Skip to main content

Reasoning about knowledge on computation trees

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 1994)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 838))

Included in the following conference series:

Abstract

This paper presents a bimodal logic for reasoning about knowledge during knowledge acquisition. One of the modalities represents (effort during) non-deterministic time and the other represents knowledge. The semantics of this logic are tree-like spaces which are a generalization of semantics used for modelling branching time and historical necessity. A finite system is shown to be canonically complete for the formentioned spaces. A characterization of the satisfaction relation implies the small model property and decidability for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. John P. Burgess. Logic and time. The Journal of Symbolic Logic, 44:566–582, 1979.

    Google Scholar 

  2. Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  3. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40–52, 1986.

    Google Scholar 

  4. Melvin C. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1. Oxford University Press, 1993.

    Google Scholar 

  5. Hans Georg Gadamer. Truth and Method. Continuum, New York, 1975.

    Google Scholar 

  6. Konstantinos Georgatos. Modal logics for topological spaces. Ph.D. Dissertation. City University of New York, 1993.

    Google Scholar 

  7. Konstantinos Georgatos. Knowledge theoretic properties of topological spaces. In Michael Masuch and Polos Laszlo, editors, Knowledge Representation and Uncertainty, number 808 in Lecture Notes in Computer Science, pages 147–159, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  8. Gerhard Gierz, Karl Heinrich Hoffman, Klaus Keimel, James D. Lawson, Michael W. Mislove, and Dana S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.

    Google Scholar 

  9. Robert Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lecture Notes. CSLI, Stanford, 1987.

    Google Scholar 

  10. Jaakko Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, New York, 1962.

    Google Scholar 

  11. Jaakko Hintikka. Reasoning about knowledge in philosophy. The paradigm of epistemic logic. In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge: Proceedings of the First Conference (TARK 1986), pages 63–80, 1986. Morgan Kaufmann.

    Google Scholar 

  12. Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed environment. In Proceedings of the Third ACM Symposium on Principles of Distributed Computing, pages 50–61, 1984.

    Google Scholar 

  13. Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and time. I. Lower bounds. Journal of Computer and System Sciences, 38:195–237, 1989.

    Google Scholar 

  14. Lawrence S. Moss and Rohit Parikh. Topological reasoning and the logic of knowledge. In Yoram Moses, editor, Theoretical Aspects of Reasoning about Knowledge: Proceedings of the Fourth Conference (TARK 1992), pages 95–105, 1992. Morgan Kaufmann.

    Google Scholar 

  15. Rohit Parikh and R. Ramanujam. Distributed computing and the logic of knowledge. In Rohit Parikh, editor, Logics of Programs, number 193 in Lecture Notes in Computer Science, pages 256–268, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  16. Arthur Prior. Past, Present and Future. Oxford University Press, London, 1967.

    Google Scholar 

  17. M. B. Smyth. Powerdomains and predicate transformers: a topological view. In J. Diaz, editor, Automata, Languages and Programming, number 154 in Lecture Notes in Computer Science, pages 662–675, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  18. Richmond H. Thomason. Combinations of tense and modality. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume II, pages 135–165. D. Reidel Publishing Company, 1984.

    Google Scholar 

  19. B. Van Fraassen. A temporal framework for conditionals and chance. In W. Harper, R. Stalnaker, and G. Pearce, editors, Ifs: Conditionals, Belief, Decision, Chance, and Time, pages 323–340. D. Reidel, Dordrecht, 1981.

    Google Scholar 

  20. Steven Vickers. Topology via Logic. Cambridge Studies in Advanced Computer Science. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgatos .

Editor information

Craig MacNish David Pearce Luís Moniz Pereira

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgatos, K. (1994). Reasoning about knowledge on computation trees. In: MacNish, C., Pearce, D., Pereira, L.M. (eds) Logics in Artificial Intelligence. JELIA 1994. Lecture Notes in Computer Science, vol 838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021980

Download citation

  • DOI: https://doi.org/10.1007/BFb0021980

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58332-5

  • Online ISBN: 978-3-540-48657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics