Skip to main content

Self-verifying axiom systems

  • Contributed Papers
  • Conference paper
  • First Online:
Book cover Computational Logic and Proof Theory (KGC 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 713))

Included in the following conference series:

Abstract

We introduce a class of First Order axiom systems which can simultaneously verify their own consistency and prove more Π1 theorems than Peano Arithmetic. Despite these strengths, our axiom systems do not violate Godel's Incompleteness Theorem because they treat multiplication as a partial function.

Partially funded by NSF 9060509.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Boolos, The Unprovability of Consistency: An Essay on Modal Logic Cambridge University Press, 1979.

    Google Scholar 

  2. A. Bezboruah and J. Shepherdson, Godel's Second Incompleteness Theorem for Q, Journal of Symbolic Logic 41 (1976) pp. 503–512.

    Google Scholar 

  3. S. Buss, Polynomial Hierarchy and Fragments of Bounded, Proceedings of 17th Annual ACM Symposium on Theory of Computing (1985) pp. 285–290

    Google Scholar 

  4. S. Buss, Bounded Arithmetic, Princeton Ph. D. dissertation published in Proof Theory Lecture Notes #3 by Bibliopolic (1986), see also [Bu85].

    Google Scholar 

  5. S. Buss, private communications.

    Google Scholar 

  6. H. Enderton A Mathematical Introduction to Logic Academic Press 1972.

    Google Scholar 

  7. S. Feferman, Arithmetization of Metamathematics in a General Setting, Fundamenta Mathematicae 49 (1960) pp. 35–92.

    Google Scholar 

  8. S. Feferman, Finitary Inductively Presented Logics, in Proceedings of Logic Colloquium 88, North Holland Publishing House (1989) pp. 191–220.

    Google Scholar 

  9. M. Fitting, First Order Logic and Automated Theorem Proving, Springer Verlag Monograph in Computer Science, 1990.

    Google Scholar 

  10. G. Gentzen Collected Papers, translated by M.E. Szabo, North Holland, 1969.

    Google Scholar 

  11. K. Godel, Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme, I, Monatsh Math Phys, 38, (1931) pp. 173–198.

    Google Scholar 

  12. D. Hilbert and B. Bernays, Grundlager der Mathematik Volume 1 (1934) and Volume 2 (1939), Springer.

    Google Scholar 

  13. R. Jeroslow, Consistency Statements in Formal Mathematics, Fundamentae Mathematicae 51 (1971) pp. 17–40.

    Google Scholar 

  14. G. Kriesel, A Survey of Proof Theory, Part I in Journal of Symbolic Logic 33 (1968) pp. 321–388 (see especially footnote 8 and page 349); Part II in Proceedings of Second Scandinavian Logic Symposium (1971) North Holland Press (with Fenstad ed.), Amsterdam (see especially pp. 117(d) & 166).

    Google Scholar 

  15. G. Kriesel and G. Takeuti, Formally self-referential propositions for cut-free classical analysis and related systems, Dissertations Mathematica 118, 1974 pp. 1–55.

    Google Scholar 

  16. M. Lob, Solution of a Problem of Leon Henkin, Journal of Symbolic Logic 20 (1955) pp. 115–118.

    Google Scholar 

  17. E. Mendelson, Introduction to Mathematical Logic, Wadsworth & Brooks/Cole Mathematics Series, 1987.

    Google Scholar 

  18. H. Rogers, Theory of Recursive Functions and Effective Compatibility, McGraw Hill 1967, see especially pp. 186–188.

    Google Scholar 

  19. H. Schwichteberg, Proof Theory: Some Applications of Cut Elimination, in Handbook on Mathematical Logic, North Holland Publishing House (1983) pp. 867–896.

    Google Scholar 

  20. R. Statman, Herbrand's theorem and Gentzen's Notion of a Direct Proof, in Handbook on Mathematical Logic, North Holland Publishing House (1983) pp. 897–913.

    Google Scholar 

  21. R. Smullyan, The Theory of Formal Systems, Princeton University Press, 1961.

    Google Scholar 

  22. R. Smullyan, First Order Logic, Springer-Verlag, 1968.

    Google Scholar 

  23. C. Smorynski, The Incompleteness Theorem Handbook on Mathematical Logic, pp. 821–866, 1983.

    Google Scholar 

  24. G. Takeuti, On a Generalized Logical Calculus, Japan Journal on Mathematics 23 (1953) pp. 39–96.

    Google Scholar 

  25. G. Takeuti, Proof Theory, Studies in Logic Volume 81, North Holland, 1987.

    Google Scholar 

  26. D. Willard, Quasi-Linear Algorithms for Processing Relational Calculus Expressions, Proc of ACM's PODS-1990 Conf, pp 243–257. This reference may be helpful as an optimization technique to help render an efficient computer implementation of IS. (Much further optimization will clearly be greatly needed.)

    Google Scholar 

  27. D. Willard, Self-Verifying Axiom Systems and their Implications, (the unabrideged version of the present article), SUNY-Albany Tech Report, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Georg Gottlob Alexander Leitsch Daniele Mundici

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dan Willard, E. (1993). Self-verifying axiom systems. In: Gottlob, G., Leitsch, A., Mundici, D. (eds) Computational Logic and Proof Theory. KGC 1993. Lecture Notes in Computer Science, vol 713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022580

Download citation

  • DOI: https://doi.org/10.1007/BFb0022580

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57184-1

  • Online ISBN: 978-3-540-47943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics