  range over 7~a . Similarly, 7~p is the set of passive port names, 
and S?, P?,  C?, D ? . . .  range over ~p. 

The boolean expressions e are the usual ones plus Martin 's  probe /5?, by 
which a passive port  may test to see if the corresponding active port  is enabled 
without causing a synchronization to occur. 

The commands are similar to those of CSP. sk ip  does nothing. Assignment, 
:= e, assigns the value of e to the boolean variable ~. As a shorthand we 

represent �9 := t r u e  and �9 := fa l se  by �9 T and �9 ~, respectively. Sequential 
composition is denoted by ";". Choice among guarded commands is designated 
using ~ and infinite repetition of c is designated by .[c]. Parallel composition is 
represented by I]. As in CSP, processes synchronize with one another through 
ports  P! and P?.  An active port  P! and its corresponding passive port P?  form 
a channel we informally named P.  

The declarations d in w i t h  d do  c e n d  bind variables and port names as 
follows. Declaration P! in d binds occurrences of P! in c. Declaration P?  binds 
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occurrences o f /5?  an P?,  w ~ binds all write occurrences of $ and r �9 binds 
all read occurrences of x. All boolean variables may be declared twice: once by 
a declaration in which they may only be read (r), and once where they may be 
both read and written (w). These duM declarations are critical for proving the 
transformation correct. Also, corresponding active and passive parts of a channel 
P are declared separately as P! and P?.  Outside of the declaration of P?,  for 
instance, P?  may not be used. It is not possible to declare the same port name 
or use of a variable more than once. A C-CSP term c is said to be syntactically 
well-formedif this property and some other technical restrictions hold. Hereafter 
C-CSP terms are taken to be the syntactically well-formed terms. 

In order to formally describe compilation, we need to define three types of 
C-CSP terms - -  modules, components and closed terms. The class of C-CSP 
terms that may be separately compiled are called modules. All ports and write 
variables used in a module are declared in that module. The terms in the lan- 
guage corresponding to physical silicon devices (chips) are components. They 
may communicate with the outside world via ports, but, unlike modules, may 
not share boolean variables with the outside world. Finally, we have closed terms 
that share no variables or ports with the outside world. 

C-CSP spans the expressibility gamut from high-level to gate-level circuit de- 
scriptions. Two sublanguages of C-CSP are S-CSP, a "pure" specification part 
of the language, and H-CSP, used to describe silicon devices. S-CSP (Specifica- 
tion CSP) terms are defined to be C-CSP terms without instances of handshake 
variables !~, ?~. H-CSP (Hardware CSP) terms consist of the parallel execution 
of C-CSP processes that represent gates. Letting t range over literals of the form 

or -~ ,  these processes are of the form .[~ := t l o p  . . .  op  ~,~] where op is A or 
V; or C-elements, ,[~ : :  (~1 V ~ ) A  (~ V (~1 Al2))], abbreviated *[~ := (~1 C ~2)]- 

3 O p e r a t i o n a l  S e m a n t i c s  o f  C - C S P  

We define the operational semantics of C-CSP, by defining a relation --* that 
represents a single step of the computation. Each configuration consists of a 
closed C-CSP term and a state cr containing the current values of ports and 
variables. 

There are a number of challenges to giving semantics for C-CSP. Most impor- 
tantly, mutual exclusion must be enforced on certain parts of circuits. We cannot 
properly realize circuits which violate mutual exclusion on writing variables or 
synchronization. We thus construct our C-CSP semantics so an E R R O R  is 
yielded if mutual exclusion is violated. The translations in turn guarantee that 
well-formed processes stay well-formed, resulting in a circuit that  does not have 
two simultaneous requests for the same resource. One of the key features of our 
work is making these ideas rigorous; the other formalizations [WBB92, vB92] 
choose to weaken the expressiveness of the language and translation scheme so 
such errors may never occur. 

State, initial state, and configurations are defined as follows. A state ,7 is 
a finite mapping from V U :P~ to Bool .  ~(c) is the initial state for c, with all 
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variables set to fa lse .  A configuration (c, 0-) consists of  a closed term c and a 
s tate  cr tha t  represents a point  in the computa t ion .  

Augment ing  or changing the state funct ion 0- is abbrevia ted  0-Ix = b]. 7~a 
is par t  of  the domain of  0- and is used to define the semantics of  the probe: 
0"(/5?) = t r u e  iff P!  is waiting to synchronize. 

One impor t an t  nota t ional  convenience is the context, a term with a hole "*" 
poked in it where another  term may  be placed. A contezt C is a te rm containing 
numbered  holes " . / ' ,  i E N.  C[cl] . . .  [cn] is the result of  syntact ical ly replacing 
all occurrences of  *i in C with terms cl for each 1 < i < n. A closing context for 
a term c is a context  C such tha t  C[c] is closed. 

We define a subclass of  contexts, the reduction contexts to  simplify the pre- 
sentat ion of  operat ional  semantics.  A reduct ion context is a syntactic means of  
isolating the next computa t ion  step to be performed. A reduction context R is a 
context  constrained to be of  the form 

R = *i or R ; c  or RIIc or cllR or RIIR or w i t h  d d o  R e n d ,  

Often contexts with only one distinct hole are used, in which case *k for the 
single present value of  k m a y  be abbrevia ted *. 

Evaluat ion is now defined. First, all boolean expressions are evaluated with 
respect to a state c, by homomorphica l ly  extending the domain  of  0- to all boolean 
expressions. 

Second, the semantics of  commands  are defined by the single-step computa -  
t ion relation ---* mapp ing  configurations to configurations as follows. 

D e f i n i t i o n  1. 

(Assignment)  

(Sequencing) 
<R[z :=  e], 0-) --+ <R[skip], c,[z = 0-(e)]} 

<R[skip; c], 0-} --+ <R[c], 0-> 

We next want  to identify the bad configurations tha t  violate mutua l  exclusion 
principles. Leading up to this we define those computa t ion  steps tha t  change 
some expression value and those tha t  depend on some expression value. A com- 
puta t ion  step changes an expression, changes(e, (c, c~) --~ (c', 0-')), if the value of  
e changes as a result of  tha t  computa t ion  step. A computa t ion  depends on the 
value of  e, depends(e, (e, 0-) --+ <c', ~'>), if e must  be t r u e  in order for the step 
to occur or if the step assigns the value of  e to a variable z. 

(Selection) 
<Rile1 el0...0e  ' c 0.-.0e  , <R[e,],0-1 

where 0-(e,) = t r u e  and Vj r i.0-(ej) = fa l se  
(Repeti t ion) 

<R[ �9 Iv]I, 0-> <R[c; ,Jell, 0-> 
(Parallelism) 
(1) (RIP!] ,  cr[P! = false]> ---+ (RIP!I ,  0-[P! = t rue ] )  
(2) (R[P!][P?], 0-[P! = t r ue ] )  ---* (R[sk ip] [sk ip] ,  0-IF! = false]> 
(3) (R[skip[[skip] ,  0-> ---+ (R[skip] ,  0-) 
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Def in i t i on  2. (c, ~r) ---, E R R O R  (the configuration is in error)iff  either 

1. changes(e, (e, er) --. (c~,o")) and depends(e, (c,~) --+ (c"i~")), a n d e '  # c", 
o r  

2. changes(e, (c, or) ---* (d, r and changes(e, (c, o') ~ (c", ~r;'}), and c' • c", 
or 

3. c =  R[[el , Cl~ . .~e i  ~ c i O . . . ~ e n  ~ cn]] and o'(ei) = o'(ej) = t r u e  
f o r j # i  

De f in i t i on  3. _!+ is the transitive, reflexive closure of single-step: computation 
---~~ 

We define the notion of a semantically well-formedcomponent as a t o m .  
ponent that  never causes a n  E R R O R  to arise internally (technical details are 
omitted). It is then an obligation of the circuit designer to show component 
specifications well-formed, and our translation process then guarantees that  the 
resulting circuit is well-formed: 

There are many computation paths possible, since at a given point multiple 
processes (or gates, at the hardware level) may be running and the next step 
could be performed by any one of those processes. Certain computation paths 
are unfair because processes that are able to execute are kept from doing so 
forever because all the steps are taken by other active processes. 

Since circuits execute fairly (gates do not delay infinitely), our proofs of 
correctness will depend on the fair behaviors of processes. Specifically, we only 
concern ourselves with the weakly fair computations. That  is, if a process is con- 
tinuously enabled to execute, it will eventually execute. Although the informal 
idea is simplei the  formal definition is not. For the full definitions, see [SZ93]. 

4 C i r c u i t  T e s t i n g  a n d  E q u i v a l e n c e  

The equivalence we define is a variation on the testing equivalence of [Hen88]: 
This is :a precise formalization o f  exhaustive test ing,  so if two processes are 
testing-equivalent, no difference will be ever be able to be ascertained between 
the two by a tester. 

We add a new distinguished success variable, ~suceess, to the existing C-CSP 
variables, resulting in an extended language C-CSP* , the language of testers. The 
testing process indicates success by setting ~suceess to t rue .  A testing contezt is 
a C~CSP* context. 

De f in i t i on  4 ,  Let c0be a closed C-CSP*. term. A fair computation (co, *(e0)) 
(cl, eri) ~ .. ~--~ (on, c ' n ) - -* , . . ,  is successful:iff for some i, ~(zSuecess) = t r u e :  
It is failing if it is not successful. 

We prove the transformations equivalence-preserving by showing that  each 
transformation preserves the testing behavior. There is a technical complica- 
tion that some transformations may actually reduce the possibility of E R R O R s  
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arising in our circuits. This obviously causes no problems, but complicates the 
mathemat ics  because something with more errors is not equal to something with 
less errors. This small complication will be ignored in this abbreviated presen- 
tation. The most impor tant  definition is the following. 

Definltlon5 O b s e r v a t i o n  E q u i v a l e n c e .  Let c and c ~ be closed semantically 
well-formed C-CSP* terms, c -~obs c ~ if[ there exists a successful computat ion 
of c iff there exists a successful computat ion of c I, and there exists a failing 
computat ion of c iff there exists a failing computat ion of c ~. 

One property we may prove tha t  simplifies our work considerably is the 
following. 

L e m m a 6  D e t e r m i n i s m .  For all wel l - formed closed C-CSP* t e rms  c, ei ther 

all fa ir  computat ions  are successful or all fa ir  computat ions  are failing. 

Proof. The proof  hinges on a B u b b l i n g  L e m l n a .  If  there is both  a successful 
and failing computat ion o~ some c, the failing one can be translated (bubbled) 
into a successful one, contradicting the fact that  it was failing. Fairness is critical 
to the proof. 

A corollary of this theorem is all hazard-free circuits constructed of and, 
or, not, and C-elements must be observably deterministic, since H-CSP is a 
sublanguage of C-CSP. We plan to present this in full detail in a future paper, 
it is out of the scope of our present task. This theorem allows us to remove the 
second clause from the definition of ~--obs, making it easier to show equivalence. 

T h e o r e m 7 .  Let  c and c I be closed semant ical ly  wel l - formed C-CSP* terms.  

c ~obs c I if] there exists a successful computat ion o f  c i f f  there exists a successful 

computat ion  o f  c I. 

Another complexity in defining equivalence for our system arises because 
certain of the t ransformation rules change the way processes interact with their 
environment, by for instance replacing a port  P with an explicit handshaking 
protocol. These two processes will not be "equal" in the standard sense. We thus 
define a notion of equivalence tied to the compilation process, details of which 
will soon be given. 

4.1 Rewriting and Equivalences 

As described in detail in the next section, we divide the translation process into 
six phases and implement each phase using a distinct term rewriting system. 
For instance, if c; sk ip  t>R c is a rule in some rewrite system R, this rule allows 
any subexpression of the form c; sk ip  to be replaced with c, for arbitrary terms 
C. 

In Section 5, we define the six rewrite systems ~ 1 - ~ 6  by giving six sets of 
rules b l  . . .  t>6. A specification m0 is compiled to a circuit m6 by the rewriting 

m o ~ N m l ~ N 2 m 2  N N N N ~ 3  m 3 ~ 4  m 4 ~ s  m 5 ~ 6  m6, 
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For this we use the abbreviation m o ~ l - e m 6  (mo compiles to m6). To refer to 
modules that  are the result of translating an initial specification through i levels 
we write ~ i m ,  for i E { 1 , . . . , 6 } .  

4.2 Transformat ion  Equivalence 

The notion of "equivalence" under t ransformation is a difficult issue, because 
the method by which the specification/circuit interacts with the environment 
changes during compilation. Our solution is to change the tests in a similar 
fashion to the process being tested, and show the outcome of tests is the same. 
With this intuitive idea in mind, we now define the equality we use in proving the 
transformations correct. We note this equality ~i  for each level i of rewriting. 

Def in i t ion8 .  m k ~ k + l m k + l  iff ~ g m k ,  m k ~ N + l m k + l  and for any module m~ 
in C-CSP* such that  g t then O k m k and mtkllmk is closed, i f m ~ k + l m k + l g  t , 

Intuitively given a specification module m0 compiled to a digital circuit ms, 
this compilation is correctness-preserving if and only if for any tester of the 
original system, m~, this tester gets the same results on m0 as its compiled 
counterpart  m t does on m6. 

5 Compilat ion of  C-CSP Specif ications to Circuits 

Our system for incrementally translating C-CSP process specifications to circuit 
implementations consists of six rewrite systems that  are applied sequentially, 
translating a specification m0 to ml ,  to m2, . . . ,  and finally to a circuit module 
m6. Each of these rewrite systems is defined with respect to a set of equa- 
tions, SCA, that  equates certain terms that  differ only slightly in their scoping 
structure, the way they commute guard order and parallel composition, and the 
associativity of parallel and sequential composition. 

We begin by adding a "start channel" S to the term being compiled. We 
then begin the transformation.  Phase 1 produces a separate process for each 
constructor of the original term, be it guard, loop, active or passive communica- 
tion, assignment, or parallelism. Phase 2 expands the high-level synchronization 
of C-CSP into a 4-phase handshaking protocol. Phase 3 simplifies guarded com- 
mands  so each guard is evaluated in parallel. Phase 4 modularizes the specifica- 
tion by giving each use of a port  name a new, distinct, name. Phase 5 reshuffles 
the handshake protocols in order to make efficient circuit implementat ions more 
feasible. Finally, Phase 6 translates each of the small modules that  remain into 
digital circuitry consisting of and, or, not gates, C-elements, and wires. 

5.1 P h a s e  I: Syntax -Direc ted  Rewri t ing  

This phase transforms the original specification into many  small processes of the 
form *[IS , c; S?]], where c is a node of the original syntax tree. It  also creates a 
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single "assignment process" corresponding to each boolean variable to physically 
isolate its s torage location (1 : A S S I G N  1). All assignments synchronize with 
this process to assign a new value to the variable (1 : A S S I G N  2). (1 : S E P )  
creates a separate process for each par t  of  the expression. I n 4 h i s  rule, O P  is 
me tano ta t i on  for one of  sequential composit ion,  parallel composit ion,  looping 
or choice. I f  it is choice, then O P  also incorporates  the guarding expressions 
e l , . . . ,  e,~. Top-down application of  these rules produces a set of  processes, one 
for each node in the abstract  syntax  tree The  rewrite rules for phase 1 appear  
in Figure 1. 

(1 : ASSIGN 1) w i t h  w = d o  c e n d  t>l w i t h  w ~ d o  
w i t h  s0?,s l?  do  

*[[~07 --~ = ~;s0?D~? --~ = T;&?]] 
e n d  II 
w i t h  S0!, &! do  c e n d  

e n d  
(1 : ASSIGN 2) w i t h  w = d o  

(1 : SEP)  

w i t h  so ?, st ? d o  �9 [[s0 ? ---* ~ ~; So ? ~S1 ? -----~ X T; $17]] end{I 
w i t h  s0!,Sl! d o  C[= := e] e n d  
e n d  t>l 
w i t h  w = d o  

w i t h  s0 ?, sl ? d o  �9 [[~0 ? ---* ~ ~; So ?B~I ? ---* = T; & 7]] e n d  [] 
w i t h  S0!, Sl! d o  C[[",e ---* So!Ue --~ S~!]] e n d  

e n d  
�9 [[S? ---, OP(c l  . . . . .  c,~); S?]] D1 
w i t h  Sl! . . . . .  S~! d o  �9 [[B? ~ O P ( s t !  . . . . .  s~!); ST]] endll  

(ll~=~with si? d o  �9 [[•? ---. c~; s~?]] e n d  

F ig .  1. Rewrite rules for Phase 1 

5.2 P h a s e  2: H a n d s h a k i n g  E x p a n s i o n  

H a n d s h a k i n g  expans ion  replaces the C-CSP synchronizat ion constructs  with boolean 
handshaking  variables implementing the four-phase handshaking protocol.  Since 
the active and passive ports  need not be declared in the same scope, we must  
in t roduce two rules to carry out  this rewriting. The  rules appear  in Figure 2, 
where we simplify the nota t ion  by lett ing A H S ( ! p ,  ?p) =!p  T; [?P , skip];  !p J~ 
; [-~?p ~ skip]  and P H S ( ! p ,  ?p) = [!p , skip];  ?p T; [-~!p ----~?p ~], the active 
and passive handshaking  protocols.  

�9 The  left- and r ight-hand sides of  the handshaking  expansion rules do not  have 
the same test ing behavior  when tested with the same test, because the tester is a 
fixed process, but  to communica te  with mt  it mus t  use ports  and to communica te  
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(2  : HS x) w i t h  P! d o  c[P!] e n d  ~>2 w i t h  w !p,r ?p d o  C[AHS(!v ,  ?p)] e n d  
where  C c o n t a i n s  no  o c c u r r e n c e s  of  PI .  

(2  : H S  2)  w i t h  P :  d o  c [ P ? ] [ P : ]  e n d  t>2 w i t h  r !p, w : p  d o  C[!p][PHS(!p, :p)] e n d  
where  C c o n t a i n s  n o  o c c u r r e n c e s  of  P ?  or  P .  

Fig .  2. Rewri te  rules for Phase  2: Handshak ing  Expans ion  

with m2 mus t  use handshaking .  Therefore  the two will look different to a lmost  
all testers.  However,  the two rules are t r ans fo rmat iona l ly  equivalent  because 
all occurrences of  por t s  are uniformly replaced with handshak ing  variables and 
handshaking  variables are exclusively used in the handshak ing  protocols.  I t  is 
then s t ra ight forward  to show tha t  the observable behavior  in presence of  por t s  
(behavior  of  rnl lira, ~ ) is the same as in the presence of handshak ing  (behavior  of  
m ,  llm  for 

5.3 P h a s e  3: G u a r d  S i m p l i f i c a t i o n  

This phase first separates guarded processes into parallel processes, (3 : G U A R D  1) 
and  then fur ther  separa tes  each guarded  process into its own collection of  m u t u -  
ally exclusive guards  t ha t  are conjunct ions of  literals (3 : G U A R D  2). These  
rules appea r  in Figure 2. (3 : G U A R D  1) preserves the m u t u a l  exclusivity of  
each of the guarded  processes by reshuffling the passive handshake  on !s, ?s so 
t ha t  the process ac t iva ted  by A H S ( ! s i ,  ?s~) waits for !s to become false, de- 
ac t ivat ing all guards,  before actual ly  executing the process. 

(3 , G U A R D  1) *[[!8 ---* [el ---* A H S ( ! s t , ? s l ) 0 . . . B e .  ~ A H S ( t s . , ? s . ) ] ; P H S ( ! s , : s ) ] ]  t>: 

�9 ([t, ^ c, - - . : ,  T; [-,!, ---* AHS( f , , ,  :,1); : ,  111111... I1 
�9 [[Is ^ c,, - - - , I s  T; (--,!s ~ A H S ( ! s , , ,  : , , , ) ;  : s  1]11 

(~ : G I I A K D  2) w i t h  w :s r !, do  �9 [[Is ̂  e ----.:s l; [-,Is ----, AHS(Is ' ,  :s'); :s l]]]endt>~ 
w i t h  w :s r .', d o  

�9 [[!, ^ c l  - - - . : ,  T; [-,t, - - ,  A H S ( ' , ' ,  : , ' ) ;  : ,  &]]]ll... II 
�9 [[Is ̂  c,, ---.:s T; [-,Is ---. A H S 0 , ' ,  :d); : ,  l] l lend 

where e t  v . . .  v e~ is the resul t  of  placing 

e in disjoint  dis junct ive n o r m a l  fo rm.  

Fig .  3. Rewri te  ~ules for Phase  3. 
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5.4 P h a s e  4: M o d u l a r i z a t i o n  

In this phase, each of the processes created by phases 1-3 is transformed into a 
module in order to localize all write scopes of variables. It  should be noted that  
the only processes that  are not already modules are those implementing atomic 
active and passive synchronization on non-distinguished ports, and the individ- 
ual guarded command processes. The  synchronization processes may fail to be 
modules because several distinct processes may use the same non-distinguished 
port  (at this point handshaking variables). Thus the declarations of the "write" 
handshaking variables cannot be made local to a single process. Similarly, with 
guarded processes, there may be many  guarded processes that  wait for a start  
signal from the same active handshake. In the interest of space, we only present 
the rule for modularizing an active handshake variable shared by two processes. 

w i t h  w !,, r ?p do C[AHS(!p, ?p)][AHS(!p, 7v)] e n d  t>4 
w i t h  r ?p,r !pl,r !p2,w !p,w ? p l , w  ?p2 d o  

�9 [:p :=!p~v!p2] II * [?p~ :--!pl C ?p] II * [?p~ :=!p~ C ?p] 
c [ w i t h  w !pl r ?p~ do  AHS(!pl, ?Pl) end]  
[wi th  w !p2 r ?,2 do  AHS(! ,2 ,  ?p2) end] 

e n d  

5.5 P h a s e  5: R e s h u f f l i n g  

Upon entering this phase, each module is of the form [!s , e; PHS( ! s ,  ?s)] 
for some c (ignoring declarations). The hardware implementat ion is simpler if 
the initial [!s , skip] of the passive protocol is eliminated, and if some of the 
response ?s T; [~!s , skip]; ?s I is interleaved with the execution ofc. Although 
each type of module requires a different form of reshuffling, the general principle 
is that  a reshuffling may occur when the active communication A H S ( ! s , ? s )  
corresponding to the passive communication P H S ( ! s ,  ?s) above has not yet had 
anything reshuffled into it. As an example we show the reshuffling rule for active 
handshaking. 

(6 : ACT) w i t h  r !s,r ?a,w ?s,w !a do  �9 [[!s ---, AHS(!a,?a);PHS(!s,?s)]]  e n d  
t>s 

w i t h  r !s, r ?a, w ?s, w !a d o  

�9 [[!, ----, skip]; !a T; [?a ---'  skip]; ?, T; 
[~'., ~ skip]; !a 1; [~?a ---* skip]; ?* *] 

e n d  

5 .6  P h a s e  6: F i n a l  C o m p i l a t i o n  i n t o  c i rcu i t s  

This phase takes individual processes representing the various atomic actions, 
and transforms each into a circuit representation. The rules appear  in Figure 4 
(sc0ping information has been removed for brevity). The correctness of each of 
these rules relies critically on the fact that  the handshaking protocol is obeyed 
by all parts  of the circuit. 
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(6 : A S S I G N )  

(e  �9 S E Q )  

(6 : G U A R D )  

(6 : ACT/PAR) 

(6 : PASS) 

(0 �9 T, O O P )  

(e  �9 S K I P )  

*[[!sz --* x T; PHS(,1)D!,o - -*  x $; PHS(8o)]] t>s 
*[= "=!,1 C -~!,o][r * [?,1 .'=:*, ^ =]11 * [?,o :='*o ^ -~=] 
,[[!s ---. skip];  !,1 T; [?*, --~ skip] .  7, T; [-q8 - - .  skip];  
!,1 ~; [97,1 ~ skip];  AHS(! ,2 .7 ,2) ;  ?s 1] ~ 

*[?,1 "=  ,]11 * [~ "=?,1 C - ' ? M I I  * [7,  ..= = v . " M I I  * [!*~ .'= = ^ ~? ,1 ]  
* [ [ ! ,  ^ ~ - - ~ ? *  T; [-~!* - - ~  A I - I S ( ! , ~ ,  ?,1);  7 ,  ,q]] t>6 

, [ t l  :=  �9 ̂  411 * It2 :=? ,1  ^ -'!*]ll * [~ : =  t ,  C ~ M I I  

* [ . " ,  : =  , : v ? * q l l  * [!,1 : =  = ^ ~ ! 4  
,[[!8 - - ,  skip];  !a T; [?a - -*  sk ip] ;  7, T; 
[-~!s --* skip];  !a 1; [-~?a ----* skip];  7, ~] ~>6 

*[!~ :--!,]11 * [?* : - - 7 4  
,[[!,^!v ~ skip]; (?v t II?~ t); [-4v ̂  ~!, --~ skip];  (?v I liT* ~)] t>6 
, [ ~  : = ! ,  C !El l  * [7,  : =  ,,,]11 * [?v :=  ,,,] 
,[[!s ~ skip];  *[AHS(!a,  ?~)]; P H S ( ! , ,  7,)] t>6 
, [~ :=!~ C !,]ll * [!~ :=  ~ ^ ~74  
,[[!, ---, skip]; sk ip ;  PHS(!~ ,  7,)] t>o ,[?s :=!~] 

F ig .  4. Rewri te  rules for Phase  6: Circuit  Genera t ion  

5.7 T h e  C o r r e c t n e s s  o f  t h e  T r a n s l a t i o n  P r o c e s s  

The  t rans la t ion  sys tem presented above is correct  in the following two senses. 
First,  the compi la t ion  always produces  a circuit and  second, the final circuit is 
t r ans fo rmat iona l ly  equivalent to the original specification. 

T h e o r e m  9. For all m E S- CSP, 

1. m ~ l - 6 m 6  fo r  some m6 E H - C S P ;  and 
2. i f  m ~ l - 6 m 6  then for  any closing tes t ing module m t E S-CSP* such that  

(mllmq  ob, (m611mD. 

6 C o n c l u s i o n s  

We have shown t h a t  Mar t in  et al.'s methodo logy  can be made  more  rigorous.  
In order to accompl ish  this the new concepts  of  par t ia l  declarat ions,  module  
and component ,  m u t u a l  exclusion violations,  fairness, handshak ing  variables,  
dist inguished ports ,  equat ional  rewriting, separa te  compi la t ion and  observable  
de te rmin i sm were introduced.  

Two  recent papers  address the same general  p rob lem of proving correctness of  
asynchronous  circuit compi la t ion [WBB92, vB92]. These two sys tems  are more  
closely related to each other  t han  either are to our work. In brief, the ma in  
advan tage  over our work is lack of  the mu tua l  exclusion issue and  compl ica t ions  
in t roduced  thereby, and  the d isadvantages  are expressiveness of  the specification 
language  and  speed of result ing circuits. 
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In a prelimary report [WBB92], Weber, Bloom, and Brown define a process 
language Joy and its compilation to asynchronous circuitry. Joy has a number of 
syntactic restrictions including the restriction that no processes may share vari- 
ables or passive port names. Their correctness proof is based on a bisimulation 
equivalence, which does not incorporate fairness. 

van Berkel gives a correctness proof for compiling the CSP-based specification 
language Tangram to circuits. Tangram can only have single uses of each port, 
and disallows concurrent reads. His proof of correctness is based on a trace 
equivalence that does not take fairness into account. 
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