
A u t o m a t i c Verification of Extens ions
of Hardware Descr ipt ions

H a n s E v e k i n g
I n s t i t u t filr D a t e n t e c h n i k

Technische Hochschu le D a r m s t a d t
D - 6 1 0 0 D a r m s t a d t , Fed. Rep . o f G e r m a n y

The extension of a hardware description is a description where all properties of the
original one are maintained. The concept applies to a variety of design and verification
problems including logic-verification and the verification of behavioral vs. structural
descriptions. For a systematic discussion, several classes of temporal behavior and HDL:
constructs for their representation are introduced. The verification tool LOVERT is
surveyed which allows for the automatic verification of several types of extensions.

1 Extens ions of Descr ipt ions

In the following , the correctness of finite state systems is discussed in terms of an HDL-based hard-
ware specification technique [3]. One hardware description, the specification, defines the meaning
of'correctness for another one, the implementation (Fig. 1).

T(dl) - - 4 (D e s c r i p t i o n d l) ~-- Specification

r (d2) -'-* (D e s c r i p t i o n d 2) ~-- Implementation

Fig. 1: Basic situation of a hardware specification technique

Hardware specification techniques are based on the concept of the axioma~iziation of HDL de-
scriptions [4]. The axioms associated with a hardware description d have two sources (i) the
model-specific axioms which are due to the hardware-model involved, e.g., the axioms of boolean
algebra, (ii) the description-specific azioms reflecting the properties of the specific description d.
The model- and description-specific axioms associated with a hardware description characterize a
theory, i.e., a formal system of the predicate calculus.

Def in i t ion 1: A formula A is a correct statement about a hardware description d iff it is a
theorem of the associated theory T(d), i.e.,

t-r(d) A. (1-1)

The relationship between the specification and the implementation can be discussed in terms of the
relationship between the associated theories. We study classes of a particularly simple relationship
between two descriptions d l and d2:

Def in i t ion 2: A description d2 is an extension of dl iff for all axioms of T(dl), i.e., for A(T(dl))
holds

~-T(d2) A(T(dl)). (1-2)

Note tha t on the basis of 1-2 all correct statements about d l are correct about d2, too. The
limitations of the concept of extension are due to the fact that the underlying modelling concepts
of d t and d2 have to be the same since the model-specific axioms of T (d l) have also to be theorems
of T(d2) as required by 1-2. Problems involving temporal abstraction or value homomorphisms
for which an interpretation of the theory T(d l) is necessary [3,5] are not covered by the concept
of extension.
In Section 2, the semantics of finite state systems is defined in terms of some concepts of mathema-
tical systems theory [9]. HDL-representations of several types of temporal behavior are proposed.
The HDL-constructs are taken from the CONLAN family of HDL's [8]. An axiomatiziaton of all
HDL-constructs will be given.
In Sections 3-5, several types of extensions will be introduced, and proof-procedures will be dis-
cussed.

2 C l a s s e s o f T e m p o r a l B e h a v i o r

We study systems that can be characterized by means of time-functions. A time-function represents
the values that can be observed at a carrier, i.e., a point of observation. We consider time-functions
to be functions from the set of natural numbers representing the time into some range, e.g., the
set of boolean values (L,H}. Let P be a set of n time-functions f l , . . . , fn . P(t) denotes the

'I System ~ O

Fig. 2: A system with inputs and outputs

n-tupel (f l (t) , . . . , fn(t)), i.e., the tupel of all n values at point t of time. P (< tl , t2 >) denotes the
(t2 - tl + 1)-tupel of all P(t) in the interval tl < t < t2.
A set P of time-functions associated with a system can be parti t ioned into a set I of input-functions
and a set O of output-functions (Fig. 2). The classification of the temporal behavior of a system
is based on the question:

Which information about I (< 0,t >) and O(< 0 , t - 1 >) determine80(t) uniquely ?

In the rest of this Section, HDL-constructs for the representation of three classes of behavior will
be presented.

2.1 Static behavior
A system has static behavior iff O(t) is determined uniquely by I (t) for all t. A typical example is
the behavior of an AND-gate (Fig. 3).

L (low) and H (high) are the boolean constants. Static behavior is described by means of connec-
tions to carriers of type btml (boolean terminal)

g . = e

H t I 0 1 2 3 4 ...

[I
b g a(t) L L H L L ...

b(t) H L H H L ...
g(t) L L H L L ...

Fig. 3: Static behavior of an AND-gate

with the meaning V t : g(t) = e(t).
For the boolean functions tt (and), I (or), I I (exor) and " (not), corresponding boolean functions
are defined in the predicate calculus, e.g.

(a.dCa, b) = ~) ¢= . Ca = H) ^ (~ = b) v Ca = L) ^ C~ = L).

The meaning of an HDL-expression is defined by means of a time-function, too. For instance, the
time-function $(t)(and(a(t) , b(t))) is associated with the boolean expression a tt b of Fig. 3. As
a result, the meaning of the statement g .= a tt b of Fig. 3 is

¥ t : g (t) = (~(t) (a ,d(a(t) , b(t)))) (t) = and(a(t), b(t)).

2 . 2 T r a n s i t i o n a l b e h a v i o r

A system has transitional behavior iff O(t) is uniquely determined by I (t - 1) and O (t - 1) for
0 < t. The behavior of a Moore-machine [6] is an example of transitional behavior. This type of
behavior is described by conditional transfers (Fig. 4) into carriers of type budvl (boolean unit
delay variable). If the transfer condition a is H at point t - 1 then the value of z at point t becomes

IF a THEN x <- y ENDIF

a(0 L L H L L H . . .

~(t) H H H L L L . . .

a z(t) L L L H H H ...

Fig. 4: Transitional behavior of a transfer

the value of y (t - 1) ; otherwise, the old value of z is maintained. A default value L is assumed for
point 0 of time.
The semantics of a conditional transfer is thus

• (o) = L,

V t : (0 < t)ACaCt-1) = H) ~ (zCt) = YCt-1)),
V t : (0 < t) A (a (t - 1) = L) =~ (z (t) = z (t - 1)) . (2-1)

There may be several conditional transfers into one carrier. Assume n conditional transfers into
the carrier x:

IF al THEN x <- yl ENDIF,

.oo~

IF an THEN x <- yn ENDIF

If transfer collisions are excluded then the meaning is:

x(o) = L,
Vt : (0 < ~) A (al(t -1) = H) =~ (z(t) = vlCt-1)),
° . o

V t : (0 < t) A (anCt-1) = El) =~ (z(t) = v n (t - 1)) ,

Vt : (O < t) A (a l (t - - 1) = L) A . . . A (a n (t - 1) = L) =~ (z (t) = z (t - - 1)) . (2-2)

If a transfer condition or source expression is a boolean expression, e.g.,

IF a & b THEN x <- y ENDIF

then an anonymous time-function is associated with the boolean expression (Section 2.1). The
time-functions of all carriers are thus bound to point ~- 1 of time. In the example, we obtain

• (o) = L,
V t : (0 < t) A (a n d (a (t - 1) , b (t - 1)) = H) =v (z(t) = V(t-1)),
V t : (0 < t) A (a n d (a (t - 1) , b (t - 1)) = L) =~ (x(*) = z(t-1)).

2 . 3 Q u a s i - t r a n s i t i o n a l b e h a v i o r

A system has quasi-transit ional behavior iff O(t) is uniquely determined by I(t) und O (t - 1) for
0 < t An example is the behavior of a latch (Fig. 5) described by a conditional assignment to a

IF a THEN r := y ENDIF

y @ r I] g [0 1 2 3 4 5 ...
a(~) L L H L L H ...
V(¢) H H H L L L ...

a r(~) L L H H H L ...

Fig. 5: Quasi-transitional behavior of a latch

carrier of type bvar l (boolean variable). Note that in the example of Fig. 5, the output r follows
the input V directly at points 2 and 5 of time.
The meaning of the conditional assignment of Fig. 5 is defined by

x(o) = L,
v t: (0 < t) ^ (~(t) = a) ~ (x(t) = v(t)),
V t : (0 < t) ^ (aCt) = L) ~ (z(t) = z(t-1)) . (2-3)

The input/output behavior of an automaton of Mealy-Type [6] is also quasi-transitional.

3 S t a t i c D e s c r i p t i o n s v s . S t a t i c D e s c r i p t i o n s

The first type of extensions applies to situations where the specification as well as the implemen-
tation are given by static descriptions.

Def in i t ion 3: A description is called atafic iff all carriers have static behavior.

6

a

b f

Fig. 6: An example of loglc-verification

EXOR-function is implemented by means of a network of NAND-gates. To prove the correct
implementation, the boolean terms of the output f are derived for the specification as well for the
implementation; then the equivalence -~ of both terms is shown:

a I I b ~ "(~(a & "(a&b)) & - (b & "(a & b)))

Efficient procedures for the equivalence-proof of complex boolean expressions are available due to
the work of Bryant [2] and Madre/Billon [7]. Since most HDL's provide bit-vectors as a basic type
for the convenient description of complex circuits, the problem of logic-verification involves also
the equivalence-proof of ~ec~or.ezpr~ssions.

Defini t ion 4: Two vector-expressions are equivalent, a ~ b, iif for all elements i holds a [i] __
b[i].

The semantics of vectors and vector-operations can be defined by means of lists and list-operations
[4]. Three examples of increasing complexity are shown in Fig. 7. The first problem is easily
solved if the commutativity of the boolean and-function is extended for vector-functions. In the

a[1:8] /~ b[1:8] ~ b [l : 8] ~ a[1:8]

ado(a[1:8], a [l : 8] , O) ~ a1"1:8] # 0

gt(a, b) ~ "(adc(O#a, l#'b, 0)1;2])

Fig. 7: Three examples of equivalent vector-expressions

second problem, the function adc is used which adds two n-bit vectors and a carry-input returning
a normalized n + 1-bit vector 1 : n + 1. The left-most bi~ is the most-signiflcant bit. For instance,

adc(a [l : 8] , b [l : 8] , c)

is a 9-bit vector; the carry-output is adc(a [1 : 8] , b [1 : 8] , c) [I] . The second equivalence of
Fig. 7 is based on the fact that a plus a is equivalent to a multiplication of a by 2, i.e., a left-shift of

a or the concatenation # of a and 0.1 The third problem is even more difficult: in order to compare
two vectors a and b, b is subtracted from 6 adding the complement of b to a; the most-significant
bit of the sum has to be inverted.
To address such a variety of proof-complexity, the LOVERT approach [1] follows a two-step pro-
cedure:

• S t e p 1: two expressions are rewritten using a number of rewrite-rules. If the rewriting results
in textually identical expressions then the equivalence is proven (Fig. 7). An example of a

6

l
r 6 rb

Fig. 8: Transformation of an equivalence-proof into an identity-proof

rewrite-rule is the concatenation of the 6dc-function: two concatenated adders

ado(x, y, ado(v l ' l : n] , w [l : n] , c in) J ' l]) #
6dc(v [l : n] , w [l : n] , c in) [2 :n ' l

are equivalent to one adder with catenated inputs:

ado(x # v[l:n], y # w[l:n], tin).

• Step 2: if the rewrite-technique fails, the vector-expressions are compiled into the basic
boolean functions and, or and not. Vector expressions are sliced into single bits. The
Madre/BiUon tautology checking technique [7] is then applied (Fig. 9). Since the rewrite-
rules used in Step 1 are not confluent, the second step ensures the completeness of the
approach.

The following table shows the cpu-time of a SPARC-station needed to solve the third problem
of Fig. 7 depending on wordlength:

Wordlength
CPU_time II 8 0.8 sec. I 1.0 sec. 1.8se c. 3.4 sec.

The two-step procedure has a significant advantage in a situation where a design error is detected.
The behavior of a verification tool in an error situation is an important aspect for its acceptance
by a designer. In the example of Fig. 10, a 16-bit adder is implemented by means of four 4-bit
adders; however, the carry chain is broken at the carry input of the instance a2 since the carry
input is erroneously set to 0 rather than to the carry output a l . co of the first adder.
If the implementation of Fig. 10 is compared with the specification of an 16-bit adder

6tic(a E l : l S] , b E l : l S] , 0)

XFor convenience, the HDL constants 0 and 1 are overloaded and repr~eat the boolean conatant~ L and H as well
as the integers 0 and 1

ra L]
a [1 :n] Rewr i te -

Rule - Compi la t ion ,
S y s t e m rb _1 Slicing

b [l : n] r a ---- rb ~[

ra[i] ~I

- Tau to logy-
Checker

rb[i] 'I ra[i]~-rb[i]

Fig. 9: Equivalence-proof of vector expressions

DESCRIPTION rt7483(IN x, y: btml[1:4]; ci: btml;
OUT s: btml[l:4]; co: btml) BODY

s .= adc(x, y, ci)[2:5],
co .= adc(x, y, ci)[l]

ENDrt7483
USE a l (a [13 :16] , b [13 :16] , O, sum[13:16]) ,

a2(a[9: 12], b[9:12], O, sum[9:12]),
aS(a [5 : 8] , b [5 : 8] , a2.co, sum[S:8]) ,
a4(a [l : 4] , b [l : 4] , a3 .co , sum[l :4]) : r t7483 ENDUSE

Fig. 10: Incorrect implementation of a 16-bit adder

then the response of LOVERT is the simplified expression of the implementation:

adc(a [1 : 1 2] , b [1 : 1 2] , 0) # a d c (a [13 :16] , b [13:16] , 0) [2 :5]

The rewrite-rule system is able to simplify the expression for the three correctly chained 4-bit
adders applying the simplification-rule for adders shown above; this results in an 12-bit adder
which is concatenated with the last (and erroneously uncoupled) 4-bit adder. The expression gives
thus a hint to the place where the problem is located.
This example shows also that LOVERT is able to cope with the problems involved in the aggre-
gation of bit-sliced circuits.

4 Transit ional vs. Structure-Oriented S t a t i c / T r a n s i t i o n a l
Descr ipt ions

The second type of extensions applies to systems with sequential behavior.

Definit ion 5: A description is called ~ra~si~io~al iff all carriers have transitional behavior.

Clearly, a description consisting of a collection of conditional transfers is transitional.
The main purpose of a transitional description is to display which transfers take place under which
mutually exclusive conditions. The class of transitional descriptions comprises representations of
simple state-diagrams as well as specifications of complex microprograms.
A further class of descriptions is the classical implementation of finite state machines as a compo-
sition of a transitional and a static subsystem (Fig. 11).

Definit ion 6: A s~atic/transitio~al description is a combination of a static and of a transitional
description.

r

' ~ n i T M

! i

,!
i i
L i

L

Fig. 11: Mixed t rans i t ional /s ta t ic description

D e f i n i t i o n 7: A structure-oriented description is a s ta t ic / t rans i t ional description where each
carrier of the transi t ional part occurs exactly once as destination.

Structure-oriented descriptions are amenable to an implementa t ion by hardware since each transfer
and each connection refers to one substructure.
We will now discuss a si tuation where the specification is a t ransi t ional description and where the
implementa t ion is a s t ructure-oriented s ta t ic / t rans i t ional description•
Assume several transfers into one carrier x in the transit ional description dl:

DESCRIPTION dl ...

IF al THEN x <- yl ENDIF,

..°p

IF an THEN x <- yn ENDIF

ENDdl

According to Definition 7, there is only one transfer into x in the description d2:

DESCRIPTION d2 ...

IF ta THEN x <- %y ENDIF,

ta .ffi . . . ,

ty .=

ASSE~T cl, ..., cm END

ENDd2

The assertions cl, ... cm are used to specify don't care conditions, e.g., to exclude unreachable

states or input combinations which must not occur.

To demonst ra te 1-9., it must be proven for each transfer

IF a i THEN x <- yi ENDIF

of dl that

I. the condition ai of dl implies the condition ta of d2:

~-T(d2) V t : (e l (t) = H) A • . . A (CW%(,) = .R') A (G i (t) ---- H) =~ (tGCt) = ~) (4 - 1)

10

2. the condition a i implies the equality of the sources y i and ty , respectively:

~'r(~2) V t : (cl(t) = H) ^ . . . ^ (cm(t) = t t) ^ Cad(t) = 11) ~ Cry(t) = yi(t)). (4-2)

3. in the storage s i tuat ion (see 2-2) the content of x remains unchanged if there is no a i active:

~'T(d2) V t : (el(t) = H) ^ . . . ^ (era(t) = H) ^ (al(t) = L) ^ . . . ^ (an(t) = L) =~

(ta(t) = L) V (ty(t) = z(t)). (4-3)

Note that 4-1, 4-2 and 4-3 refer to the point t of t ime only and amounts thus to an equivalence
proof of vector-expressions. The LOVERT system is also able to cope with this type of extensions.
Typical examples of application are the proof of the correct implementation of microprograms
by means of a register-bus structure and a mieroprogram-sequencer including a P~OM. An aver-
age verification t ime of 1 - 2 sec. per transfer on a SPARC-station was observed. The correct
implementation of a complete microprogram is thus proven in a few minutes.

5 Trans i t iona l vs. Quas i -Trans i t iona l D e s c r i p t i o n s

In the third type of extensions, transitional ("buffered") behavior of transfers is implemented by
means of quasi-transitional ("unbuf fered") assignments.
An example-specification of transitional-behavior is given in Fig. 12.

DESCRIPTION dl . . .
DECLARE rl, r2: budvl END

IF p2 & bl(r2) THEN rl <- vl(r2) ENDIF,
IF pl & b2(rl) THEN r2 <- v2(rl) ENDIF

ENDdl

Fig. 12: Specification of transitional behavior

The implementation by means of a quasi-transitional description using conditional assignments is
shown in Fig. 13.

De f in i t i on 8: A description is called q~tasi-transitional iff all carriers have quasi-transitional
behavior.

As an example of the proof of 1-2, we study one of the axioms associated with r l of the specification
(see 2-1):

V t : (0 < t) ^ (p2(t- 1) = H) ^ (b l (r2(t - 1)) = H) =~ (r l (t) = v l (r 2 (t - 1))). (5-1)

The corresponding axiom of the implementation of r l is according to 2-3

V t : (0 < t) A (pl(t) = H) A (bl(r2(t)) = H) =~ (r l (t) = vl(r2(t))) . (5-2)

In order to accommodate 5-1 and 5-2, we have to require:

V t : (0 < t) ^ (pl(t) = H) =~ (p2(t-1) = H) (5-3)

and

Vt : (0 < t) A (pl(t) = H) =~ (r2(t) = r2(t -1)) . (5-4)

11

DESCRIPTION d2 . . .
DECLARE r l , r2 : b v a r l END
IF p l ~ b l (r 2) THEN r l :ffi v l (r 2) ENDIF,
IF p2 & b 2 (r l) THEN r2 := v 2 (r l) ENDIF

ENDd2

Fig. 13: Quasi-transitional implementation

The axioms associated with r2 are (see 2-3)

r2(0) = L,
V t : (0 < t) h (p2(t) = H) A (b2(rl(t)) = H) =~ (r2(t) = v2(rl(t))),

V t : (0 < t) ^ ((p2(t) = L) V (b2(rl(t)) = L)) =¢ (r2(t) = r 2 (t - 1)).

Hence 5-4 is satisfied by

V t :

Considering 5-3 and 5-5 we see
with the two phases p l and p2.

(0 < 0 A (p1(t) = B) :~ (p2(0 = L). (S-s)

that the correct implementation is ensured by a two-phase clock
An example behavior is given in Fig. 14.

0 1 2 3 4 ... I

H L H L H . . . I

I L H L H L

Fig. 14: Two-phase clock

As a result, it was shown that the quasi-transitional description of Fig. 13 has also transitional
behavior. Note that the specification d2 of Fig. 12 is an abstraction from real hardware: there is
no circuit that corresponds, e.g., to the expression 1)2 & b l (r2) .

6 S u m m a r y

The relatively simple concept of extension covers a number of relevant design and verification
problems including the problem of logic-verification, the problem of the correct implementation
of state-diagrams by means of structural resources, and the problem of the implementation of
state-diagrams by means of two-phase clocked systems.

12

The introduction of several classes of temporal behavior represented by appropriate HDL-constructs
allows for a systematic discussion of several types of extensions.
HDL-based hardware specification techniques offer a number of advantages: (i) hardware is re-
presented in a convenient and user-friendly way, (ii) relevant classes of verification problems can
be discussed in terms of the relationship between different forms of HDL-descriptions, (iii) the
designer does not need proof-expertise since specialized verification tools support hilly automatic
verification.
The proof problems are complicated by the vector-functions provided by most HDL's for the com-
pact representation of hardware. The LOVERT-approach proposes a combination of rewrite and
tautology-checking techniques which makes the automatic verification of complex designs feasible.

Refe rences

[1] A. Bartsch, H. Eveking, H.-J. Faerber, M. Kelelatchew, J. Pinder, and U. Schellin. LOVERT
- a logic verifier of register-transfer level descriptions. In L. Claesen, editor, Proc. IMEC-IFIP
Workshop on Applied Formal Me~hods /or Correc~ VLSI Design, pages 522-531, 1989.

[2] R..E. Bryant: Graph-based algorithms for boolean function manipulation. IEEE C-35, 677-691,
1986.

[3] H. Eveking. The application of CHDL's to the abstract specification of hardware. In
Koomen/Moto-Oka, editor, Proc. CHDL '85 (Tokio), pages 167-178, North-Holland, 1985.

[4] H. Eveking. Axiomatizing hardware description languages. International Journal o/ VLSI
Design, 1990.

[5] H. Eveking. Formal verification of synchronous systems. In G. Milne and P.A. Subrahmanyam,
editors, Formal Aspects o/VLSI Design, pages 137-152, North-Holland, 1985.

[6] J. Hartmauis and R.E. Stearns. Algebraic S~rnc~ure Theory o/ Sequential Machines. Prentice
Hall, 1966.

[7] J.C. Madre and J.P. Billon. Proving circuit correctness by formally comparing their expected
and extracted behavior. Proc. ~5~h Design Aurora. Conf., 205-210, 1988.

[8] R. Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, and P. SkeUy. CONLAN Report.
Springer-Verlag, Berlin Heidelberg New-York Tokio, 1983.

[9] T. G. Windeknecht. General Dynamical Processes. Academic Press, 1971.

