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ABSTRACT. This paper considers representations of graphs as rectangle- 
visibility graphs and as doubly linear graphs. These are, respectively, graphs 
whose vertices are isothetic rectangles in the plane with adjacency 
determined by horizontal and vertical visibility, and graphs that can be drawn 
as the union of two straight-edged planar graphs. We prove that these graphs 
have, with n vertices, at most 6n- 20 (resp., 6n - 18) edges, and we provide 
examples of these graphs with 6n- 20 edges for each n > g. 

I. Introduction 
A thickness-two graph G is one whose edge set can be partitioned into two 

planar graphs, each on one copy of the vertex set of G. These graphs are of 
theoretical interest and arise in a multitude of applications. For example, it is an NP- 
complete problem to determine whether a graph has thickness two [9], and the upper 
bound on their chromatic number is known only to lie between 9 and 12 [12, 4, 6]. 
These graphs arise in models for printed circuit boards [5, 6] and in VLSI design and 
layout [18] in which all connections are either horizontal or vertical and so divide 
naturally into two planar layers. Visibility representation of these graphs is of 
increasing interest; see, for example, [11, chap.7]. 

We study thickness-two graphs and their representations (and non- 
representations) as rectangle-visibility graphs and as doubly linear graphs. We show 
that not all thickness-two graphs have these representations. Specifically we show 
that the most (edge) dense thickness-two graphs are neither rectangle-visibility nor 
doubly linear graphs, though these graph representations are ubiquitous among 
thickness-two graphs of lower density. 

A bar-visibility graph [8, 19] is one whose vertices can each be represented 
by a closed horizontal line segment in the plane, having pairwise disjoint relative 
interiors, with two vertices adjacent in the graph if and only if the corresponding 
segments are vertically visible. Two segments are considered vertically visible when 
there is a nondegenerate rectangle R such that R intersects only these two segments 
and the horizontal sides of R are subsets of these two segments. (For variations on 
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this definition, see [11, 14].) Clearly a bar-visibility graph is planar. Not all planar 
graphs are bar-visibility graphs since the latter are characterized as those planar graphs 
for which there is a planar embedding with all cut vertices on a common face [ 14, 
19]. 

A natural two-dimensional analogue is that of a rectangle-visibility graph, a 
graph whose vertices can each be represented by a closed rectangle in the plane with 
sides parallel to the axes, having pairwise disjoint interiors, with two vertices 
adjacent in the graph if and only if the corresponding rectangles are vertically or 
horizontally visible (with horizontal visibility defined analogously to vertical). Note 
that the bands of visibility may overlap and cross. Every planar graph is a rectangle- 
visibility graph [8], and it is clear that every rectangle-visibility graph has thickness 
at most two. Even more, a rectangle-visibility graph is the union of two bar- 
visibility graphs. Our main result on these graphs is that a rectangle-visibility graph 
with n vertices has at most 6n-20  edges, as distinguished from thickness-two graphs 
which have at most 6n -  12 edges. (The latter fact follows from Euler's formula for 
planar graphs, which implies that a planar graph with n vertices has at most 3 n - 6  
edges.) Thickness-two graphs can have as many as 6n-  12 edges; we show also that 
for every n > 7 there is a rectangle-visibility graph with 6n-  20 edges. Using similar 
methods, in [2, 3] it is proved that a bipartite rectangle-visibility graph has at most 
4 n -  12 edges. 

It is a consequence of a classical theorem of Steinitz on polyhedra (see [13]) 
that every planar graph G has a linear or straight-line embedding in the plane. This 
means that 

(1) every edge is a straight line segment, 

(2) no vertex lies in the interior of an edge, and 

(3) edges do not cross. 

(Results on rectilinear drawings, which satisfy only (1) and (2), are obtained in [15].) 
If, instead of property (3), we require that 

(3') G can be partitioned into two subgraphs, each without edge crossings, 

then G is called doubly linear. Again it is clear that doubly linear graphs have 
thickness at most two. We prove that a doubly linear graph with n vertices has at 
most 6n -  18 edges, and for each n > 7 we have an example of a doubly linear graph 
with 6 n - 2 0  edges, two edges less than our upper bound. We give examples of 
doubly linear graphs that are not rectangle-visibility graphs and conjecture that every 
rectangle-visibility graph is doubly linear. 

Since it is known that the problem of recognizing thickness-two graphs is 
NP-complete, it may be difficult to obtain a complete characterization of rectangle- 
visibility or of doubly linear graphs. These concepts come from [5, 8], and from the 
Workshop on Visibility Representations, McGill University Bellairs Research 
Institute, held in February, 1993. Complete details of this work are included in [7]. 

2. Examples of rectangular and doubly linear representations 
Some examples of these representations are shown in the figures. Figures 1 

and 2 show a rectangle-visibility and a doubly linear representation, respectively, of 
the complete graph Ks. 
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A rectangle-visibility representation of K8. 

Fig. 2. A doubly linear representation of K 8. 

This is the largest complete graph so representable since K 9 has thickness 
three [1, 16]. It is not hard to add another vertex, adjacent to six others, to each of 
these representations to obtain K9 minus two edges; it can be arranged for these 
missing edges to be either mutually incident or nonincident. These graphs and K8 
have 6n-20  edges, n = 9, 8, respectively. K9 minus one edge (K9-e) has thickness 
two with 6 n -  19 edges [17]. Theorem 3 will show that K 9 - e  is therefore not a 
rectangle-visibility graph, though it is the union of two bar-visibility graphs. We 
conjecture that Kg- e is not doubly linear. 

Figure 3 shows a rectangular representation of I(5,5 plus four edges, and 
Figure 4 shows a closely related doubly linear representation of K5,5. Figure 3 can be 
extended to a rectangular representation of K5,6 plus edges by adding a long rectangle 
along the left side, and Figure 4 can be similarly extended to a doubly linear 
representation of K5,6. In [2, 3] it is shown that Kp,q with p and q at least 5 is not a 
rectangle-visibility graph (and that K5,5 minus an edge and K5,5 plus an edge are 
rectangle-visibility graphs). Thus K5,5 and I<5,6 are doubly linear graphs, but not 
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rectangle-visibility graphs. These examples point up an essential difference between 
the two classes of graphs: namely, that although a subgraph of a doubly linear graph 
is also doubly linear, the same is not Irue for rectangle-visibility graphs. 

OPEN QUESTION. Is there a rectangle-visibility graph that is not doubly linear? 

I c I 
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Figure 3. A rectangle-visibility representation of KS, 5 plus four edges. 

It is not difficult to obtain, for every n, a rectangle-visibility and a doubly 
linear representation of the join of K4 and Pn and the join of K4 and Cn, where Pn and 
Cn are, respectively, the path and the cycle on n vertices. The join of two disjoint 
graphs G and H is the disjoint union of these two graphs together with an edge 
joining vertices g and h, for each vertex g of G and vertex h of H, and is denoted 
G + H. In these examples K4 cannot be replaced by 1(5 for n > 12 since these graphs 
would contain K5,13 which, by Euler's formula, has thickness at least 3. 

In [7] we prove the following two propositions on representations of joins. 
Proposition 1 gives another family of graphs that have a rectangular representation, 
and Proposition 2 proves these are also doubly linear. Note that, as long as G 
contains a cycle, P2 + G is not planar since it contains a homeomorph of 1{5. 

PROPOSITION 1. If G is a 2-connected planar graph or, more generally, a bar- 
visibility graph, then P2 + G is a rectangle-visibility graph. 
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Fig. 4. A doubly linear representation of K5,5. 

PROPOSITION 2. If G is a planar graph, then P2 + G is doubly linear. 

Additional rectangular examples are found in Figures 5 and 6, and related don 
linear graphs are described in a sketch of the proof of Theorem 8. 

3, Edge bounds and densities for r e c t a n g l e - v i s i b i l i t y  g r a p  

In [7] we determine a tight bound, 6 n -  20, on the maximum number 
edges in a rectangle-visibility graph with n vertices. In addition we examine 
possible edge-densities for rectangle-visibility graphs and for graphs that do not h,' 
a rectangle-visibility representation. More precisely, if m, the number of edges 
greater than 6 n - 2 0 ,  then no rectangle-visibility representation is possible; 
essentially all m < 6n -  20 there exist both examples of graphs that have a rectan~ 
visibility representation and examples of graphs that do not. In particular, we give 
example of a rectangle-visibility graph with n vertices and m edges for each m 
0 < m <_ 6 n - 2 0  and an example of a connected rectangle-visibility graph for each 
with n -  1 < m ,; 6 n - 2 0  (except for two pairs (m, n)). 

THEOREM 3. A rectangle-visibility graph on n > 5 vertices has at most 6 n -  
edges. 
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SKETCH OF PROOF. Let G be a rectangle-visibility graph with representation R*. 
Let R be a rectangle in R* and define N(R) to be the set of rectangles in R* that 
intersect with positive area the one-way infinite band of all points "north" of R. 
Select Rl to be a rectangle R with N(R) empty and with the greatest y-coordinate for 
its bottom. Note that if R' is visible to R l horizontally, then N(R') is empty; 
otherwise there is another rectangle with N(R) empty and y-coordinate larger than 
Rl 's for its bottom. Move RI northward, above the rest of the configuration, and 
expand it horizontally until it is wider than the whole representation. The new Rl has 
retained all its previous visibilities and may have gained some. 

We repeat this process of rectangle movement and expansion to the south, 
east, and west. The resulting configuration is bordered by four rectangles as in Figure 
1. The resulting rectangle-visibility graph G' contains G as a subgraph. Using 
Euler's formula for planar graphs, upper bounds on the number of horizontal and 
vertical edges of G' are 3n -  12 and 3 n - 8 ,  respectively, because the topmost and 
bottommost rectangles of G' have horizontal degree zero and the rightmost and 
leftmost rectangles have vertical degree two. Thus G has at most 6n - 20 edges. QED 

COROLLARY 4. Let G' with n' > 5 vertices be a subgraph of a rectangle-visibility 
graph G. Then G' has at most 6n ' -20  edges. 

See [3] for similar proofs that a bipartite rectangle-visibility graph and a 
bipartite subgraph of a rectangle-visibility graph with n vertices have at most 4 n -  12 
edges. Bipartite rectangle-visibility examples with at most 4 n -  16 edges are given 
also for each n >_ 7, and for each n >_ 16 bipartite graphs with n vertices and 4 n -  12 
edges are known that are subgraphs of rectangle-visibility graphs [10]. 

We also show that the bound of Theorem 3 is best possible for all n >_ 8. 
(For n < 8, as noted before, the complete graphs give the best possible bound.) 
Figures 5 and 6 show rectangular representations with 6n - 20 edges and n = 16 and 
17 vertices, respectively, and Theorem 5 states that similar graphs can be constructed 
for all n _> 8. 
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Fig. 5. A rectangular representation Fig. 6. A rectangular representation 
with n = 3.4 + 4. with n = 13 + 4. 
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THEOREM 5. There is a rectangle-visibility graph with n vertices and 6 n -  20 edges 
for each n >_. 8. 

Rectangle-visibility graphs with fewer edges are also possible, as seen in the 
next result. 

THEOREM 6. With the exception of the cases (n, m) = (6, 16) and (n, m)--  (7, 22), 
the following holds for all n _> 4: 

(a) For each m with 0 _< m < 6 n -  20, there is a rectangle-visibility graph with n 
vertices and m edges. 

(b) For each m with n -  1 _< m < 6 n - 2 0 ,  there is a connected rectangle-visibility 
graph with n vertices and m edges. 

The exceptions arise since a simple graph with n vertices has at most n ( n -  1)/2 
edges. Otherwise these graphs are constructed from those of Theorem 5 unioned either 
with a graph with no edges or with a path (for the connected case.) 

Families of graphs with n' > 9 vertices and m' _> 35 edges that are not 
representable by rectangles can also be found. For any 0 < m < 6 n -  20 for which 
there is a rectangle-visibility graph G with n vertices and m edges, form the disjoint 
union of G with K 9 - e  to obtain a graph with m + 35 edges and n + 9 vertices. By 
Corollary 4, the new graph is not a rectangle-visibility graph since K 9 -  e has more 
than 6 n - 2 0 ,  n = 9, edges. Connected graphs G together with K 9 - e  plus an 
adjoining edge similarly give connected examples. 

4. Edge bounds and densities for doubly linear graphs 

We also present parallel results for doubly linear graphs; however, our 
examples, related to those of Theorem 5 and having 6 n - 2 0  edges, come only within 
two of the edge-bound 6 n -  18 of Theorem 7. 

THEOREM 7. If G is a doubly linear graph with n > 4 vertices, then G has at most 
6 n -  18 edges. 

In fact, for n > 4, the proof establishes an edge-bound of 6n - 20 except in 
the case when the convex hull of the embedding consists of three vertices. Except for 
K 4, w e  have no example of a doubly linear graph with more than 6n - 20 edges. The 
graphs of  the next result are doubly linear analogues of those of Theorem 5. 

THEOREM 8. There is a doubly linear graph with n vertices and 6 n - 2 0  edges for 
each n _> 8. 

SKETCH OF THE PROOF. Suppose that n - k in+4  with k, m > 1, m < k, and let 
q >_ 2 be an integer such that k < qm. Let S be the grid points in the rectangle 

T =  {(x,y) : 0 < x < k - l , 0  < y  <_ m -  1], 
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and let 

a = (--4k, -m), b = (4k, 3m), c = (8k, 3 m -  10qm), and d = (-k, 3m+ 13qm). 

The vertices a, b, c, and d are joined by straight edges to form a K4 with no edge 
intersecting the rectangle T. 

We form two sets R and B of edges, each a linear triangulation. Let R have 
the edges 

{s, s+ (1, 0)}, {s, s+ (1, 1)], {s, s+ (2, 1)} for all s in S (and 
when the second vertex is an element of S); 

{a, (x, y)} for x = 0 or x = 1 or y = 0; 

{b, (x, y)} for x = k -  I or x = k - 2  or y = m -  1; 

the edges of the K4 formed by a, b, c, and d; and 

{c, (k -  1,0)}. 

Thus a is connected to the left two columns of vertices and to the bottom vertices of 
T, and b is connected to those on the top and in the two rightmost columns. 

Let B have the edges 

{s, x+(0,  1)}, {s, s+ (-1, I)}, {s, s+ (-1, 2)} foraU s in S (and 
when the second vertex is in S); 

Ic,(x, y)} for x = k - 1  o r y = 0 o r y =  1; 

{d, (x, y)} f o r x =  0or  y -  m - 1  or y =  m - 2 ;  

the edges of the K4 except for the edge ab; 

{a. (0, 0)}, and {b, ( k -  1, m -  1)}. 

Thus c is connected to the bottom and to the right of the rectangle by straight edges 
(since q > 2), and d is connected to the left and to the top vertices. 

It is then a routine set of slope calculations and edge counts to see that this 
gives a doubly linear graph with 6 n -  20 edges. QED 

Since a subgraph of a doubly linear graph is doubly linear, we can achieve 
in a graph with n vertices any desired number of edges less than 6n - 20. To construct 
families of non-doubly linear graphs one can begin as before with a specific graph 
that is not doubly linear and form the union with a doubly linear graph of any desired 
size. For example, one can begin with K9, which is not doubly linear since it has 
thickness three. Or one can begin with K l 2 -  F, the complete graph on 12 vertices 
minus a one-factor. Let GI be the graph of the icosahedron, and let G2 be the graph 
on the same set of vertices with vertices adjacent if they are at distance two in GI. In 
fact, Gl and G2 are isomorphic, and their union is KI2-F ,  showing the latter to have 
thickness two. However, KI2 - F has 12 vertices and 60 = 6n - 12 edges, and so by 
Theorem 7 is not doubly linear. 
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