
Correct Compilat ion of Specifications to
Determinist ic Asynchronous Circuits

Scott F. Smith and Amy E. Zwarieo

Department of Computer Science, The Johns Hopkins University, Baltimore, MD
21218 USA.

1 I n t r o d u c t i o n

In the past few years, researchers have developed powerful methods to aid in
the construction of large asynchronous circuits [Marg0a, MBL+89, vB92, BS89,
MBM89]. These methods are a significant departure from the traditional de-
sign methodologies used in circuit development in they are automatic or semi-
automatic techniques for synthesizing asynchronous circuits from high-level spec-
ifications.

All of these projects excepting [MBM89] use the same basic methodology. The
circuit is specified as a set of concurrently executing processes that can commu-
nicate via fixed channels. Each process is constructed from simple programming
language constructs that include variables ~ and assignments z := a, conditional
branching, looping, and sequencing. The specification then undergoes a series
of transformations to produce a circuit.

While these methods have been around for the better part of a decade, there
has been recent work that makes progress toward showing the correctness of such
a methodology may be rigorously established by formal means [SZ92, WBB92,
vB92]. Thus, using these methods it is possible to design and implement provably
correct asynchronous circuits.

The asynchronous design method our work is based on is that of Martin et
al. [Marg0a, MBL+89]. Burns has described and implemented a circuit compiler
[BM88] that uses this method to automatically translate specifications into cir-
cuits. Preliminary results showing the correctness of this general methodology
were reported by us in [SZ92].

The results in this paper rely on a standard model of asynchronous circuit
behavior that is speed-independent, fair and exhibits hazards under certain con-
ditions. By speed independence we mean that gates may delay arbitrarily but
wire values propagate instantly from source to destination, and a wire is con-
sidered to have only one value at a time. In the literature, this is also known as
the isochronic forks assumption, where a forked signal arrives at all destinations
simultaneously. Unlike other formal models for circuits in the literature, we make
explicit assumptions that gate delay cannot be infinite: if a gate is continuously
enabled to switch, it will eventually switch (weak fairness assumption). Finally,
we assume that a gate may ignore a spike on an input if the output of the gate
does not depend on that particular input. Any other spike will produce a hazard.
Hazards should provably never occur in circuits produced. The weaknesses of the

180

model are the zero wire-delay assumption and allowance of arbi trary fan-in and
fan-out.

The paper is structured as follows. We begin by defining C-CSP (Circuit
CSP) in Section 2. In Section 3, we give C-CSP meaning via an operational
semantics. Two distinguishing features of our presentation are that we allow only
fair computat ions and that we formalize violations of mutual exclusion on read-
ing, writing, and synchronization. We define equivalence in Section 4 based
on ideas of testing equivalence, and formalize what it means for the transfor-
mations to be semantics-preserving. In Section 5, we formalize compilation as
a 6-phase rewrite system for translating a high-level C-CSP specification into
an asynchronous circuit implementat ion and show that each rewriting phase
is semantics preserving. A more complete version of this paper is available as
[szgs].

2 T h e C i r c u i t L a n g u a g e - - C - C S P

In this section we introduce C-CSP (Circuit-CSP), a language for specifying
asynchronous circuits loosely based on [Hoa85, BM88]. We use the same lan-
guage as the specification language, the intermediate language, and to express
circuits. This decreases the overhead brought about by performing explicit lan-
guage translations. C-CSP is specified by the following grammar.

c ::= t r u e I fa lse I ~ I p ? I (e A e) I (e V e) I ~e

c ::= s k i p I �9 := e I c; c I [e ~ d . . . le ~ d I * [c] I clio I P! I P ? I w i t h d d o c en,
d : : = r ~ d l w ~ d l P t d l P ? d I ,

We use e, c and d to range over boolean expressions, commands (also referred
to as terms or processes), and declaration lists, respectively.]) is the set of C-
CSP variables; x, y, z . . . E]~ range over variables, and !~, !y, !z, ?y, ?y, ? z . . . E];
range over handshaking variables. The handshaking variables are only used in
the implementat ion of handshaking protocols. 79a is the set of active port names;
S!, P!, C!, D ! . . . range over 7~a . Similarly, 7~p is the set of passive port names,
and S?, P?, C?, D ? . . . range over ~p.

The boolean expressions e are the usual ones plus Martin 's probe /5?, by
which a passive port may test to see if the corresponding active port is enabled
without causing a synchronization to occur.

The commands are similar to those of CSP. sk ip does nothing. Assignment,
:= e, assigns the value of e to the boolean variable ~. As a shorthand we

represent �9 := t r u e and �9 := fa l se by �9 T and �9 ~, respectively. Sequential
composition is denoted by ";". Choice among guarded commands is designated
using ~ and infinite repetition of c is designated by .[c]. Parallel composition is
represented by I]. As in CSP, processes synchronize with one another through
ports P! and P?. An active port P! and its corresponding passive port P? form
a channel we informally named P.

The declarations d in w i t h d do c e n d bind variables and port names as
follows. Declaration P! in d binds occurrences of P! in c. Declaration P? binds

181

occurrences o f /5? an P?, w ~ binds all write occurrences of $ and r �9 binds
all read occurrences of x. All boolean variables may be declared twice: once by
a declaration in which they may only be read (r), and once where they may be
both read and written (w). These duM declarations are critical for proving the
transformation correct. Also, corresponding active and passive parts of a channel
P are declared separately as P! and P?. Outside of the declaration of P?, for
instance, P? may not be used. It is not possible to declare the same port name
or use of a variable more than once. A C-CSP term c is said to be syntactically
well-formedif this property and some other technical restrictions hold. Hereafter
C-CSP terms are taken to be the syntactically well-formed terms.

In order to formally describe compilation, we need to define three types of
C-CSP terms - - modules, components and closed terms. The class of C-CSP
terms that may be separately compiled are called modules. All ports and write
variables used in a module are declared in that module. The terms in the lan-
guage corresponding to physical silicon devices (chips) are components. They
may communicate with the outside world via ports, but, unlike modules, may
not share boolean variables with the outside world. Finally, we have closed terms
that share no variables or ports with the outside world.

C-CSP spans the expressibility gamut from high-level to gate-level circuit de-
scriptions. Two sublanguages of C-CSP are S-CSP, a "pure" specification part
of the language, and H-CSP, used to describe silicon devices. S-CSP (Specifica-
tion CSP) terms are defined to be C-CSP terms without instances of handshake
variables !~, ?~. H-CSP (Hardware CSP) terms consist of the parallel execution
of C-CSP processes that represent gates. Letting t range over literals of the form

or -~ , these processes are of the form .[~ := t l o p . . . op ~,~] where op is A or
V; or C-elements, ,[~ : : (~1 V ~) A (~ V (~1 Al2))], abbreviated *[~ := (~1 C ~2)]-

3 O p e r a t i o n a l S e m a n t i c s o f C - C S P

We define the operational semantics of C-CSP, by defining a relation --* that
represents a single step of the computation. Each configuration consists of a
closed C-CSP term and a state cr containing the current values of ports and
variables.

There are a number of challenges to giving semantics for C-CSP. Most impor-
tantly, mutual exclusion must be enforced on certain parts of circuits. We cannot
properly realize circuits which violate mutual exclusion on writing variables or
synchronization. We thus construct our C-CSP semantics so an E R R O R is
yielded if mutual exclusion is violated. The translations in turn guarantee that
well-formed processes stay well-formed, resulting in a circuit that does not have
two simultaneous requests for the same resource. One of the key features of our
work is making these ideas rigorous; the other formalizations [WBB92, vB92]
choose to weaken the expressiveness of the language and translation scheme so
such errors may never occur.

State, initial state, and configurations are defined as follows. A state ,7 is
a finite mapping from V U :P~ to Bool . ~(c) is the initial state for c, with all

182

variables set to fa lse . A configuration (c, 0-) consists of a closed term c and a
s tate cr tha t represents a point in the computa t ion .

Augment ing or changing the state funct ion 0- is abbrevia ted 0-Ix = b]. 7~a
is par t of the domain of 0- and is used to define the semantics of the probe:
0"(/5?) = t r u e iff P! is waiting to synchronize.

One impor t an t nota t ional convenience is the context, a term with a hole "*"
poked in it where another term may be placed. A contezt C is a te rm containing
numbered holes " . / ' , i E N. C[cl] . . . [cn] is the result of syntact ical ly replacing
all occurrences of *i in C with terms cl for each 1 < i < n. A closing context for
a term c is a context C such tha t C[c] is closed.

We define a subclass of contexts, the reduction contexts to simplify the pre-
sentat ion of operat ional semantics. A reduct ion context is a syntactic means of
isolating the next computa t ion step to be performed. A reduction context R is a
context constrained to be of the form

R = *i or R ; c or RIIc or cllR or RIIR or w i t h d d o R e n d ,

Often contexts with only one distinct hole are used, in which case *k for the
single present value of k m a y be abbrevia ted *.

Evaluat ion is now defined. First, all boolean expressions are evaluated with
respect to a state c, by homomorphica l ly extending the domain of 0- to all boolean
expressions.

Second, the semantics of commands are defined by the single-step computa -
t ion relation ---* mapp ing configurations to configurations as follows.

D e f i n i t i o n 1.

(Assignment)

(Sequencing)
<R[z := e], 0-) --+ <R[skip], c,[z = 0-(e)]}

<R[skip; c], 0-} --+ <R[c], 0->

We next want to identify the bad configurations tha t violate mutua l exclusion
principles. Leading up to this we define those computa t ion steps tha t change
some expression value and those tha t depend on some expression value. A com-
puta t ion step changes an expression, changes(e, (c, c~) --~ (c', 0-')), if the value of
e changes as a result of tha t computa t ion step. A computa t ion depends on the
value of e, depends(e, (e, 0-) --+ <c', ~'>), if e must be t r u e in order for the step
to occur or if the step assigns the value of e to a variable z.

(Selection)
<Rile1 el0...0e ' c 0.-.0e , <R[e,],0-1

where 0-(e,) = t r u e and Vj r i.0-(ej) = fa l se
(Repeti t ion)

<R[�9 Iv]I, 0-> <R[c; ,Jell, 0->
(Parallelism)
(1) (RIP!] , cr[P! = false]> ---+ (RIP!I , 0-[P! = t rue])
(2) (R[P!][P?], 0-[P! = t r ue]) ---* (R[sk ip] [sk ip] , 0-IF! = false]>
(3) (R[skip[[skip] , 0-> ---+ (R[skip] , 0-)

183

Def in i t i on 2. (c, ~r) ---, E R R O R (the configuration is in error)iff either

1. changes(e, (e, er) --. (c~,o")) and depends(e, (c,~) --+ (c"i~")), a n d e ' # c",
o r

2. changes(e, (c, or) ---* (d, r and changes(e, (c, o') ~ (c", ~r;'}), and c' • c",
or

3. c = R[[el , Cl~ . .~e i ~ c i O . . . ~ e n ~ cn]] and o'(ei) = o'(ej) = t r u e
f o r j # i

De f in i t i on 3. _!+ is the transitive, reflexive closure of single-step: computation
---~~

We define the notion of a semantically well-formedcomponent as a t o m .
ponent that never causes a n E R R O R to arise internally (technical details are
omitted). It is then an obligation of the circuit designer to show component
specifications well-formed, and our translation process then guarantees that the
resulting circuit is well-formed:

There are many computation paths possible, since at a given point multiple
processes (or gates, at the hardware level) may be running and the next step
could be performed by any one of those processes. Certain computation paths
are unfair because processes that are able to execute are kept from doing so
forever because all the steps are taken by other active processes.

Since circuits execute fairly (gates do not delay infinitely), our proofs of
correctness will depend on the fair behaviors of processes. Specifically, we only
concern ourselves with the weakly fair computations. That is, if a process is con-
tinuously enabled to execute, it will eventually execute. Although the informal
idea is simplei the formal definition is not. For the full definitions, see [SZ93].

4 C i r c u i t T e s t i n g a n d E q u i v a l e n c e

The equivalence we define is a variation on the testing equivalence of [Hen88]:
This is :a precise formalization o f exhaustive test ing, so if two processes are
testing-equivalent, no difference will be ever be able to be ascertained between
the two by a tester.

We add a new distinguished success variable, ~suceess, to the existing C-CSP
variables, resulting in an extended language C-CSP* , the language of testers. The
testing process indicates success by setting ~suceess to t rue . A testing contezt is
a C~CSP* context.

De f in i t i on 4 , Let c0be a closed C-CSP*. term. A fair computation (co, *(e0))
(cl, eri) ~ .. ~--~ (on, c ' n) - -* , . . , is successful:iff for some i, ~(zSuecess) = t r u e :
It is failing if it is not successful.

We prove the transformations equivalence-preserving by showing that each
transformation preserves the testing behavior. There is a technical complica-
tion that some transformations may actually reduce the possibility of E R R O R s

184

arising in our circuits. This obviously causes no problems, but complicates the
mathemat ics because something with more errors is not equal to something with
less errors. This small complication will be ignored in this abbreviated presen-
tation. The most impor tant definition is the following.

Definltlon5 O b s e r v a t i o n E q u i v a l e n c e . Let c and c ~ be closed semantically
well-formed C-CSP* terms, c -~obs c ~ if[there exists a successful computat ion
of c iff there exists a successful computat ion of c I, and there exists a failing
computat ion of c iff there exists a failing computat ion of c ~.

One property we may prove tha t simplifies our work considerably is the
following.

L e m m a 6 D e t e r m i n i s m . For all wel l - formed closed C-CSP* t e rms c, ei ther

all fa ir computat ions are successful or all fa ir computat ions are failing.

Proof. The proof hinges on a B u b b l i n g L e m l n a . If there is both a successful
and failing computat ion o~ some c, the failing one can be translated (bubbled)
into a successful one, contradicting the fact that it was failing. Fairness is critical
to the proof.

A corollary of this theorem is all hazard-free circuits constructed of and,
or, not, and C-elements must be observably deterministic, since H-CSP is a
sublanguage of C-CSP. We plan to present this in full detail in a future paper,
it is out of the scope of our present task. This theorem allows us to remove the
second clause from the definition of ~--obs, making it easier to show equivalence.

T h e o r e m 7 . Let c and c I be closed semant ical ly wel l - formed C-CSP* terms.

c ~obs c I if] there exists a successful computat ion o f c i f f there exists a successful

computat ion o f c I.

Another complexity in defining equivalence for our system arises because
certain of the t ransformation rules change the way processes interact with their
environment, by for instance replacing a port P with an explicit handshaking
protocol. These two processes will not be "equal" in the standard sense. We thus
define a notion of equivalence tied to the compilation process, details of which
will soon be given.

4.1 Rewriting and Equivalences

As described in detail in the next section, we divide the translation process into
six phases and implement each phase using a distinct term rewriting system.
For instance, if c; sk ip t>R c is a rule in some rewrite system R, this rule allows
any subexpression of the form c; sk ip to be replaced with c, for arbitrary terms
C.

In Section 5, we define the six rewrite systems ~ 1 - ~ 6 by giving six sets of
rules b l . . . t>6. A specification m0 is compiled to a circuit m6 by the rewriting

m o ~ N m l ~ N 2 m 2 N N N N ~ 3 m 3 ~ 4 m 4 ~ s m 5 ~ 6 m6,

185

For this we use the abbreviation m o ~ l - e m 6 (mo compiles to m6). To refer to
modules that are the result of translating an initial specification through i levels
we write ~ i m , for i E { 1 , . . . , 6 } .

4.2 Transformat ion Equivalence

The notion of "equivalence" under t ransformation is a difficult issue, because
the method by which the specification/circuit interacts with the environment
changes during compilation. Our solution is to change the tests in a similar
fashion to the process being tested, and show the outcome of tests is the same.
With this intuitive idea in mind, we now define the equality we use in proving the
transformations correct. We note this equality ~i for each level i of rewriting.

Def in i t ion8 . m k ~ k + l m k + l iff ~ g m k , m k ~ N + l m k + l and for any module m~
in C-CSP* such that g t then O k m k and mtkllmk is closed, i f m ~ k + l m k + l g t ,

Intuitively given a specification module m0 compiled to a digital circuit ms,
this compilation is correctness-preserving if and only if for any tester of the
original system, m~, this tester gets the same results on m0 as its compiled
counterpart m t does on m6.

5 Compilat ion of C-CSP Specif ications to Circuits

Our system for incrementally translating C-CSP process specifications to circuit
implementations consists of six rewrite systems that are applied sequentially,
translating a specification m0 to ml , to m2, . . . , and finally to a circuit module
m6. Each of these rewrite systems is defined with respect to a set of equa-
tions, SCA, that equates certain terms that differ only slightly in their scoping
structure, the way they commute guard order and parallel composition, and the
associativity of parallel and sequential composition.

We begin by adding a "start channel" S to the term being compiled. We
then begin the transformation. Phase 1 produces a separate process for each
constructor of the original term, be it guard, loop, active or passive communica-
tion, assignment, or parallelism. Phase 2 expands the high-level synchronization
of C-CSP into a 4-phase handshaking protocol. Phase 3 simplifies guarded com-
mands so each guard is evaluated in parallel. Phase 4 modularizes the specifica-
tion by giving each use of a port name a new, distinct, name. Phase 5 reshuffles
the handshake protocols in order to make efficient circuit implementat ions more
feasible. Finally, Phase 6 translates each of the small modules that remain into
digital circuitry consisting of and, or, not gates, C-elements, and wires.

5.1 P h a s e I: Syntax -Direc ted Rewri t ing

This phase transforms the original specification into many small processes of the
form *[IS , c; S?]], where c is a node of the original syntax tree. It also creates a

186

single "assignment process" corresponding to each boolean variable to physically
isolate its s torage location (1 : A S S I G N 1). All assignments synchronize with
this process to assign a new value to the variable (1 : A S S I G N 2). (1 : S E P)
creates a separate process for each par t of the expression. I n 4 h i s rule, O P is
me tano ta t i on for one of sequential composit ion, parallel composit ion, looping
or choice. I f it is choice, then O P also incorporates the guarding expressions
e l , . . . , e,~. Top-down application of these rules produces a set of processes, one
for each node in the abstract syntax tree The rewrite rules for phase 1 appear
in Figure 1.

(1 : ASSIGN 1) w i t h w = d o c e n d t>l w i t h w ~ d o
w i t h s0?,s l? do

*[[~07 --~ = ~;s0?D~? --~ = T;&?]]
e n d II
w i t h S0!, &! do c e n d

e n d
(1 : ASSIGN 2) w i t h w = d o

(1 : SEP)

w i t h so ?, st ? d o �9 [[s0 ? ---* ~ ~; So ? ~S1 ? -----~ X T; $17]] end{I
w i t h s0!,Sl! d o C[= := e] e n d
e n d t>l
w i t h w = d o

w i t h s0 ?, sl ? d o �9 [[~0 ? ---* ~ ~; So ?B~I ? ---* = T; & 7]] e n d []
w i t h S0!, Sl! d o C[[",e ---* So!Ue --~ S~!]] e n d

e n d
�9 [[S? ---, OP(c l c,~); S?]] D1
w i t h Sl! S~! d o �9 [[B? ~ O P (s t ! s~!); ST]] endll

(ll~=~with si? d o �9 [[•? ---. c~; s~?]] e n d

F ig . 1. Rewrite rules for Phase 1

5.2 P h a s e 2: H a n d s h a k i n g E x p a n s i o n

H a n d s h a k i n g expans ion replaces the C-CSP synchronizat ion constructs with boolean
handshaking variables implementing the four-phase handshaking protocol. Since
the active and passive ports need not be declared in the same scope, we must
in t roduce two rules to carry out this rewriting. The rules appear in Figure 2,
where we simplify the nota t ion by lett ing A H S (! p , ?p) =!p T; [?P , skip]; !p J~
; [-~?p ~ skip] and P H S (! p , ?p) = [!p , skip]; ?p T; [-~!p ----~?p ~], the active
and passive handshaking protocols.

�9 The left- and r ight-hand sides of the handshaking expansion rules do not have
the same test ing behavior when tested with the same test, because the tester is a
fixed process, but to communica te with mt it mus t use ports and to communica te

187

(2 : HS x) w i t h P! d o c[P!] e n d ~>2 w i t h w !p,r ?p d o C[AHS(!v , ?p)] e n d
where C c o n t a i n s no o c c u r r e n c e s of PI .

(2 : H S 2) w i t h P : d o c [P ?] [P :] e n d t>2 w i t h r !p, w : p d o C[!p][PHS(!p, :p)] e n d
where C c o n t a i n s n o o c c u r r e n c e s of P ? or P .

Fig . 2. Rewri te rules for Phase 2: Handshak ing Expans ion

with m2 mus t use handshaking . Therefore the two will look different to a lmost
all testers. However, the two rules are t r ans fo rmat iona l ly equivalent because
all occurrences of por t s are uniformly replaced with handshak ing variables and
handshaking variables are exclusively used in the handshak ing protocols. I t is
then s t ra ight forward to show tha t the observable behavior in presence of por t s
(behavior of rnl lira, ~) is the same as in the presence of handshak ing (behavior of
m , llm for

5.3 P h a s e 3: G u a r d S i m p l i f i c a t i o n

This phase first separates guarded processes into parallel processes, (3 : G U A R D 1)
and then fur ther separa tes each guarded process into its own collection of m u t u -
ally exclusive guards t ha t are conjunct ions of literals (3 : G U A R D 2). These
rules appea r in Figure 2. (3 : G U A R D 1) preserves the m u t u a l exclusivity of
each of the guarded processes by reshuffling the passive handshake on !s, ?s so
t ha t the process ac t iva ted by A H S (! s i , ?s~) waits for !s to become false, de-
ac t ivat ing all guards, before actual ly executing the process.

(3 , G U A R D 1) *[[!8 ---* [el ---* A H S (! s t , ? s l) 0 . . . B e . ~ A H S (t s . , ? s .)] ; P H S (! s , : s)]] t>:

�9 ([t, ^ c, - - . : , T; [-,!, ---* AHS(f , , , :,1); : , 111111... I1
�9 [[Is ^ c,, - - - , I s T; (--,!s ~ A H S (! s , , , : , , ,) ; : s 1]11

(~ : G I I A K D 2) w i t h w :s r !, do �9 [[Is ̂ e ----.:s l; [-,Is ----, AHS(Is ' , :s'); :s l]]]endt>~
w i t h w :s r .', d o

�9 [[!, ^ c l - - - . : , T; [-,t, - - , A H S (' , ' , : , ') ; : , &]]]ll... II
�9 [[Is ̂ c,, ---.:s T; [-,Is ---. A H S 0 , ' , :d); : , l] l lend

where e t v . . . v e~ is the resul t of placing

e in disjoint dis junct ive n o r m a l fo rm.

Fig . 3. Rewri te ~ules for Phase 3.

188

5.4 P h a s e 4: M o d u l a r i z a t i o n

In this phase, each of the processes created by phases 1-3 is transformed into a
module in order to localize all write scopes of variables. It should be noted that
the only processes that are not already modules are those implementing atomic
active and passive synchronization on non-distinguished ports, and the individ-
ual guarded command processes. The synchronization processes may fail to be
modules because several distinct processes may use the same non-distinguished
port (at this point handshaking variables). Thus the declarations of the "write"
handshaking variables cannot be made local to a single process. Similarly, with
guarded processes, there may be many guarded processes that wait for a start
signal from the same active handshake. In the interest of space, we only present
the rule for modularizing an active handshake variable shared by two processes.

w i t h w !,, r ?p do C[AHS(!p, ?p)][AHS(!p, 7v)] e n d t>4
w i t h r ?p,r !pl,r !p2,w !p,w ? p l , w ?p2 d o

�9 [:p :=!p~v!p2] II * [?p~ :--!pl C ?p] II * [?p~ :=!p~ C ?p]
c [w i t h w !pl r ?p~ do AHS(!pl, ?Pl) end]
[wi th w !p2 r ?,2 do AHS(! ,2 , ?p2) end]

e n d

5.5 P h a s e 5: R e s h u f f l i n g

Upon entering this phase, each module is of the form [!s , e; PHS(! s , ?s)]
for some c (ignoring declarations). The hardware implementat ion is simpler if
the initial [!s , skip] of the passive protocol is eliminated, and if some of the
response ?s T; [~!s , skip]; ?s I is interleaved with the execution ofc. Although
each type of module requires a different form of reshuffling, the general principle
is that a reshuffling may occur when the active communication A H S (! s , ? s)
corresponding to the passive communication P H S (! s , ?s) above has not yet had
anything reshuffled into it. As an example we show the reshuffling rule for active
handshaking.

(6 : ACT) w i t h r !s,r ?a,w ?s,w !a do �9 [[!s ---, AHS(!a,?a);PHS(!s,?s)]] e n d
t>s

w i t h r !s, r ?a, w ?s, w !a d o

�9 [[!, ----, skip]; !a T; [?a ---' skip]; ?, T;
[~'., ~ skip]; !a 1; [~?a ---* skip]; ?* *]

e n d

5 .6 P h a s e 6: F i n a l C o m p i l a t i o n i n t o c i rcu i t s

This phase takes individual processes representing the various atomic actions,
and transforms each into a circuit representation. The rules appear in Figure 4
(sc0ping information has been removed for brevity). The correctness of each of
these rules relies critically on the fact that the handshaking protocol is obeyed
by all parts of the circuit.

189

(6 : A S S I G N)

(e �9 S E Q)

(6 : G U A R D)

(6 : ACT/PAR)

(6 : PASS)

(0 �9 T, O O P)

(e �9 S K I P)

[[!sz -- x T; PHS(,1)D!,o - -* x $; PHS(8o)]] t>s
*[= "=!,1 C -~!,o][r * [?,1 .'=:*, ^ =]11 * [?,o :='*o ^ -~=]
,[[!s ---. skip]; !,1 T; [?*, --~ skip] . 7, T; [-q8 - - . skip];
!,1 ~; [97,1 ~ skip]; AHS(! ,2 .7 ,2) ; ?s 1] ~

*[?,1 "= ,]11 * [~ "=?,1 C - ' ? M I I * [7, ..= = v . " M I I * [!*~ .'= = ^ ~? ,1]
* [[! , ^ ~ - - ~ ? * T; [-~!* - - ~ A I - I S (! , ~ , ?,1); 7 , ,q]] t>6

, [t l := �9 ̂ 411 * It2 :=? ,1 ^ -'!*]ll * [~ : = t , C ~ M I I

* [. " , : = , : v ? * q l l * [!,1 : = = ^ ~ ! 4
,[[!8 - - , skip]; !a T; [?a - -* sk ip] ; 7, T;
[-~!s --* skip]; !a 1; [-~?a ----* skip]; 7, ~] ~>6

*[!~ :--!,]11 * [?* : - - 7 4
,[[!,^!v ~ skip]; (?v t II?~ t); [-4v ̂ ~!, --~ skip]; (?v I liT* ~)] t>6
, [~ : = ! , C !El l * [7, : = ,,,]11 * [?v := ,,,]
,[[!s ~ skip]; *[AHS(!a, ?~)]; P H S (! , , 7,)] t>6
, [~ :=!~ C !,]ll * [!~ := ~ ^ ~74
,[[!, ---, skip]; sk ip ; PHS(!~ , 7,)] t>o ,[?s :=!~]

F ig . 4. Rewri te rules for Phase 6: Circuit Genera t ion

5.7 T h e C o r r e c t n e s s o f t h e T r a n s l a t i o n P r o c e s s

The t rans la t ion sys tem presented above is correct in the following two senses.
First, the compi la t ion always produces a circuit and second, the final circuit is
t r ans fo rmat iona l ly equivalent to the original specification.

T h e o r e m 9. For all m E S- CSP,

1. m ~ l - 6 m 6 fo r some m6 E H - C S P ; and
2. i f m ~ l - 6 m 6 then for any closing tes t ing module m t E S-CSP* such that

(mllmq ob, (m611mD.

6 C o n c l u s i o n s

We have shown t h a t Mar t in et al.'s methodo logy can be made more rigorous.
In order to accompl ish this the new concepts of par t ia l declarat ions, module
and component , m u t u a l exclusion violations, fairness, handshak ing variables,
dist inguished ports , equat ional rewriting, separa te compi la t ion and observable
de te rmin i sm were introduced.

Two recent papers address the same general p rob lem of proving correctness of
asynchronous circuit compi la t ion [WBB92, vB92]. These two sys tems are more
closely related to each other t han either are to our work. In brief, the ma in
advan tage over our work is lack of the mu tua l exclusion issue and compl ica t ions
in t roduced thereby, and the d isadvantages are expressiveness of the specification
language and speed of result ing circuits.

190

In a prelimary report [WBB92], Weber, Bloom, and Brown define a process
language Joy and its compilation to asynchronous circuitry. Joy has a number of
syntactic restrictions including the restriction that no processes may share vari-
ables or passive port names. Their correctness proof is based on a bisimulation
equivalence, which does not incorporate fairness.

van Berkel gives a correctness proof for compiling the CSP-based specification
language Tangram to circuits. Tangram can only have single uses of each port,
and disallows concurrent reads. His proof of correctness is based on a trace
equivalence that does not take fairness into account.

References

[BM88]

[BS89]

[Hen88]
[Hoa85]
[Mar90]

[MBL + 89]

[MBM89]

[SZ92]

[SZ93]

[vB92]

[WBB92]

Steven M. Burns and Alain J. Martin. Synthesis of self-timed circuits by
program transformation. In G.J. Milne, editor, The Fusion of Hardware
Design and Verification, pages 99-116. Elsevier Science Publishers B.V.
(North-Holland), 1988.
Erik Brunvand and Robert F. Sproull. Translating concurrent programs
into delay-insensitive circuits. In Proceedings of ICCAD-89, pages 262-265.
IEEE Computer Society Press, 1989.
M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
Alain J. Martin. Programming in VLSI: From communicating processes
to delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in
Concurrency and Communication. Addison-Wesley, 1990. UT Year of Pro-
gramming Institute on Concurrent Programming.
Alain J. Martin, Steven M. Burns, T.K. Lee, Drazen Borkovic, and Pieter 3.

Hazewindus. The design of an asynchronous microprocessor. In Charles L.
Seitz, editor, Advanced Research in VLSI: Proc. of the Decennial Caltech
Conference on VLSI, pages 351-373, 1989.
Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt.
Automatic synthesis of asynchronous circuits from high-level specifications.
IEEE Trans. on CAD, 8(11):1185-1205, November 1989.
Scott F. Smith and Amy E. Zwarico. Provably correct synthesis of asyn-
chronous circuits. In J0rgen Staunstrup and Robin Sharp, editors, 2nd
Workshop on Designing Correct Circuits, Lyngby, pages 237-260. Elsevier,
North Holland, 1992.
Scott F. Smith and Amy E. Zwarico. Correct compilation of specifications
to deterministic asynchronous circuits. Technical Report 05-93, The Johns
Hopkins University, Department of Computer Science, Baltimore, MD 21218
USA., 1993. Anonymous ftp: ftp.cs.jhu.edu.
Kees van Berkel. Handshake Circuits: an intermediary between communi-
cating processes and VLSI. PhD thesis, Eindhoven U., May 1992. Oxford
University Press, to appear.
S. Weber, B. Bloom, and G. Brown. Compiling Joy to silicon. In Advanced
research in VLSI and parallel systems : proceedings of the 1992 Brown/MIT
conference. MIT Press, 1992.

