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The extension of a hardware description is a description where all properties of the
original one are maintained. The concept applies to a variety of design and verification
problems including logic-verification and the verification of behavioral vs. structural
descriptions. For a systematic discussion, several classes of temporal behavior and HDL-
constructs for their representation are introduced. The verification tool LOVERT is
surveyed which allows for the automatic verification of several types of extensions.

1 Extensions of Descriptions

In the following, the correctness of finite state systems is discussed in terms of an HDL-based hard-
ware specification technique [3]. One hardware description, the specification, defines the meaning
of -correctness for another one, the implementation (Fig. 1).

T(d1) — (Description d1 ) «— Specification

T(d2) — (Description d2 ) «— Implementation

Fig. 1: Basic situation of a hardware specification technique

Hardware specification techniques are based on the concept of the aziomatiziation of HDL de-
scriptions [4]. The axioms associated with a hardware description d have two sources {i) the
model-specific azioms which are due to the hardware-model involved, e.g., the axioms of boolean
algebra, (ii) the description-specific azioms reflecting the properties of the specific description d.
The model- and description-specific axioms associated with a hardware description characterize a
theory, i.e., a formal system of the predicate calculus.

Definition 1: A formula A is a correct statement about a hardware description d iff it is a
theorem of the associated theory T'(d), i.e.,
Fra A (1-1)

The relationship between the specification and the implementation can be discussed in terms of the
relationship between the associated theories. We study classes of a particularly simple relationship
between two descriptions d1 and d2:

Definition 2: A description d2 is an eztension of d1 iff for all axioms of T(d1), i.e., for A(T(d1))
holds

}'T(dz) A(T(dl)). (1-2)



Note that on the basis of 1-2 all correct statements about dl are correct about d2, too. The
limitations of the concept of extension are due to the fact that the underlying modelling concepts
of d1 and d2 have to be the same since the model-specific axioms of T{d1) have also to be theorems
of T{(d2) as required by 1-2. Problems involving temporal abstraction or value homomorphisms
for which an interpretation of the theory T(d1) is necessary [3,5] are not covered by the concept
of extension.

In Section 2, the semantics of finite state systems is defined in terms of some concepts of mathema-
tical systems theory [9]. HDL-representations of several types of temporal behavior are proposed.
The HDL-constructs are taken from the CONLAN family of HDL’s [8]. An axiomatiziaton of all
HDL-constructs will be given.

In Sections 3-5, several types of extensions will be introduced, and proof-procedures will be dis-
cussed.

2 Classes of Temporal Behavior

We study systems that can be characterized by means of time-functions. A time-function represents
the values that can be observed at a carrier, i.e., a point of observation. We consider time-functions
to be functions from the set of natural numbers representing the time into some range, e.g., the
set of boolean values {L,H}. Let P be a set of n time-functions fi,..., fs. P(f) denotes the

I — System +—— O

Fig. 2: A system with inputs and outputs

n-tupel (f1(?), ..., fa(t)), i.e., the tupel of all n values at point ¢ of time. P(< ¢,,%; >) denotes the
(t2 — t1 + 1)-tupel of all P(t) in the interval t; <t < 5.

A set P of time-functions associated with a system can be partitioned into a set I of input-functions
and a set O of output-functions (Fig. 2). The classification of the temporal behavior of a system
is based on the question:

Which information about I(< 0,% >} and O(< 0,t—1 >) determines O(t) uniquely ?

In the rest of this Section, HDL-constructs for the representation of three classes of behavior will
be presented.

2.1 Static behavior

A system has static behavior iff O(t) is determined uniquely by I(t) for all t. A typical example is
the behavior of an AND-gate (Fig. 3).

L (low) and H (high) are the boolean constants. Static behavior is described by means of connec-
tions to carriers of type btml (boolean terminal)

g .= e
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Fig. 3: Static behavior of an AND-gate

with the meaning V¢ : g(2) = e(t).
For the boolean functions & (and), | (or), || (exor) and ~ (not), corresponding boolean functions
are defined in the predicate calculus, e.g.

(and(a,b)=r) < (e=H)A(r=0b)V (a=L)A(r=L).

The meaning of an HDL-expression is defined by means of a time-function, too. For instance, the
time-function A(t)(and(a(t), b(t))) is associated with the boolean expression a & b of Fig. 3. As
a result, the meaning of the statement g .= a & b of Fig. 3 is

Vi: g(t) = (AMt)and(a(t), 1)) (t) = and(a(t), b(t)).

2.2 Transitional behavior

A system has transitional behavior iff O(t) is uniquely determined by I(t—1) and O(t-1) for
0 < t. The behavior of a Moore-machine [6] is an example of transitional behavior. This type of
behavior is described by conditional transfers (Fig. 4) into carriers of type budvl (boolean unit
delay variable). If the transfer condition a is H at point t—1 then the value of = at point ¢ becomes

IF a THEN x <- y ENDIF
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Fig. 4: Transitional behavior of a transfer

the value of y(t—1); otherwise, the old value of z is maintained. A default value L is assumed for

point 0 of time.
The semantics of a conditional transfer is thus

z(0) = L,
Vi: (0<t)A(a(t-1)= H) = (z(t) = y(t-1)),
Vi: (0<t)A(a(t-1)=L) = (=(t) = 2(t-1)). (2-1)

There may be several conditional transfers into one carrier. Assume n conditional transfers into
the carrier x:

IF al THEN x <- yl1 ENDIF,

IF an THEN x <~ yn ENDIF



If transfer collisions are excluded then the meaning is:

z{(0)= L,
Vi: (0<t)a{al(i-1)= H) = (2(t) = y1(t—1)),

Yt: (0<t)A(an(t-1)= H) = (2(t) = yn(t-1)),
Vi: (0<t)A{al(t—-1)=L)A...Alan(t—-1)= L) = (z(t) = z(t~1)). (2-2)
If a transfer condition or source expression is a boolean expression, e.g.,

IF a & b THEN x <- y ENDIF

then an anonymous time-function is associated with the boolean expression (Section 2.1). The
time-functions of all carriers are thus bound to point t—1 of time. In the example, we obtain

z(0) = L,

Vi: (0<t)A (and(a(t—1),b(t—1)) = H) = (z(t) = y(t—1)),

Vi: (0<t)A(and(a(t—1),b(t-1))=L) = (2(t) =z(t-1)).
2.3 Quasi-transitional behavior

A system has guasi-transitional behavior iff O(t) is uniquely determined by I(t) und O(¢t—1) for
0 < t. An example is the behavior of a latch (Fig. 5) described by a conditional assignment to a

IF a THEN r := y ENDIF
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Fig. 5: Quasi-transitional behavior of a latch

carrier of type bvarl (boolean variable). Note that in the example of Fig. 5, the output r follows
the input y directly at points 2 and 5 of time.
The meaning of the conditional assignment of Fig. 5 is defined by

2(0) =1L,
Vi: (0<t)A(a(t)= H) = (2(t) = y(1)),
Vi: (0<t)Aa(a{t)= L) = (z(t)==z(t-1)). (2-3)

The input/output behavior of an automaton of Mealy-Type [6] is also quasi-transitional.

3 Static Descriptions vs. Static Descriptions

The first type of extensions applies to situations where the specification as well as the implemen-
tation are given by static descriptions.

Definition 3: A description is called static iff all carriers have static behavior.
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Fig. 6: An example of logic-verification

EXOR-function is implemented by means of a network of NAND-gates. To prove the correct
implementation, the boolean terms of the output £ are derived for the specification as well for the
implementation; then the equivalence ~ of both terms is shown:

allbd =~ ~“((a& ~(a2b)) & "(b & "(akh)))

Efficient procedures for the equivalence-proof of complex boolean expressions are available due to
the work of Bryant [2] and Madre/Billon [7]. Since most HDL's provide bit-vectors as a basic type
for the convenient description of complex circuits, the problem of logic-verification involves also
the equivalence-proof of vector-ezpressions.

Definition 4: Two vector-expressions are equivalent, a & b, iff for all elements i holds a[i] ~
blil.

The semantics of vectors and vector-operations can be defined by means of lists and list-operations
[4]. Three examples of increasing complexity are shown in Fig. 7. The first problem is easily
solved if the commutativity of the boolean and-function is extended for vector-functions. In the

R

al1:8) & b[1:8] b[1:8] & a[1:8]

R

adc( af1:8], a[t1:8], 0) al1:8] # 0

IR

gt(a, b) ~(adc( O#a, 1#°b, 0)[21)

Fig. T: Three examples of equivalent vector-expressions

second problem, the function adc is used which adds two n-bit vectors and a carry-input returning
& normalized n + 1-bit vector 1:n + 1. The lefi-most bit is the most-significant bit. For instance,

adc{ al1:8], b[1:81, c)

is a 9-bit vector; the carry-output is ade{ a[1:8], b[1:8], c)[1]. The second equivalence of
Fig. 7 is based on the fact that a plus a is equivalent to a multiplication of a by 2, i.e., a left-shift of



a or the concatenation # of 2 and 0.} The third problem is even more difficult: in order to compare
two vectors a and b, b is subtracted from a adding the complement of b to a; the most-significant
bit of the sum has to be inverted.

To address such a variety of proof-complexity, the LOVERT approach [1] follows a two-step pro-
cedure:

» Step 1: two expressions are rewritten using a number of rewrite-rules. If the rewriting results
in textually identical expressions then the equivalence is proven (Fig. 7). An example of a

a o b

ra = rb

Fig. 8: Transformation of an equivalence-proof into an identity-proof
rewrite-rule is the concatenation of the adc-function: two concatenated adders

adc( x, y, adc( v[1:n}, wli:n), cin)[1]) #
adc( v{1:n], wli:n], cin)[2:n]

are equivalent to one adder with catenated inputs:
adc( x # v[1:n], y # w[1:n), cin).

e Step 2: if the rewrite-technique fails, the vector-expressions are compiled into the basic
boolean functions and, or and not. Vector expressions are sliced into single bits. The
Madre/Billon tautology checking technique {7] is then applied (Fig. 9). Since the rewrite-
rules used in Step 1 are not confluent, the second step ensures the completeness of the
approach.

The following table shows the cpu-time of a SPARC-station needed to solve the third problem
of Fig. 7 depending on wordlength:

Wordlength 8 16 32 64 128
CPU-time || 0.8 sec. | 0.9 sec. | 1.0 sec. | 1.8 sec. | 3.4 sec.

The two-step procedure has a significant advantage in a situation where a design error is detected.
The behavior of a verification tool in an error situation is an important aspect for its acceptance
by a designer. In the example of Fig. 10, a 16-bit adder is implemented by means of four 4-bit
adders; however, the carry chain is broken at the carry input of the instance a2 since the carry
input is erroneously set to 0 rather than to the carry output ai.co of the first adder.
If the implementation of Fig. 10 is compared with the specification of an 16-bit adder

adc( a[1:16], b[i:16], 0)

1For convenience, the HDL constants 0 and 1 are overloaded and represent the boolean constants L and H as well
as the integers 0 and 1




ra ral[i]
al[l:n]—/— Rewrite-
Rule Compilation, Tautology-
System b Slicing rb[i] Checker
bl1:n]—/> ra=rb »mrali] ~rb[i]

Fig. 9: Equivalence-proof of vector expressions

DESCRIPTION rt7483(IN x, y: btml[1:4]; ci: btml;
OUT s: btml[1:4]; co: btml) BODY

s .= ade( x, y, ci)[2:5],
co .= ade( x, y, ci)[1]
ENDrt7483
USE a1( a[13:16], b[13:16], 0, sum(13:16]),
a2( a[9:12], ©l9:12]1, o0, sum([9:12]),

a3( a[5:8], b[5:8], a2.co, sum[5:8]1),
aa( a[1:4], bl[1:4], a3.co, sum[1:4]): rt7483 ENDUSE

Fig. 10: Incorrect implementation of a 16-bit adder

then the response of LOVERT is the simplified expression of the implementation:
adc( al1:12], b[1:12], 0) # adc( a[13:16], b[13:16]1, 0)[2:5]

The rewrite-rule system is able to simplify the expression for the three correctly chained 4-bit
adders applying the simplification-rule for adders shown above; this results in an 12-bit adder
which is concatenated with the last (and erroneously uncoupled) 4-bit adder. The expression gives
thus a hint to the place where the problem is located.

This example shows also that LOVERT is able to cope with the problems involved in the aggre-
gation of bit-sliced circuits.

4 Transitional vs. Structure-Oriented Static/ Transitional
Descriptions

The second type of extensions applies to systems with sequential behavior.
Definition 5: A description is called transitional iff all carriers have transitional behavior.

Clearly, a description consisting of a collection of conditional transfers is transitional.

The main purpose of a transitional description is to display which transfers take place under which
mutually exclusive conditions. The class of transitional descriptions comprises representations of
simple state-diagrams as well as specifications of complex microprograms.

A further class of descriptions is the classical implementation of finite state machines as a compo-
sition of a transitional and a static subsystem (Fig. 11).

Definition 6: A static/transitional description is a combination of a static and of a transitional
description.



Fig. 11: Mixed transitional/static description

Definition 7: A structure-oriented description is a static/transitional description where each
carrier of the transitional part occurs exactly once as destination.

Structure-oriented descriptions are amenable to an implementation by hardware since each transfer
and each connection refers to one substructure.

We will now discuss a situation where the specification is a transitional description and where the
implementation is a structure-oriented static/transitional description.

Assume several transfers into one carrier x in the transitional description d1:

DESCRIPTION d1 ...
IF al THEN x <- y1 ENDIF,

IF an THEN x <- yn ENDIF
ENDd1

According to Definition 7, there is only one transfer into x in the description d2:

DESCRIPTION d2 ...
IF ta THEN x <- ty ENDIF,
ta .= ...,
ty .= ...,

ASSERT ¢1, ..., cm END
ENDd2

The assertions ci1, ... cm are used to specify don’t care conditions, e.g., to exclude unreachable
states or input combinations which must not occur.
To demonstrate 1-2, it must be proven for each transfer

IF ai THEN x <- yi ENDIF
of d1 that
1. the condition ai of d1 implies the condition ta of 42:

Fray Vi: (cl(t) = HYA... A (em(t) = H) A (ai(t) = H) = (ta(t) = H) (4-1)
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2. the condition ai implies the equality of the sources yi and ty, respectively:
Fa@sy Vi (cl(t)= HYA...A(em(t) = H) A(ait) = H) = (ty(t) = 3i(2))- (4-2)
3. in the storage situation (see 2-2) the content of x remains unchanged if there is no ai active:

"-T(dﬁ) Vi: (el(t)= H)A .../\(cm(t) = H)A(al(t) = L)A...A(an(t) =L)=>
(ta(t) = L) v (ty(2) = 2(2)). (4-3)

Note that 4-1, 4-2 and 4-3 refer to the point ¢ of time only and amounts thus to an equivalence
proof of vector-expressions. The LOVERT system is also able to cope with this type of extensions.
Typical examples of application are the proof of the correct implementation of microprograms
by means of a register-bus structure and a microprogram-sequencer including a ROM. An aver-
age verification time of 1 - 2 sec. per transfer on a SPARC-station was observed. The correct
implementation of a complete microprogram is thus proven in a few minutes.

5 Transitional vs. Quasi-Transitional Descriptions

In the third type of extensions, transitional (“buffered”) behavior of transfers is implemented by
means of quasi-transitional (“unbuffered”) assignments.
An example-specification of transitional-behavior is given in Fig. 12.

DESCRIPTION 41 ...
DECLARE ri, r2: budvl END
IF p2 & b1(r2) THEN ri <- vi(r2) ENDIF,
IF p1 & b2(r1) THEN r2 <- v2(r1) ERDIF
ENDd1

Fig. 12: Specification of transitional behavior

The implementation by means of a quasi-transitional description using conditional assignments is
shown in Fig. 13.

Definition 8: A description is called gquasi-transitional iff all carriers have quasi-transitional
behavior.

As an example of the proof of 1-2, we study one of the axioms associated with r1 of the specification
(see 2-1):

Vi: (0<t)A@2(1-1)= H)A(bL(r2(t—-1)) = H) = (r1(t) = v1(r2(t-1))). (5-1)
The corresponding axiom of the implementation of r1 is according to 2-3
Yi: (0<t)A(pl(t) = HYA(BL{r2()) = H) = (r1{t) = v1{r2(1))). (5-2)
In order to accommodate 5-1 and 5-2, we have to require:
Vi: (0<t)A{pl(t)=H)= (p2(t-1)=H) (5-3)

and

Vi: (0<t)A(pl() = H) = (r2(t) = r2(t—1)). (5-4)
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DESCRIPTION 42 .
DECLARE ri, r2: bvarl END
IF pl & bi(xr2) THEN r1 :
IF p2 & b2(r1) THEN r2 :
ENDd2

vi(r2) ENDIF,
v2(ri) ENDIF

pl p2

Fig. 13: Quasi-transitional implementation

The axioms associated with r2 are (see 2-3)

r2(0) = L,
Vi: (0<t)A@2t) = H)AGAri(t) = H) = (r2(t) = v2(r1(t))),
Vi: (0<t)A((p22) = L)V (62(r1(2)) = L)) = (r2(t) = r2(t-1)).

Hence 5-4 is satisfied by
Vi: (0<t)A(pl(t) = H) = (p2(t) = L). (5-5)

Considering 5-3 and 5-5 we see that the correct implementation is ensured by a two-phase clock
with the two phases p1 and p2. An example behavior is given in Fig. 14.

t

pi(t)
p2(t)

faad §==1 110
e e
[l f=>11

1
L
H

Ll f==1( K=

Fig. 14: Two-phase clock

As a result, it was shown that the quasi-transitional description of Fig. 13 has also transitional
behavior. Note that the specification 42 of Fig. 12 is an abstraction from real hardware: there is
no circuit that corresponds, e.g., to the expression p2 & b1(r2).

6 Summary

The relatively simple concept of extension covers a number of relevant design and verification
problems including the problem of logic-verification, the problem of the correct implementation
of state-diagrams by means of structural resources, and the problem of the implementation of
state-diagrams by means of two-phase clocked systems.
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The introduction of several classes of temporal behavior represented by appropriate HDL-constructs
allows for a systematic discussion of several types of extensions.

HDL-based hardware specification techniques offer a number of advantages: (i) hardware is re-
presented in a convenient and user-friendly way, (ii) relevant classes of verification problems can
be discussed in terms of the relationship between different forms of HDL-descriptions, (iii) the
designer does not need proof-expertise since specialized verification tools support fully automatic
verification.

The proof problems are complicated by the vector-functions provided by most HDL’s for the com-
pact representation of hardware. The LOVERT-approach proposes a combination of rewrite and
tautology-checking techniques which makes the automatic verification of complex designs feasible.
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