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Detection of Global State Predicates

Keith Marzullo" Gil Neiger t

Abstract

This paper examines algorithms for detecting when a property 4> holds

during the execution of a distributed system. The properties we con-
sider are expressed over the state of the system and are not assumed

to have properties that facilitate detection, such as stability.

Detection is done by a monitoring process within the system, which
cannot perceive an execution of a distributed system as a total order:

because of this, we consider two interpretations for "detecting _":

1. There is an execution consistent with the observed behavior such

that 4 was true at a point in that execution. We refer to this

property as possibly 4.

2. For all executions consistent with the observed behavior, there

was some point in real time at which the global state of the

system satisfied 4. We refer to this property as defi1_ztely _.

In this paper, we give formal definitions for these two interpreta-

tions and present algorithms for them. We give protocols for both

asynchronous and synchronous systems and. for synchronous systems,

give upper bounds on the time between the occurrence of the property

of interest and the time a monitor detects the property.
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1 Introduction

A reactive system [6] is characterized by a control program that interacts

with an environment. The control program is input-driven: it monitors the

environment and reacts to significant events by sending commands to the

environment. There are many examples of reactive systems: for example.

most embedded real-time systems are reactive systems, in which case the

environment is an instrumented physical process. Non-real-time examples

of reactive systems includes monitoring and debugging systems [4,13] and

tool integration services [5,14].

In the Meta project [9,11], we have been developing tools that support

the management of distributed applications through the use of a reactive

system structure. Using Meta, the distributed application and its supporting

services (for example, operating system, network servers, and hardware) can
be instrumented with sensors that access its state and actuators that allow

its state to be changed. Meta also provides a distributed interpreter of

finite state automata that reference these sensors and actuators. Under

Meta, control programs are translated into finite state automata that are

executed by this distributed interpreter. Each interpreter executes gttarded

atomic commands of the form (_ ---*S}, meaning execute the action .5' in a

state satisfying the global state predicate (I).

The problem addressed in this paper arises in the context of ._ieta: how

can a set of processes monitor the state of a distributed application in a

consistent manner? For example, consider the simple distributed application

shown in Figure 1. Each of the three processes in the application has a

light, and the control processes would each like to take an action when

some specified subset of the lights are on. The application processes are

instrumented with stubs that determine when the process turns its light on

or off. This information is disseminated to the control processes, each of
which then determines when its condition of interest is met.

Meta is built on top of the ISIS toolkit [1], and so we first built tile

sensor dissemination mechanism using atomic broadcast. Atomic broadcast

guarantees that all recipients receive the messages in the same order and

that this order is consistent with causality [7]. Unfortunately. the control

processes are somewhat limited in what they can deduce when they find

that their condition of interest holds.

For example, Figure 2 shows a space-time diagram of an execution of

the application shown in Figure 1. In this figure, a process turning its light

on is represented by a rectangle and the process turning its light off is rep-
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Figure I: A Monitored Distributed Application

resented by a vertical line. Assume, for the moment, that this system is

asynchronous, meaning that there is no bound on message passing delays or

on the relative speeds of processes. In this case, the only ordering relations

between events that can be determined from within the system are those of

potential causality. Two events that are not so related are concurrent. In

Figure 2, the events a and b are concurrent as are a and c. so the control pro-

cesses could receive these event notifications (as sent by atomic broadcast) in

one of these orders: (a; b; c), (b; a; c) or (b; c: a). Thus. the control processes

may or may not determine that Pl'S and p2's lights were on simultaneously,

but they will reach the same decision. On the other hand, the events a, d

and e are causally ordered, so the control processes will determine that pl"s

and p3's lights were on simultaneously.

Given a global property _, there are at least two ways that "'detecting

¢}" can be interpreted:

1. There is an execution (i.e. a linear sequence of events) consistent

with the observed behavior such that • was true at a point in that

execution. We will refer to this property as possibly _. hi the space-

time diagram shown in Figure 2, the predicate possibly (pl"s light on

and p2's light on) holds.
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Figure 2: Space-Time Diagram of Application Execution

2. For all executions consistent with the observed behavior, there was

some point in real time at which the global state of the system satisfied

@. We will refer to this property as definitely _. In the execution

shown in Figure 2, the predicate definitely (pl's light on and p3"s light

on) holds, since the event of P3 turning its light on happened between

Pl turning its light on and Pl turning its light off.

Note that definitely • is stronger than possibly _. Hence, we will want

to guarantee that if a control program determines possibly _ for a set of

local states, then no control program will ever determine definitely -_ for

the same states. Note that both of these conditions refer to some past state

or states.

In this paper, we give formal definitions for these two interpretations

and present protocols for them. We first give the protocols for all asyn-

chronous system. These protocols can take an unbounded amount of time

to detect their condition of interest; furthermore, they can have substan-

tial running times because they may have to enumerate may possible global

states. However, no better is possible, in general, due to tile nature of

asynchronous systems. We then modify these protocols for a system with

approximately synchronized clocks and bounded message delay. These pro-

tocols are more practical, and we give upper bounds on the time between

the occurrence of the property of interest and the time a control program

detects the property. The existence of such a bound makes these protocols

more useful in real systems.

Snapshot protocols for computing global states of a distributed system [2]

are related to the protocols described in this paper, but they suffer from a

limitation similar to that of the atomic broadcast implementation described



above. In particular, if S is the global state computed by the snapshot.

then there exists a legal execution of the system containing S, and so _(S)

implies possibly ¢_. Snapshot protocols are well-suited for detecting stable

properties, which are those that, once they become true, the remain so. It

may be the case that possibly _ holds of an execution, but the snapshot

protocol never detects it (this can happen if • is not stable).

A recent dissertation by Spezialetti [16] looks at a broader set of issues

than those covered in this paper, such as using semantic information (like

relative stability) to determine which local events could make a global prop-

erty true. This dissertation also presents protocols whose specification is
similar to ours. However, her protocols that detects event occurrence suf-

fer from the same limitation as snapshots and the atomic-broadcast-based

protocol described above. Additionally, Spezialetti's protocols do not take

into account the ordering of events established by the underlying system's

communication. We have also looked at the problem addressed in this paper

when environments are continuous state transition systems [8]. Such sys-

tems have the useful property that physical variables can, in many cases, be

interpolated forward. By doing so, the monitor can reason about the current

state of the physical process rather than a past state, and so possibly _ and

definitely _ can be determined for the current state.

2 Definitions

We first define the notion of an execution of a system. A system is composed

of processes, some of which are part of the application being run and some

of which are part of the monitoring control program. Let {pl ..... p,_} be
the set of application processes; for the sake of simplicity, we assume that

there is only one monitoring process, denoted P0. Each pair of processes is

connected by a point-to-point, reliable, FIFO communication link. and we

assume that processes do not exhibit faulty behavior.

Each process pi has a local state si, which changes when an event occurs

at the process. An event may be completely internal to the process, or it

may be the sending or receipt of a message (e.g., "'send ml to pj" or "'receive

m2 from Pk'). For the sake of simplicity, we assume that all message sent in

the system are unique. Process pi's local history, denoted hi is a (possibly
infinite) sequence of states and events

0 1 1 2u2
8 ie iSie i_i " ' "-

In this case, s o is pi's initial state, and the first event it executes is e_.



after which the process's state is s_, etc. A global state is a tuple S =

<s0, sl,..., s,_>, one for each process. Although the monitor, po, is a process

in the system, when we refer to a global state, we will usually mean only the

global state of the application, (sl, .... sn). A global history (or history) is

a tuple H = (h0, hi,..., h,_) of local histories, one per process.

Although a global history does not specify the relative timings of events

and states at different processes, it does allow us to draw certain conclusions

-- e_)ifhappens before e_ (written e iabout these timings. An event e i

one of the following is true [7]:

• the events are at the same process and occur in the order indicated.

that is, ifi=jandl< m;

• e_ is the sending of a message by pi to p: and e_ is the receipt of that

message; or

t _and '_--e_.• there is another event e_ such that e i ---, ek ek

The "happens before" relation can be used to reason about the possible

executions associated with a global history. We associate with each global

history a set of linearizations.
A linearization L of a history H is a sequence of global states and local

events
sOd Sle2S2 . . .

that contains exactly the events in H such that, if em -- e_ in H, then m <

n. Notice that no prefix of/, contains the receipt of a message whose sending

does not appear in that prefix. In synchronous systems (see Section :3.3),
there are further constraints on the linearizations of a global history.

(The above definition of linearization assumes that, in the actual ex-
ecution of a distributed system, no two events can occur simultaneously.

This need not be the case; it is possible that events at different processors

may occur at exactly the same time. We can easily extend our definition of

lineaxization to include such definitions.)

We use the notion of a cut to represent the global states that could have

occurred in the execution. A cut [2] of a global history H is a tuple of

natural numbers (tl,..., t,_/ that represents the state of the system after t,

events have executed at process Pi; that is, the cut represents the global state

(s_t,..., s_"/. Only certain cuts of a global history can truly correspond to

global states that took place at some real time. A cut (tl ..... tn> of H is
consistent if there is some point in some linearization L of H bv which each



process Pi executed exactly ti events. L is said to pass through this cut. We

will also refer to the associated tuple of events, _e_a,..., e t',) as a consistent
cut. /

We want to be able to reason about certain facts (such as "possibly

_') being true in different global histories. To this end, we introduce the

following notation. Let H be some global history of the system. To formally

define "possibly _," we introduce the formulas ?_IC, where C is a consistent

cut. Formally, ?_IC holds for history H if C = (tl,..., t,_/ is a consistent

cut of H and • holds for the global state (s_1..... st"). If ?_IC holds for H,

then it is possible that _ held during the execution that generated H since

it held at some point in some linearization of H.

To formally define "definitely _," we introduce the formulas !_1-4- where

A is a finite set of cuts. Formally, !(blA holds for H if A is a finite set of

consistent cuts of H, every linearization of H passes through some cut in A.

and for all cuts (tl,...,tn) E A, • holds for tile global state (st11,...._n_t',).
If !_[A holds for H, then _ definitely held at some point in the execution

that generated H because it held at some point in all linearizations of H.

Note that the definitions of these formulas satisfy two properties dis-

cussed earlier. The definitely operator ! is clearly stronger than the possibly

operator ? in the following sense: if !_[A holds for H then for any C' E A.

?_[C holds for H. Furthermore the two operators are, in a certain sense.

dual. If !'_[A holds for H, then ?_[C cannot hold for H if C E .4.

Informally, the control process t9o detects possibly ¢b when it can deter-

mine that there is a consistent cut of H that satisfies _. and p0 detects

definitely _ when it can find a finite set of consistent cuts A such that every

linearization of H passes through a member of A and such that ¢ holds

for every member of A. We are investigating the more formal definition of

detection, but we do not present such defintions in this version of the paper.

3 Protocols

As noted above, system consists of n+ 1 processes {p0, pl ..... p,_ } whose only

method of interaction is by exchanging messages. The process P0 monitors

the other processes to determine when some state predicate becomes true.

This state predicate of interest will be of the form possibly _ or definitely

_, where _ is a predicate over the states of the processes Pl ..... P,_.

Each process pi will know how to compute _ and will send a message

to Po when its local state changes in a way significant with respect to _. In

particular, a process can determine whether a local event potentially changes



(b. More formally, let _ be a predicate expressed over a global state: that

is, _(sl,..., sn) is true or false. Consider some event e_ of process pi; recall

t executes and t is the value of .si aftert-1 is the value of si before e i s ithat s i

eit executes. Event e it potentially affirms _ if the execution of e_ could have
made _ true:

381, ...,si-l,si+l,.. .,s, : -_(sl,. ..,s_ -l, . .....,s,,) A _(sl, ,_,,..._! ,s,_).

t could have madeSimilarly, event e i potentially rejects _ if the execution of e i
false:

3sl,. .....,s_-l,si+l, ..,s,_ : ,I,(s,, .,s1-1, .... ..._) A _4'(.sl,.... _!_..... .s_).

An event potentially changes _ if it potentially affirms or rejects _: such an
event is also called a relevant event.

Note that an event can both potentially affirm and reject q_. For example.

if n >_ 4 and _ is "either two or three processes have their lights on." then

when a process turns its fight on, this action both potentially affirms and

rejects _ even though it is possible that the value of _ did not change.

Our detection protocols will have the monitored processes periodically

send to the monitor its state relevant to _; that is, the message will contain

the values of the variables of Pl referred to in #. For each process pi ( 1 < i <

n), process P0 maintains a sequence Qi of such messages received from Pi.

These messages will also carry information for ordering these states, which
is described next.

3.1 Weak Vector Clocks and Enumeration of Global States

Our protocols will have the monitor enumerate possible global states of the

system by choosing states from each of the message sequences Qi, In this

section, we describe how this enumeration of global states is performed. We

use a slight modification of vector clocks [12].

A logical clock [7] is a value T that satisfies the clock condition: given

two events el and e2 and their associated clock values T(el) and T(e2). if

el ---*e2, then T(el) < T(e2). We will find it advantageous to use clocks that

also satisfy the converse of the clock condition; that is. clocks that satisfy

(el --*e2)_T(el) < T(e2). (t)

In particular, such clocks enable one to determine whether or not two events

are concurrent; el and e 2 are concurrent if neither el _ e2 nor e 2 _ e_.



Unfortunately,Lamport'slogicalclocksof [7] (which are implemented using
a single counter) do not satisfy Equation 1.

A logical clock that satisfies Equation 1 can be implemented with a

vector V of n counters. If V/is the logical clock associated with process pi,

then V/[i] is the number of events that have been executed by pi and V/[j].

j _ i, is the number of events, that p; "knows" pj has executed. If e, is

an event at process i, then we use V(ei) to denote the value of $'_ after e,

executed. Given this definition, one can easily show that ei _ e3 if and only
if the vector clock of ej records the fact that ei has occurred:

ei -..* ej ¢, V(ei)[i] <_ V(ej)[i]. 2)

Similarly, if ei and ej are concurrent, then

V(ei)[i] > V(ej)[i] A V(ej)[j] > V(ei)[j].

If the set of processes is static, then vector clocks are not hard to xm-

plement. Initially, Vi[j] is set to zero for all i and j. 1,_[i] is incremented

whenever Pi executes an event. Every message sent by pi is timestamped

with Vi (let V(m) refer to the timestamp on message m). If ei is the receipt

of message m, then each V,[k] (k # i) is set to the maximum of ti[k] and
V(m)[k]. As an example, Figure 3 shows the values of vector clocks for tile

events of the execution shown in Figure 2.
We can use vector clocks to determine whether or not a set of local

states represents a consistent cut. The set of local states S = (._%..... .s,_) is

a (consistent) global state if every pair of local states si and .s_ is potentially

concurrent. In terms of vector clocks, si and sj are potentially concurrent

if V(si)[i] > V(sj)[i] and V(sj)[j] > l/(si)[j]. Thus. the global state S is a

consistent cut if and only if

Vi,j: 1 <_ i,j < n : V(s,)[i] >_ V(s3)[i ]. (3)

Because we are interested only in the causal relationship of events that

potentially change _, we can use a slight weakening of vector clocks [10].

With our clocks, process pi will increment its local counter Vi[i] only when

it executes an event that potentially changes q_. It will send a message

to Po whenever its vector clock changes--that is. either when it executes a

relevant event or when it executes a receive event through which it learns

that another process has potentially changed _. The message sent fi'om pi
to po will contain pi's state si after such an event is executed and the vector

time V(si).
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Figure 3: Vector Clocks for Events of Figure 2

Figure 4 illustrates such vector clocks. These clocks are a weakened

version of normal vector clocks--for example, if i = j. they need not satisfy

Equation 2. They do, however, satisfy Equation :3. and this is all that

our protocols need. For the sake of simplicity, the remainder of this paper

assumes that all events--including send and receive events-- are relevant
events and thus that our weak vector clocks are true vector clocks.

3.2 Asynchronous Systems

In this section, we assume that processes do not possess local t'eM-time

clocks, that there is no global clock, and that there is no upper bound on

message delays. We note in advance that there is no way to bound the
amount of time between the time a condition becomes true and the time tlle

monitor detects the condition. This is because messages sent to the monitor

may be arbitrarily delayed.

The protocols for detecting possibly ¢b and definitely • are based on the

same data structure: the lattice of consistent global states that correspond

to an observed execution. Such a lattice consists of n orthogonal axes. with

one axis for each monitored process. A point t = (tl, t2 ..... t,,) in this lattice

corresponds to a consistent global state in which process p; has executed t,

10



(0,0,0)

(0,0,0)

(o,o,o)

Figure 4: Weak Vector Clocks for Events of Figure 2

events. Of course, not all tuples (tl,t2,...,tn) appear in the lattice: this

depends on the causal dependencies among the local states of P. Define the

level of a point t" to be the sum of its indices tl + t: +... + t_.

Consider some global history. A linearization of this history is a total

order of (consistent) global states in which exactly one process executes one

event between adjacent global states In terms of the lattice corresponding

to the history, a linearization corresponds to a path in the lattice, where the

level of each subsequent point in the path increases by one. A space-time

diagram of a two-process system and the corresponding lattice of global

states is illustrated in Figure 5. A point Sij represents a state in which

process Pl is in its ita state and process P2 is in its jta state. From the lattice.

it is easy to see that one possible execution corresponds to tile sequence of

global states

Soo; S01; $11; 821; Sn; $23; ,5'33;.5'43"".

For every point t in a lattice, there exists at least one linearization that

passes through t. Hence, if any point in the lattice satisfies _, then possibly

holds. The property definitely _ requires all linearizations to pass through

a point that satisfies _. For example, suppose in Figure 5 that the points 5'43

and 834 both represent states that satisfy _; then definitely _ holds. This is

11



becauseS43 and $34 are the only points in level 7 and all linearizations must

pass through some point in that level. Definitely _ also holds if instead tile

states represented by points in the set {$53, S3s, $54, $45} all satisfy qh. This

is because if a linearization does not pass through $53 or S3s, then it must

pass through $44 and hence through either S.54 or S4s.

Figures 6 and 7 give the high-level algorithms that a monitoring process

uses to detect possibly _ and definitely _, respectively, in an n-processor

system. Each algorithm begins by having the monitor distribute the predi-

cate • to all processes and then construct the initial global state of level 0.

(It is assumed that the monitor knows a priori each process's initial state

relevant to O; if this is not the case. the processes begin by performi_tg a

two-phase synchronization protocol.)

The possibly • algorithm is straightforward: using tile messages it re-

ceives, the monitor iteratively constructs levels of the lattice, using the vec-

tor timestamps accompanying each message (see below). If it ever finds a

global state in the current level satisfying O, then it reports possibly ¢_ and

halts. Note that this protocol is not optimal in its reporting time because

it always waits for a level to be completely enumerated. This restrictiou is

not necessary and is only done to simplify the presentation of the algorithm
and the one that follows.

The definitely • algorithm also iterative[y constructs one [eve[ at a time.

It attempts to prove that all paths in the lattice pass through a state sup-

porting O. To this end, when constructing a new level, it adds oulv states

that do not support O; call the resulting level a reduced lecel. If the monitor

ever finds an empty reduced level, then the monitor halts and reports defi-

nitely 0 (in fact, it can report that 0 definitely holds bv the time processes
execute a total of lvl relevant events, where lvl is tile last level enumerated ).

As stated earlier, the implementations of the algorithms in Figures 6

and 7 require a monitored process to send the relevant part of its local state

to the monitor whenever its vector clock changes. The monitor maintains

sequences of these states, one per process, and assembles them into the

necessary global states. Thus, the monitor must be able to deternline wtlen

it can assemble all the reachable global states of a given level and when

it can drop a local state from its sequence because the local state cannot

appear in any further global states of interest. To achieve this. we use weak

vector timestamps developed in the previous section.

Let Qi be the sequence of messages that P0 has received from p/stored in

FIFO order. Each state si in a message stored in Q/is labeled with tile weak

vector timestamp V(si) of the event that generated that state. Equation 3

12



defineswhen a set of states (sl, s2,..., s,,), with si from process pi, comprise

a consistent cut. Note that the level of this global state is _=1 V(s_)[u].

Consider some point _ = (q,...,tn) in the lattice that corresponds to

the state (sl, .... s,_). The monitor can enumerate points of the next level

in the lattice as follows. For each process Pi, the monitor checks to see if s_.
the state in the (ti + 1) 't message of Oi, is potentially concurrent with the

other sj's (if there is no such state in Qi, the monitor cannot complete the

next level until it receives that state). Thus, if

Vj: j y_ i: V(s_)[i] _> V(sj)[i] A V(sj)[j] >_ V(s_)[j] (4)

then point (q,...,ti + 1,...,t,,) is in tile lattice at the next level. (Although

many such states will have be checked, it should be clear that a state at some

level in the lattice may follow from several in the previous level: it only has

to be checked once and not for each possible predecessor.)

We can also use vector timestamps to determine when a message con-

raining state si can be eliminated, in the interest of saving space, from a

queue Qi. If the last state in each other queue happens after .si and is not

potentially concurrent with it, then no state subsequently received could

possibly form a global state with 8i. Thus. the message containing .si can

be removed from Qi as soon as the following holds:

Vj : j ¢ i : V(Qj.last)[i] > V(.si )[i],

where Qj.last is the last state in Qj.

The running time of both detection algorithms are linear ill tile number of

global states. Unfortunately, the number of global states can be exponential

in the number of processes. Even worse, the worst-case space complexity

is unbounded, since the delivery of a message can be indefinitely delayed

in an asynchronous system. While there are heuristics that can be used to

limit the number of constructed global states, they are intrusive in that t hey

require some kind of synchronization or limited blocking of the monitored

processes. Real-time bounds on communication and tile rate of change of
local states can also be used, as is discussed in the next section.

3.3 Partially Synchronous Systems

In this section, we assume that each process pi has a real-time clock Ci. and

that these clocks are approximately synchronized: at any given "real" time.

the difference between the clocks of two processes is no more than E. We

13



definethis formallybymodifyingour definition of histories and linearizations

slightly. Firstly, all processes (including p0) execute "tick" events: a process's

local time is the number of tick events that it has executed. If ei is an event

at Pi, then Ci(ei) is the number of tick events that pi has executed through

ei. If H is a history with approximately synchronized clocks, then L is a

linearization of H only if, in addition to the usual requirement, in all prefixes

of L and every pair of processes pi and pj, the difference in the number of

tick events executed by the two processes is at most e.

In addition to approximately synchronized clocks, we assume that there

are lower and upper bounds on message transmission times. This means that

if process pi executes "send m to pj" after it has executed ts tick events, then

when pj executes "receive m from pi," it has executed t, tick events, where

ts + drain <_ tr <_ ts + dmax for constants drain and dma x (both greater than

0). These bounds will be especially important when considering messages

received by the monitor P0. Approximately synchronized cIocks can be used

to extend the "happens before" relation to order two events ei and ej even

when there is no explicit communication between pi and pj: thus. we redefine

ei -* e j:

--, ej < V(ej)[i]) v (C(e,) + E<

That is, ei must happen before ej either if ei can causally affect ej (as

measured by vector timestamps) or if the clock times corresponding to the

events show that ei must happen first.

Our protocols will be such that each state ._%sent by a process pi to the

monitoring process Po will include the local time C(.s,) at which the event

resulting in si occurred, as well as the vector timestamp V(._%). The monitor

can then use the vector timestamps and the clock times of these states to

enumerate the levels of the lattice. The clock times can be used to further

restrict the pairs of events that are potentially concurrent. With each state

si in Qi, the monitor can determine the latest local time at which Pi must

have been in state si (call this L(si)). If there is a state .s_ after .s_ in Q,,

then this is C(s_); if si = Qi.last, then this is C - dm_x, where C is the

monitor's current local time. If pi had changed its local state between C(.si)

and C - dm_,, then the monitor would have gotten another message from pi

by its local time C.

1There is no need to take the transitive closure of the two relations because, if dm,n > O.

V(e,)[i] _< V(ej)[i] and C(ej)+e < C(ej,) then C(e.)+e < C'{e_.). and if C'(e.)+_ < C'(ej)

and V(e,)[j] < V(eh)[j] then C(e,)+e < C{ek).
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Wecannowsaythat two statessi and sj received by the monitor are

potentially concurrent if both the vector time stamps and the the real-time
clocks indicate this:

_> A (V(sj)[jl_> V(si)[il)

A ((C(s_)- _) _<C(s_) _< t(si) +

V (C(sj)- _) <_ C(si) <_ L(sj) _- _).

(5)

Suppose now that the monitor is seeking to extend the state (sl ..... s,_) to

the next level by potentially adding a new state ..*[,the (ti + 1) 't state in Q/.

It checks to see if s_ is potentially concurrent with the other .sj's by using

Equation 5 instead of Equation 4. If s[ is potentially concurrent with all

the si's, then the state (sl,...,s[,...,s,_) is added to the next level of the

lattice; otherwise, it is not. An exception to the last point is if .s[ = Qi.last

and s[ was not deemed to be potentially concurrent because its latest time

was too early. For example, suppose e = 1 and

C(s}) = 3; L(s}) = 4; C(sj) = 6; t(.sj) = 7.

Because s_ = Qi.last, L(s_) = C - dmax; as time passes on tile monitor's

clock, L(s_) may grow so that the two states would be judged potentially

concurrent. In such cases, therefore, the decision about whether to add

the state (al,...,s_,...,an) to the lattice is postponed until either another

message arrives from Pi or the monitor's clock advances to a point where a

decision can be made. Until then, the level cannot be completely enumer-
ated.

The conditions possibly _ and definitely _ can now be detected exactly

as in the previous section. Each processor sends its state to the monitor

whenever its vector clock changes; it includes with this message its vector
t'ime and the number of tick events it has executed. The monitor then uses

this information to construct levels of the lattice, using the properties of the

"potentially concurrent" states discussed above. It then reports "'possibly _'"

or _definitely _" exactly as it would in the case of asynchronous svstenls.

We now argue upper bounds on detection times. Suppose that 5' =

(sl,...,s,_) is a global state such that the last event leading to this state

occurs when the monitor's local time is t. No process's local clock is higher

than t + e when one of the events leading to S occurs, so p0 receives all

messages necessary to construct this state by local time t + e + dmax. Local

time t + 2e is the latest that a process could execute an event that could be

15



potentiallyconcurrentwith oneleadingto S; thus, by time t + 2e + dmax, PO

will have completed the construction of the level containing S.

Suppose that possibly • holds of a history; this means that some consis-

tent cut of the history supports _. If the last event leading to this cut occur

when the monitor's local clock is t, then the monitor will finish enumerating

the level of S at its local time t +2¢+ dmax, detecting possibly _ at that time

(actually, it could detect it at time t + ¢+ dmax because, as noted earlier, the

possibly protocol does not need to enumerate an entire level once it finds a

state satisfying _).

Suppose that definitely _ holds of a history; this means that there is some

finite set of consistent cuts, all supporting _, through which all [inearizations

pass. If the last event leading to the last of these occurs when the monitor's

local time is t, then the monitor must detect definitely • by time t+ 2e+dma x

on its local clock; this is because the last state in the level of the [ast cut

will be enumerated by that time, and the protocol will halt.

The above discussion does not consider the amount of local computation

required by the monitor. In general, this depends on the relation between e

and the rate at which processes can potentially change _. If clocks are closely

synchronized, then the monitor will never have to consider more than a few

state changes by any one process. If instead processes potentially change q5

very often, then the monitor may have to do significant local comp(_tation.

4 Conclusions

This paper has defined two means (possibly and definitely) by which global

states in an asynchronous or loosely synchronous system can be detected.

It presented algorithms by which a monitor can detect these properties in

both types of systems. There are other means of detection that are also of

interest. For example, we have been investigating a third type of detection.

called currently, that occurs when the monitor learns a condition actually

holds at the time of detection. One c_n modify our definitely algorithms

for partially synchronous systems to detect currently by requiring that ap-

plication processes forgo potentially rejecting the condition being detected

for a well-defined amount of time. We can obtain currently algorithms for

asynchronous systems only by forcing application processes to block.

These algorithms may be complex, both in terms of computation and

storage. Although we are investigating optimizations of these algorithms.

we maintain that significant complexity is required for detection to be com-

plete. In the future, we plan to look at the kinds of information that may
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simplify the detection. If the propertythat is to bedetected._. hascer-
tain niceproperties,then detectionmay besimplified. If the monitor has
someknowledgeof the how and when the application program potentially

changes the condition to be detected, then this can also simplify detection.

We have also been investigating casting the detection problem into temporal

and epistomological logics. We believe that such a characterization will aid

in finding sets of properties under which detection can be simplified.

Although our original application was towards distributed application

management, we have also been investigating the use of these detection

protcols in the scope of debugging distributed systems [3]. The constraints

of a debugger are slightly different from those that arise in tool integration

or distributed application management. For example, invasiveness is tradi-

tionaUy considered untolerable, yet in tool integration, temporarily blocking

an application may be acceptable.

The work most similar in spirit to ours are the protocols developed by

Spezialetti [16]. In particular, her event holding condition is the same spec-

ification as our protocol for detecting currently _, and the specification of

her event occurrence condition is similar to the specification of our po.s.sibly

algorithm. However, her protocols for non-local event detection are in-

complete, in that they can miss conditions that in fact held. For example.

the execution in Figure 8 shows such an execution. If the messages in this

figure correspond to the messages generated in establishing simultaneous

regions [15], then her protocol will not detect .rl = x2. yet in fact defil;ite/y

zl = z2 holds.
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Figure 5: An execution and the corresponding lattice of global states.
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Possibly(_): begin
0 o

current := global state Is1, s2, . . . , sO);
lvl := 0;
do no state in current satisfies @ -*

last := current

lvi := lvl + 1;

current := states of level lvl reachable from a state in last;
od

end:

report Possibly

Figure 6: Algorithm for detecting Po._sibly _.

Definitely(@): begin

last := global state (s °, s°,..., s°_):

remove all states in last that satisfy _:
lvi := 1;

% Mvariant: last contains all states of level lvl - 1 that are accessibte

% from 0 o(st, s2 ..... sO) without passing through a state satisfying

do last # { } ---
current := states of level lvl reachable from a state in last

remove all states in current that satisfy ¢;
lvl := lvl + 1; last := current
od

end;

report Definitely

Figure 7: Algorithm for detecting Definitely ¢.
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Xl :---- 4 Xl :---- 3
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X2 :" 3 2:2 := 4

Figure 8: # --- (xl = x2)
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