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A b s t r a c t .  In this paper we discuss usability, and propose to take that 
notion as a formalisation of (un)definedness in typed lambda calculus, 
especially in calculi based on PCF. We discuss some important proper- 
ties that make usability attractive as a formalisation of (un)definedness. 
There is a remarkable difference between usability and solvability: in the 
untyped lambda calculus the solvable terms are precisely the terms with 
a head normal form, whereas in typed lambda calculus the usable terms 
are "between" the terms with a normal form and the terms with a (weak) 
head normal form. 

1 I n t r o d u c t i o n  

The  e lementary form of undefinedness arises on the level of natural  numbers,  
when the evaluation of a (closed) te rm M of type N a t  does not terminate ,  
i.e., when M does not have a normal  form. Such a te rm is also often called 
meaningless. However, for higher types it is not so evident which terms should 
be called meaningless. Analogous to the situation for ground types, it is often felt 
to be a t t rac t ive  to call a te rm M meaningless, or undefined, if M does not have 
a normal  form. However, one of the desirable properties of meaningless terms 
is, tha t  their identification may not lead to inconsistency. It  is well known that  
in general terms without  a normal  form can not be identified consistently. For 
the untyped l ambda  calculus, this is shown in (Barendregt  1984, section 2.2). 
For typed  calculi (with sufficient computing power) this is immediate ly  seen: 
for example,  the evaluation of infinite lists does not terminate ,  but clearly they 
may  not be identified. The same holds for recursively defined functions. Hence, 
at second sight, it is not natural  to consider terms without a normal  form as 
meaningless. 

As an alternative,  Abramsky  and Ong propose to take the terms with a weak 
head normal  form as the meaningful ones (Abramsky 1990, Ong 1988). As an 
argument  in favour of this proposal Abramsky  and Ong mention that  in lazy 
functional languages no evaluation takes place inside weak head normal  forms. 
However, this is only true since values of function type are not acceptable as 
output  values. If  terms of function type would be acceptable as output  values, 
then e.g. A x . l + l  would be evaluated to Ax.2, i.e., there would be an evaluation 
step inside a whnf. 
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As a third alternative for representing meaningfulness we mention the notion 
of solvability, introduced in (Barendregt 1971). This notion is widely accepted 
as an adequate formalisation of meaningfulness in the untyped lambda calculus. 
However, it turns out that the standard definition of solvability is not adequate 
for typed lambda calculi (see section 3). 

In this paper we introduce a generalisation of solvability, called usability, 
based on the following interpretation of meaningfulness: 

a term is meaningful if it can have a contribution to the outcome of a 
terminating computation. 

The remaining part of this paper is organised as follows. In section 2 we define 
the calculus A, in sections 3 and 4 we introduce usability and compare it to 
solvability, in section 5 we compare usable terms with (head) normal forms (it 
turns out that in typed lambda calculus the usable terms are not precisely 
the terms with a head normal form), in section 6 we formulate the Genericity 
Lemma, and in section 7 we show that all unusable terms can be identified 
consistently. 

2 T h e  c a l c u l u s  

The calculus A is an inessential variant of PCF (Plotkin 1977), i.e., it is a simply 
typed lambda calculus (i.e. ~ is the only type constructor) with two ground 
types: Na t  and Bool. There are constants for the natural numbers (0, !, . . .)  
and for the truth values (true,  fa lse) .  

There are also the following constants of function type: Succ, Pred, Zero?, 
if= with the obvious interpretations. Different from PCF, A has a conditional 
if= of type B o o l ~ r ~ a ~  for each type a. The types of the other constants 
are obvious. 

Apart from variables (x, y , . . . )  and constants (c, ] , . . . ) ,  the calculus A has 
the following terms (given that M, N are terms): MN,  )~x:o'.M, #x:o'.M. The 
typing rules are standard, we only mention the rule for #-terms: 

x:a F- M:a 
f- (#x:a.M) : 

Usually, we will leave out type information from terms, and write Ax.M, #x.M. 
The reduction rules are also standard. The ;3- and #-rule are 

(Ax.M)N ~ M[x:=Y], 

#x.M ~ M[x:=#x.M], 

where M[x:=N] denotes substitution. Some examples of the ~-rules are 

Succ n --~ n + l  

if~ true -~ Ka, 
if~ false --~ g*, 
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where K,  K* are Axy.x and Axy.y respectively. 
We often write i f  L then  M e l s e  N for i f  L M N .  We also use standard 

abbreviations like Axy.M for )~x.Ay.M. We remark, that all 5-redexes are of the 
form fc,  where f ,  c are constants. This implies that  all constants of function 
type are strict in their first argument (this will be essential in definition 4). 

We use standard notations such as M--~N, M = N ,  and A F- M = N .  Clearly, 
A has the same computing power as PCF, since #x .M is equivalent to Y()~x.M), 
where Y is a fixpoint combinator in PCF. Hence, all partial recursive functions 
are X-definable. Finally we mention that  X has the Church-Rosser property, and 
that  the standardization theorem holds in X. 

On several places below we will consider an extension of A with product 
types. Then we will assume that  there are terms of the form (M1, M2), constants 
~rl, a'2, and reduction rules tel(M1, M2) --* Mi. 

3 S o l v a b i l i t y  

In the untyped lambda calculus the notion of solvability is considered as an 
adequate formalisation of meaningfulness. Some reasons for this are that  the 
Genericity Lemma (see section 6) holds for unsolvable terms, and that  all un- 
solvable terms can be consistently identified. However, a direct generalisation of 
the standard definition of solvability towards X does not work, since the above 
properties do not hold there. In this section we will give three different char- 
acterisations of solvability in the untyped lambda calculus, and show that  the 
reformulation of these characterisations towards X are not equivalent. In the 
next section we introduce the notion of usability and show that  it is equivalent 
to the weakest variant of solvability. 

L e m m a l  (Solvabi l i ty) .  Let )~x.M be a closure of M (i.e., x consists of the 
free variables of M).  Then in the untyped lambda calculus the following are 
equivalent (notice that (a) is the standard definition of solvability): 

(a) 3N ()~x.M)N = I, 
(b) VL 3N ()~x.M)N = L, 
(c) there exists a normal form L such that 3N ()~x.M)N = L. 

P roo f .  (a) ~ (b): ()~x.M)N = I implies ()~x.M)NL = L. 

(b) ~ (c): Immediate. 

(c) ~ (a): If L is in normal form, then L is in head normal form, hence L is 
solvable (cf. Barendregt 1984, 8.3.14). That is, there is a sequence P such that  
()~y.L)P = I, where ),y.L is a closure of L. Hence, 

()~y.(~x.M)N)P = I. 

Clearly, this can be brought into the form (Ay.Ax.M)Q = I (if necessary, add 
I 's to the right of P),  i.e., M is solvable. [] 

Based on this lemma we define three variants of solvability in A. 
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Def in i t i on  2 (Solvabi l i ty  in  A). Let s  be a closure of M. Then M is 

(a) strongly solvable, if there is a type a such that  

3N (Ax.M)N = Ia, 

(b) medium solvable, if there is a type a such that  for all terms L of type 

3N ()~x.M)N = L, 

(c) weakly solvable, if there is (a type a and) a term L (of type a), L in normal 
form, such that  

3N ( s  = L. [] 

Clearly, in the definition of weak solvability, mentioning the type of L is super- 
fluous. We give some examples of the various forms Of solvability in )~. 

Example 1. 

1. A variable x of type a is strongly solvable: Ax.x = I~. 
2. The term M - )~x:~ t. Ay:at--*~. yx is medium solvable, as can be seen as 

follows. Let L be any term of type a. Then Mx()~x.L) = L. In general M is 
not strongly solvable (take a =_ Nat) .  

3. I f  M is a constant of ground type, then M is weakly solvable (immediate), 
but not medium solvable, or strongly solvable. 

4. [2 is not weakly solvable. 

Clearly, the items (a), (b), (c) from definition 2 correspond to (a), (b), (c) from 
lemma 1. In the untyped lambda calculus we have (a) r (b) r (c), whereas, as 
can be seen from the examples above, in )~ we only have (a) ~ (b) ~ (c). 

L e m m a  3. In A we have 

M is strongly solvable ( ~  M is medium solvable 

( ~  M is weakly solvable 

Proof .  " ( ~ " :  As lemma 1 "(a) =v (b)"; " ( ~ " :  Immediate. [] 

4 Strict contexts  and usability 

Based on the interpretation of meaningfulness, described in section 1, we will 
introduce strict contexts, and use this notion to define usability. Informally, a 
context C[-] is strict, if we can be sure that  M is "used" in the (leftmost) 
evaluation of C[M]. If C[M] has a normal form, we may conclude that  M has a 
contribution to this normal form. In such a case we will call M usable. 

The following definitions formalise this intuition. 
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D e f i n i t i o n 4  (S t r i c t  C o n t e x t ) .  (a) In .,k a strict context C[_] is inductively 
defined as follows: 

- the empty context, [_], is strict 
- if C[_] is a strict context, f a constant and M a term, then 

(i) f(C[_]), 
(ii) (C[_])M, 

(iii) 
(iv) ,x.c[_]. 

are strict contexts. 

(b) In the untyped lambda calculus the definition Of strict context is obtained 
from part (a) by removing clauses (i) and (iv). [] 

We remark that  part (a) of this definition remains unchanged if product types 
are added to A. That  is to say, 7r~(C[_]) is a strict context whenever C[_] is. 
However, (C[_], M) and (M, C[_ D are not strict contexts. 

L e m m a S .  Let C[_] be a strict context. 

(a) In A a strict context is of one of the following five forms: 

(i) [_], 
(ii) f (C[_])M1. . .  M,~, n > O, 

(iii) (C[_])M1.. .  Mn, n _> 1, C[-I not of form (ii) or (iii), 
(iv) Ax l . . . xn .C[_] ,  n > 1, C[_] not of form Ax.C'[_], 
( v ) # x l . . . x ~ . C [ - ] ,  n>_ 1, C[_] n o t o f f o r m  ~x.C'[_]. 

(b) In the untyped lambda calculus a strict context is of form (i), (iii), or (iv). 

Proo f .  By induction on the construction of C[_]. [] 

The next definition works for any calculus in which strict contexts can be defined. 

D e f i n i t i o n  6 (Usab i l i ty ) .  

- A term M is usable for computing N ,  notation M >> N, if there is a strict 
context C[_] such that  C[M] --~ N.  We will sometimes call M relatively 
usable, 

- M is usable if M >> N for some normal form N. 

We call >> the usability relation. [] 

The notation M >> N was introduced by Barendregt in his Ph.D.-thesis (Baren- 
dregt 1971, definition 3.3.2), and pronounced as "N  is in the solution of M ' .  
Barendregt defined >> for combinatory logic only. It did not show up in the lit- 
erature again, since it was thought that it did not work for the lambda calculus. 

We mention some examples. 
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Example 2. 

1. Normal forms are usable, 
2. a variable x:a is usable to compute any term M:T, i.e., x >~ M for every 

x, M and every ~, T. As before, there is a term )~y.O_ of type a (or t r u e  
instead of O_). Since i f r  Zero?((~x.[_])(~y.0)y) t hen  M e l s e  M is a strict 
context, it follows that x >> M.  

3. x[2 is usable (see example 1), 
4. [2 is not usable (see corollary 12), 
5. if product types are added to A, then (0, [2) is usable (since ~rl[_] is a strict 

context), but (/2, ~2) is not usable. 

In the next lemma we list some simple properties of (relative) usability. 

L e m m a  7. 

(i) C[_] is strict =v M >> C[M], 
(ii) M---~ N ~ M >> N, 

(iii) M >> N , N  >> L ~ M >> L, 
(iv) M >> N,  N is usable ~ M is usable, 
(v) M >> M, 

(vi) M >> f M  ( f  a constant of function type), 
(vii) M >> M N ,  

(viii) M >> Ax.M, 
(ix) Ax .M >> M, 
(x) M > M[x:=Y] 

(xi) M is usable r Ax .M is usable, 
(xii) )~ ~ M = N  ~ (M usable r N usable), 

(xiii) M is usable ca M >> c (c a constant of ground type). 

Proo f .  Most of these properties are easy to prove, and left to the reader. With 
respect to (ix) we remark that  [_]x is a strict context. Property (xi) can be 
proved using (iv), (viii) and (ix). 

For (xiii) notice that  there is a normal form N such that  M >> N. Hence N 
does not contain a #-term. By (x) we may assume that  N is closed. Now let L 
be a sequence of closed terms in normal form such that  N L  is of ground type. 
Since the #-free fragment of A is strongly normalising, it follows that N L  --~ c 
for some constant c. [] 

The following lemma makes explicit that usability is indeed a generalisation of 
solvability. If product types axe added to )~, then this lemma does not hold any 
more. For example, (0,/2) is usable, but not (weakly) solvable (see example 2). 

L e m m a  8. (a) In )~: M is usable ~=~ M is weakly solvable, 

(b) In the untyped lambda calculus: M is usable ~=~ M is solvable. [] 
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P roo f .  (a) " ~ " :  If M is weakly solvable, then there are sequences x, L such 
that  (;~x.M)L has a normal form, N say. Since ()~x.[_])L is a strict context, it 
follows that  M >> N. Hence, M is usable. 
(a) " ~ " :  Tedious. We have to prove that  M is weakly solvable. It is sufficient 
to prove that  there is a (strict) context C[_] = (~x.[_])L such that C[M] has a 
normal form. 

If M is usable, then there is a strict context Co[-] such that C0[M] has a 
normal form. Without loss of generality we may assume that  Co [-] is constructed 
without applying clause (iv) of definition 4: since Co [M] has a normal form, a 
"subcontext" of the form #x.C~[_] can be replaced by ()~x.Ct[_])(#x.Ct[U]), 
which is also strict (M is given). 

Define a "measure function" q on strict contexts as follows: 

q([_]) = 0 

q(.fC[_]) = q(C[_]) + 1 

q((C[_])X) = q(C[_]) 

q(C[_]) if C[_] is of the form Ax.C'[_] 
q()~x.C[_]) = q(C[-]) + 1 otherwise 

So q counts the number of applications of clause 4(i) and the number of sequences 
of consecutive "leading" lambda's. We proceed by induction on q(C0[-]). 

Basic case: q(C0[-]) = 0. Then Co[-] = [ - ]M1. . .Mn,  n > 0, i.e., Co[-] is of the 
required form already. 

Induction case: q(C0[-]) > 0. Notice that Co[-] ~ [-] (since q([_]) = 0). Hence, 
by lemma 5, Co[-] is of one of the following three forms: 

1. Co[-] ~- )~xl . . .xn .Cl[ - ] ,  n _> 1, C1[-] not of the form )w.C~[-]. Since C0[M] 
has a normal form, CI[M] has a normal form too. Since 

q(Cl[-]) <(q(C0[-]), 

the result follows by the induction hypothesis. 
2. Co[-] - f(Cl[-])L1." "Ln, n > O. Since C0[M] has a normal form, it follows 

by that  C1 [M] has a normal form too. Since 

q(Cl[-l) < q(Co[_]), 

the result follows by the induction hypothesis. 
3. Co[-] - (CI [ - ] )LI ' - "Ln ,  n > 1, C1[-] not of form (ii) or (iii) of lemma 5. 

Hence, C1 [-] is of one of the following two forms: 
(a) C1[-] -= [-]. Then Co[-] is of the required form. 
(b) C1[-] -= Axl ...x,~.C2[-], m > 1, C2[-] not of form Ax.C~[_]. Hence, by 

lemma 5, there are three possible forms for C2[-], given below as i, ii, iii. 
Recapitulating, 

C0[M] - (Ax.C2[MI)L 
has a normal form. Without loss of generality, we may assume that  the 
length of L is not smaller than the length of x. This can be seen easily: 
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since C0 [M] has a normal form, we may add terms in normal form to 
the right of L, and the result will have a normal form again. 

i. C~ [_ ] = [_ ]. Then Co [-] is of the required form. 
ii. C2[-] ~ f(C3[-])N1 " "Nk, k > 0. Then 

Co[M] - (Ax . . f (C3[M])N)L 
Since the length of L is not smaller than the length of x, it is easily 
seen that there are P,  Q such that 

Co [M] = ]((Ax.C3 [M])P)Q: 
Since Co[M] has a normal form, it follows that (Ax.C3[M])P has a 
normal form. Since 

q((Ax.C3[_])P) < q(Co[-]) 
the result follows by the induction hypothesis. 

iii. C2[-] -~ (C3[-])N1 .. "Nk, k > 1. Then 
Co[M] -= (Ax.(C3[M])N)L. 

As before, there is a sequence Q such that 
Co [M] = (Ax.C3 [MI)Q. 

Clearly, C3[-] is not of form (ii) or (iii) from lemma 5. So two cases 
remain: 
A. C3[-] =-[-]. Then (Ax.C3[_])Q is of the required form. 
B. Ca[-]- AziC4[_]. Then 

q((Ax.Az.C4[_])Q) < q(Co[-]) 

and the result follows by the induction hypothesis. 

This completes the proof of (a). 

(b) The proof of (b) is analogous. [] 

5 Syntactic characterization of usability 

In the untyped lambda calculus the solvable terms are precisely the terms with 
a head normal form. However, in A the usable terms can not be characterized in 
this way. Consider the following terms. 

M1 - if Zero?(Pred x) then 0_ else [2, 

M2 --- if Zero?(Succ x) then 0_ else /2. 

Clearly (Am.M1)! --~ 0, so MI is usable. On the other hand, M2 is not usable 
since there is no constant n_ for which Zero?(Succ  _n) ~ t r u e .  However, both 
are in head normal form as defined below. 

Def ini t ion 9 (Head  normal  form).  Let H stand for head normal form (hnf). 
Then 

B : : = x  ! B M  I f B  

H ::= B I Ax .H  I c [] 
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Notice that the restriction of this definition to the untyped lambda calculus 
yields the standard definition of hnf. For a comparison with other definitions of 
hnf's in typed lambda calculi, cf. (Kuper 1994, chapter 6). 

For the proof of the next lemma, see (Kuper 1994, lemma 6.2.6). Compare 
also (Barendregt 1984, section 8.3). 

L e m m a  10. 

(a) Ax.M has a hnf r M has a hnf 
(b) Mix  := N] has a hnf ~ M has a hnf 
(c) M N  has a hnf =~ M has a hnf [] 

Now we come to the main proposition of this section. Notice that from the 
examples above it follows that the converse arrows do not hold. 

P ropos i t i on  11. 

M has a normal form ( ~  M is usable 

( ~  M has a head normal form. 

Proof .  " ( ~ " :  If M -~ N, N in normal form, then M >> N, i.e., M is usable. 

" ( ~ " :  If M is usable, then by lemma 8 M is weakly solvable, i.e., there are x, N 
such that (Ax.M)N has a normal form. By induction on the structure of terms 
it is easy to see that a normal form is also a head normal form, so (Ax.M)N has 
a head normal form (by lemma 10). [] 

If product types are added to A, then it depends on the precise definition of head 

normal form, whether " ( ~ "  of this proposition will still hold. For example, 
(0,/2) is usable. However, this term is usually not considered as a head normal 
form, but as a weak head normal form. 

We mention two corollaries of proposition 11. 

Corol la ry  12. /2 is not usable. 

Proof .  /2 does not have a head normal form. [] 

Coro l la ry  13. Let M be a closed term of ground type. Then M is usable iff M 
has a normal form. 

Proof .  A closed term M of ground type is in normal form iff M is in head 
normal form, The proof is completed by proposition 11. [] 

6 Genericity 

In section 1 we called a term meaningful if it can have a contribution to a termi- 
nating computation. This conception of meaningfulness motivated the notion of 
usability. Now we make this conception of meaningfulness precise in a different 
way: 
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a term M is meaningful if there is a context C[_] such that  (1) C[M] 
has a normal form N, and (2) there is a term M'  such that  C[M'] does 
not evaluate to N. 

The main result of this section is that  both formalisations of meaningfulness 
are equivalent. An important lemma in proving this equivalence is the Generic- 
ity Lemma (lemma 30). This lemma is proved by generalising a technique from 
(Barendregt 1971). This proof differs strongly from the standard proof of the 
Genericity Lemma for the untyped lambda calculus cf. (Barendregt 1984,.propo- 
sition 14.3.24), where it is proved by a topological method. 

De f in i t i on  14 (Gener ic ) .  A term M is generic, if for all contexts C[_] we have: 

C[M] has an nf ~ VX C[X] has the same nf. [] 

We remark that  the generic terms are the operationally least defined terms in 
the sense of (Plotkin 1977, Berry et al, 1985): a term M is operationally less 
defined than N, if 

C[M] has a normal form ~ C[N] has the same normal form. 

Now we come to the main result of this section. 

T h e o r e m  15. M is generic r M is not usable. 

Proo f .  " ~ " :  By a corollary of the Genericity Lemma (corollary 31). 
" ~ " :  By contraposition. Suppose M is usable. Then there is a strict context 
C[_] such that  C[M] has a normal form. Since ~2 is not usable, C[T2] does not 
have a normal form. Hence, M is not generic. [] 

In the remaining part of this section we prove the Genericity Lemma and some 
of its variants (see lemma 30 and its corollaries). In order to do so, we need an 
extension A of A. Informally, the terms of_A are the terms of A in which subterms 
can be underlined, but no subterm is underlined more than once. 

De f in i t i on  16 ( T e rms  in _A). 

- If A is a A-term, then A and A are A-terms, 
- If A, B are A--terms, then AB, Ax.A and tzx.A are A__-terms. 

Terms without underlinings (i.e., A-terms) are called line free. [] 

The following operation removes underlinings from A--terms. 

De f in i t i on  17 ( R e m o v a l  o f  unde r l i n ings ) .  

- mAt - A if A is line free, 
- ]A t - -  A ,  

- lAB I - [ALIBI,  
-   .iAi, 

- i, .AI - -  , .iAI. [ ]  
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Def in i t i on  18 ( S u b s t i t u t i o n  in _A). In addition to the properties of substitu- 
tion in A, we have 

A[x := B] ~ A[x := JBI]. [] 

D e f i n i t i o n  19 ( R e d u c t i o n  in _A_). 

(i) The/3-,  It- and b-rules are identical to the corresponding rules in X, e.g., 
( A x . M ) N  --~ M[x:=N],  where M, N are X__-terms, 

(ii) If A ~ B in X, then A ~ B B_ in A__, 
(iii) There are four underlining rules: 

A B  ~ A[B[, 

IA-  IA, 
Ax.A --* Ax.A, 

~x .A  ~ ~x.A.  [] 

Notation. One-step reduction in IX is denoted by -=-+; as expected, -~ is the 
reflexive and transitive closure of ~ .  

The underlining rules of _A_ correspond to strict contexts as follows. 

L e m m a 2 0 .  Let C[_] be a line free context. Then 

C[_] is strict ~ VX(C[X_j -=-~C[X]). 

P roof i  " ~ " :  Immediate. 
" ~ " :  Clearly, C[X] _-=-~C[X] by underlining rules only. The result follows by 
contraposition. [] 

L e m m a  21. For A_-terms A, B 

A - ~ B  ~ ]A]--~ IB[. 

P roo f .  By induction on the length of the reduction A _-~ B. [] 

Notation. If M is a (proper) subterm of N, we will write M C N (M C N). 

L e m m a 2 2 .  I f  A_-yzB and B'  C B,  then there exists an A' C A such that 
A' >> B' .  

P roo f .  By induction on the length of the reduction A -~ B. 

Basic case: We have to check all one step reductions by a case analysis. The un- 
derlining rules (cf. definition 19) are easy: they follow immediately from lemma 7. 
The/3-, #-, ~i-rules are tedious, but straightforward. For the details we refer the 
reader to (Kuper 1994, section 7.3). 

Induction case: By the transitivity of >>. [] 

L e m m a 2 3 .  Let A --~ B in X, and let A' be such that [A'[ - A.  Then there 
exists a term B' ,  IBtl - B ,  such that A' -=~ B r. 
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P roo f .  By induction on the length of the reduction A --~ B. It is easy to see that  
all one step reductions can be copied to _~, if necessary after some intermediate 
applications of the underlining rules. The (straightforward, but tedious) check 
of all possibilities is left to the reader. [] 

De f in i t i on  24. We write A ~ B, if B can be obtained from A by replacing zero 
or more underlined subterms of A by other underlined subterms. [] 

For example, for all line free terms M, N we have M ~ N,  and M L  ~ NL.  

L e m m a  25. The relation ~_ is an equivalence relation. 

Proo f .  Straightforward. [] 

L e m m a  26. 

- if M,  N are A-terms, then M - ~ N  ~=~ M = N ,  
-M~_N, 
- M N ~ L  iff there are M r, N ~ such that L - M t N  ~, and M~_M ~, N~_N ~, 
- A x . M ~ L  if] there is an M ~ such that L =- Ax .M ~, and M ~ M  t, 
- # x . M ~ L  if] there is an M ~ such that L -- # x . M  r, and M~_M ~. 

Proof .  Straightforward. [] 

L e m m a 2 7 .  I f  M - ~ M  t and N-~N  ~, then 

M[x  := N] ~ M'[x := N']. 

Proof .  By induction on the structure of M. [] 

L e m m a 2 8 .  I f  M - ~  N and Mr@M, then there is an N ~ _ N  such that M '  -~  N ~. 

Proo f .  By induction on the length of the reduction M ~ N. 

Basic case. Let X be the chosen redex in M. Notice that  this implies that  X is 
not of the form X__._~ ~. There are two possibilities: 

1. There is a P C M such that  X c_ P. Then clearly M~_N. Take N'  -= M ~, 
then N ~ _ N ,  and M ~ - ~ N  ~. 

2. There is no P C M such that  X C_ P. 
Suppose X _-,Y, and let M =_ C[X]. Then, N =_ C[Y]. Clearly there exist 
X' ,C'[_] with X ' - ~ X  and C'[_]~C[_], such that  M'  = C'[X']. 
We have to construct Y ~ Y  such that X r ~Y~, by considering all possible 
reduction rules by which X - , Y  (details are left to the reader). 

Induction case. By transitivity of ---* . [] 

C o r o l l a r y  29. Let N be line free, and suppose M - ~  N .  Then for all M ~ with 
M~@M, we have M ~ _-~N. [] 

Now we come to the Genericity Lemma. 

L e m m a  30 ( G e n e r i c i t y  L e m m a ) .  Let M,  N be )~-terms, M not usable, N a 
normal .form. I f  A F F M  = N ,  then .for all X 

A F F X = N .  
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Proof .  Since N is a normal form, it follows by the Church-Rosser property that 
F M - +  N. Hence F M - - * N '  for some N' with I N ' I -  N (lemma 23). 

Suppose L C N', then by lemma 22: M >> L. Since N is in normal form, L 
is in normal form too, and so M is usable, which is a contradiction. Therefore, 
N'  does not contain underlined subterms, i.e., N' - N. Hence, by corollary 29, 
FX-=+N for every term X. By lemma 21 it follows that F X  ~ N. [] 

Corol la ry  31. Let M, N be A-terms, M not usable, N a normal form. If A 
C[M]=N, then/or all X 

A k- C[XI=N. 

Proof .  Suppose x is a sequence of variables containing all variables that are 
free in M or X. Let y be a fresh variable. Then 

(Ay.C[yx])(Ax.M) = C[(Ax.M)x] 

= C[M] 

= Y .  

M is not usable, hence Ax.M not usable (lemma 7). Hence, by the Genericity 
Lemma (lemma 30): 

c[x] = 

= 

= N .  [] 

7 Identif ication of unusable terms 

In this section we prove that it is consistent to identify in A all unusable terms 
(respecting their type, of course). Intuitively this means that all meaningless 
terms may be identified. We also prove that this identification is maximal in 
the sense that identifying a usable term to an unusable term (in addition to the 
identification of all unusable terms) is inconsistent. 

Notation. The set of all equations P--Q for which P, Q have the same type and 
P, Q are unusable, is denoted by ,9. 

T h e o r e m  32. A + S is consistent. 

Proof .  By contraposition. Suppose A + S is inconsistent. We show that this 
implies that A is inconsistent. 

If A + S is inconsistent, then 

A + S }- true=false. 

Suppose that in a proof of this there are n applications of equations from 8. 

Then this proof can be presented as follows: 

true ..... CI[PI] -- CI[QI] ..... Cn[Pn] = Cn[Qn] ..... false, 
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where P~ = Q~, / = l , . . . , n ,  are equations from S. So, the displayed equalities 
C~[P~] = C~[Q~] are proved by equations from S, all other equalities are proved 
by the axioms of A. 

Now proceed by induction on n. If n=0,  it follows that  none of the equations 
from S is used, i.e., A L- t r u e = f a l s e ,  and we are done. 

Let n>0.  By the proof above we have 

)~ i- t r u e  = Cl[P1]. 

Since P1 is unusable, it follows by the Genericity Lemma (corollary 31) that  

A 5 true ---- Of[Q1]. 

Since 

CI[Q1] = c2[P ], 

it follows that  

A P t r u e  = C2[P2], 

i.e., t r u e = f a l s e  is proved by n - 1  applications of equations from ,9. The result 
follows by the induction hypothesis. [] 

We prove the maximality of the set S in the sense as described above. 

T h e o r e m  33. Let M be a usable term, P an unusable term, M and P have the 
same type. Then A + S + M = P  is inconsistent. 

P r o o f .  Consider the term 

[~ -- ~x. if Zero? x then I else 0_, 

which is of type N a t ,  and notice that  A+U=c is inconsistent for every constant c 
of type N a t  (we remark that  c is restricted to the given constants of A. Clearly, it 
would be possible to introduce, for example, a constant J_, with rule ~2~J_, but  
not • i.e., _L is a normal form. Then t~ =- _l_ does not lead to inconsistencies). 
Clearly, for type B o o l  there is also such a term, which we will denote by tl too. 

Hence, for every type a there is a term 

U~ = Ax.U 

of type a. By lemma 7 it follows that  ~3~ is not usable. 
Suppose M, P are of type a, then P=~3~ 6 S, and so 

A + 8  + M = P  F- M--U~. 

Since M is usable, it follows by lemma 8(a) that  there are sequences y,  N such 
that  (Ay.M)N has a normal form. Without  loss of generality we may assume 
that  this term is closed. It follows, that  there is a sequence L and a constant c 
of ground type such that  ()~y.M)NL = c. 
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Hence, in the theory A +,.q + M : P  we can derive the following inconsistency: 

c = ( ) w . M ) N L  

---- (Ay.U~)NL 

= (Ay.~x.U)NL 

_ ~ .  

The final equality follows by reasoning on the types of the subterms. O 
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