
C L A X - A V i s u a l i z e d C o m p i l e r

G. Sander*, M. Alt*, C. Ferdinand*, R. Wilhelm
(sander I a l t I f e r d i I wilhelm�9 uni -sb , de)

Universit~t des Saarlandes, FB 14 Informatik, 66041 Saarbrficken

Abstract. The CLAX compiler was developed in the project COM-
PARE as reconfigurable demonstration compiler. Its various optimization
phases are visualized and animated by the graph layout tool VCG. Vi-
sualization allows to understand and to improve the behavior of the
algorithms of the compiler phases. We present a tour through the CLAX
compiler and demonstrate the newest extensions of the VCG tool, that
help to explore large compiler data structures.

1 I n t r o d u c t i o n

The Esprit project #5399 COMPARE (COMpiler Generation for PARallel Ma-
chines) aims at reconfigurable, optimizing compilers for different source-target
combinations. A new compiler organization CoSY [1] has been designed and im-
plemented. It is based on a generic data base approach with modularization of
compilers into phases, where all phases work concurrently on a common interme-
diate representation and each phase solves a certain subtask of the compilation.

Before developing production quality compilers the feasibility of CoSY was
evaluated by the prototype compiler CLAX [3]. The CLAX compiler was used to
demonstrate the benefits of distributed compiler phase supervision. The compiler
data structures are visualized and animated. This Mlows to understand and to
improve the behavior of the algorithms of the phases.

The VCG tool [4], also developed in the project COMPARE, was used for the
layout of the compiler graphs. This tool is specialized for the requirements of
compiler data structures which are usually very large. It provides different folding
mechanism to focus on certain aspects of the graphs, and allows to reduce the
amount of visible information to the points of interest. It provides browsing
facilities like tracing of chains of edges or searching of nodes, unlimited scaling
and different views onto the graph. The layout methods are a fast variant of the
hierarchical layout algorithm of Sugiyama et al. [6] for directed graphs, and a fast
force directed placement for undirected graphs (the spring embedder algorithm
of Frick et al. [2]). Both layout algorithms can be controlled in a wide range.

The VCG tool and the CLAX compiler run concurrently while the CLAX
compiler controls the VCG tool via an animation interface. The VCG tool pro-
duces good drawings and runs reasonably fast even on very large graphs.

* This work was partially supported by the ESPRIT Project #5399 COMPARE

460

Fig. 1. CLAX Compiler Organization Fig. 2. Annotated Syntax Tree

2 C o m p i l e r P h a s e s

In traditionM compiler construction, the phases of a compiler are executed in a
fixed sequential order. Each phase translates from one intermediate representa-
tion of the program into another one. In this sequence, the representations change
from source dependent information to target dependent information. Since each
phase requires a different format of the representation as input, a reorganization
of the compiler or a reuse of a phase is difficult or impossible.

The problem with the traditional model is, that a fixed, optimal order of
compiler phases in the middle end does not exist. One optimization may influence
another optimization, while the latter might calculate a good starting position for
the former. A fixed order of the compiler phase would not produce an optimal
result, even if each individual phase would calculate the optimum. Thus, the
CLAX compiler works demand driven by the phase dependence graph on a data
base of program representations (Fig. 1). This graph identifies which phases
are required as precondition of an optimization, and which phases optionally
support the optimization. In COSY, there is no fixed order, but all sequences of
phases that do not violate the dependences are allowed. The dependence graph
further shows the potential phase parallelism of the compiler. The data base
is kept consistent, i.e. if the precondition of a phase is destroyed, the phase is
automatically restarted. The supervision code is distributed among the phases.
Cyclic execution of optimization is possible, and the progress is visualized by
the phase dependence graph.

3 D a t a S t r u c t u r e V i s u a l i z a t i o n a n d A n i m a t i o n

The CLAX compiler is demand driven and can be controlled interactively: Send-
ing a request to a data structure results in the generation of this data structure.
Sending a optimization request starts all optimization phases that can con-
tribute, until a fixed point is reached. In each step a new instance of the program
representation is cMculated. The representation is transformed towards their

461

optimum. The compiler uses syntax trees with different annotations (Fig. 2),
control flow graphs (Fig. 3), data dependence graphs (Fig. 4), dominator trees,
etc. [7]. These graphs are visualized by the VCG tool and can be examined in-
teractively after each step to inspect details. Changes after each phase can be
animated automatically. This shows an overview over the compiling process. It
is also possible to examine one phase by animating the internal steps.

r r

) ~ . . ~ ~ . . ~ . ~ . . ~

~ . -) ~ - . . ~ . . .) t a

Fig. 3. Annotated Control Flow
Graph (Manhattan Layout)

Pig. 4. Data Dependence Graph
(Spline Layout)

Each kind of compiler graph needs different visualization methods: Attributed
syntax trees are visualized by a specialized tree layout (Fig. 2). It is possible to
interactively hide or expose the attributes. Control flow graphs have a uniform
appearance if a manhattan layout is used, where all edges consist of horizontal
or vertical line segments (Fig. 3). Very large graphs cause the problem that the
user may loose the orientation when only a small part of the graph is displayed

~e

in the VCG tool window. Thus, fisheye views [5] can be used which distort the
graph picture such that the whole graph (or a large part of it) is visible while
only the focus point is displayed in all details at the same time. By moving
the focus point through the graph, details can be inspected without loosing the
orientation (Fig. 5).

462

) i

a . , .

Fig. 5. Syntax Trees, Polar and Cartesian Fisheye View

References

1. Alt, M.; Aflmann, U.; Someren, H.: Compiler Phase Embedding with the CoSy
Compiler Model, in Fritzson, P.A., editor: Compiler Construction, Proc. 5th Inter-
national Conference CC'94, Lecture Notes in Computer Science 786, pp. 278-293,
Springer-Verlag, 1994

2. Frick, A.; Ludwig, A.; Mehldau, H.: A Fast Adaptive Layout Algorithm for Undi-
rected Graphs, in Tamassia, R.; Tollis, I.G., editors: Graph Drawing, Proc. DIMACS
International Workshop GD'94, Lecture Notes in Computer Science 894, pp. 388-
403, Springer-Verlag, 1995.

3. Miiller, T.; Vollmer, J.: Description of the CoSY prototype, COMPARE Technical
Report, Rel 1.3, GMD Karlsruhe, 1991

4. Sander, G.: Graph Layout Through the VCG Tool, in Tamassia, R.; Tollis, I.G., edi-
tors: Graph Drawing, Proc. DIMACS International Workshop GD'94, Lecture Notes
in Computer Science 894, pp. 194-205, Springer-Verlag, 1995. The VCG tool is pub-
licly available via http://www.cs.uni-sb.de:80/RW/users/sander/html/gsvcgl.html.

5. Sarkar, M.; Brown, M.H.: Graphical Fisheye Views, Commun. of the ACM 37(12),
pp. 74-84, 1994.

6. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierar-
chical Systems, IEEE Trans. Sys., Man, and Cybernetics, SMC 11(2), pp. 109-125,
1981.

7. Wilhelm, R.; Maurer, D.: Compiler Design, Addison-Wesley, 1995.

