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The extension of a hardware description is a description where all properties of the 
original one are maintained. The concept applies to a variety of design and verification 
problems including logic-verification and the verification of behavioral vs. structural 
descriptions. For a systematic discussion, several classes of temporal behavior and HDL: 
constructs for their representation are introduced. The verification tool LOVERT is 
surveyed which allows for the automatic verification of several types of extensions. 

1 Extens ions  of  Descr ipt ions  

In the following , the correctness of finite state systems is discussed in terms of an HDL-based hard- 
ware specification technique [3]. One hardware description, the specification, defines the meaning 
of'correctness for another one, the implementation (Fig. 1). 

T(dl)  - - 4  ( D e s c r i p t i o n  d l )  ~--  Specification 

r (d2)  -'-* ( D e s c r i p t i o n  d 2 )  ~--  Implementation 

Fig. 1: Basic situation of a hardware specification technique 

Hardware specification techniques are based on the concept of the axioma~iziation of HDL de- 
scriptions [4]. The axioms associated with a hardware description d have two sources (i) the 
model-specific axioms which are due to the hardware-model involved, e.g., the axioms of boolean 
algebra, (ii) the description-specific azioms reflecting the properties of the specific description d. 
The model- and description-specific axioms associated with a hardware description characterize a 
theory, i.e., a formal system of the predicate calculus. 

Def in i t ion  1: A formula A is a correct statement about a hardware description d iff it is a 
theorem of the associated theory T(d), i.e., 

t-r(d) A. (1-1) 

The relationship between the specification and the implementation can be discussed in terms of the 
relationship between the associated theories. We study classes of a particularly simple relationship 
between two descriptions d l  and d2: 

Def in i t ion  2: A description d2 is an extension of dl  iff for all axioms of T(dl), i.e., for A(T(dl)) 
holds 

~-T(d2) A(T(dl )). (1-2) 



Note tha t  on the basis of 1-2 all correct statements about d l  are correct about d2, too. The 
limitations of the concept of extension are due to the fact that  the underlying modelling concepts 
of d t  and d2 have to be the same since the model-specific axioms of T ( d l )  have also to be theorems 
of T(d2) as required by 1-2. Problems involving temporal abstraction or value homomorphisms 
for which an interpretation of the theory T(d l )  is necessary [3,5] are not covered by the concept 
of extension. 
In Section 2, the semantics of finite state systems is defined in terms of some concepts of mathema- 
tical systems theory [9]. HDL-representations of several types of temporal behavior are proposed. 
The HDL-constructs are taken from the CONLAN family of HDL's [8]. An axiomatiziaton of all 
HDL-constructs will be given. 
In Sections 3-5, several types of extensions will be introduced, and proof-procedures will be dis- 
cussed. 

2 C l a s s e s  o f  T e m p o r a l  B e h a v i o r  

We study systems that  can be characterized by means of time-functions. A time-function represents 
the values that can be observed at a carrier, i.e., a point of observation. We consider time-functions 
to be functions from the set of natural  numbers representing the time into some range, e.g., the 
set of boolean values (L,H}. Let P be a set of n time-functions f l , . . . , fn .  P(t) denotes the 

'I System ~ O  

Fig. 2: A system with inputs and outputs 

n-tupel ( f l ( t ) , . . . ,  fn(t)), i.e., the tupel of all n values at point t of time. P ( <  tl ,  t2 >)  denotes the 
(t2 - tl  + 1)-tupel of all P( t )  in the interval tl  < t < t2. 
A set P of time-functions associated with a system can be parti t ioned into a set I of input-functions 
and a set O of output-functions (Fig. 2). The classification of the temporal behavior of a system 
is based on the question: 

Which information about I ( <  0,t  >)  and O(< 0 , t - 1  >)  determine80(t) uniquely ? 

In the rest of this Section, HDL-constructs for the representation of three classes of behavior will 
be presented. 

2.1 Static behavior 
A system has static behavior iff O(t) is determined uniquely by I ( t )  for all t. A typical example is 
the behavior of an AND-gate (Fig. 3). 

L (low) and H (high) are the boolean constants. Static behavior is described by means of connec- 
tions to carriers of type btml (boolean terminal) 

g . =  e 



H t I 0 1 2 3 4 ... 

[I 
b g a(t) L L H L L ... 

b(t) H L H H L ... 
g(t) L L H L L ... 

Fig. 3: Static behavior of an AND-gate 

with the meaning V t : g(t) = e(t). 
For the boolean functions tt (and), I (or), I I (exor) and " (not), corresponding boolean functions 
are defined in the predicate calculus, e.g. 

(a.dCa, b) = ~) ¢= .  Ca = H)  ^ (~ = b) v Ca = L) ^ C~ = L). 

The meaning of an HDL-expression is defined by means of a time-function, too. For instance, the 
time-function $(t)(and(a(t) ,  b(t))) is associated with the boolean expression a tt b of Fig. 3. As 
a result, the meaning of the statement g .= a tt b of Fig. 3 is 

¥ t : g ( t )  = (~( t ) (a ,d(a( t ) ,  b(t)))) (t) = and(a(t),  b(t)). 

2 . 2  T r a n s i t i o n a l  b e h a v i o r  

A system has transitional behavior iff O(t) is uniquely determined by I ( t - 1 )  and O ( t - 1 )  for 
0 < t. The behavior of a Moore-machine [6] is an example of transitional behavior. This type of 
behavior is described by conditional transfers (Fig. 4) into carriers of type budvl  (boolean unit 
delay variable). If the transfer condition a is H at point t - 1  then the value of z at point t becomes 

IF a THEN x <- y ENDIF 

a(0  L L H L L H . . .  

~(t) H H H L L L . . .  

a z( t )  L L L H H H ... 

Fig. 4: Transitional behavior of a transfer 

the value of y ( t - 1 ) ;  otherwise, the old value of z is maintained. A default value L is assumed for 
point 0 of time. 
The semantics of a conditional transfer is thus 

• (o) = L,  

V t :  (0 < t)ACaCt-1) = H) ~ (zCt) = YCt-1)), 
V t :  ( 0 < t )  A ( a ( t - 1 ) = L )  =~ ( z ( t ) = z ( t - 1 ) ) .  (2-1) 

There may be several conditional transfers into one carrier. Assume n conditional transfers into 
the carrier x: 

IF al THEN x <- yl ENDIF, 

.oo~ 

IF an THEN x <- yn ENDIF 



If transfer collisions are excluded then the meaning is: 

x(o) = L, 
Vt : (0 < ~) A (al( t -1)  = H) =~ (z(t)  = vlCt-1)), 
° . o  

V t :  (0 < t) A (anCt-1)  = El) =~ (z( t)  = v n ( t - 1 ) ) ,  

Vt :  ( O < t ) A ( a l ( t - - 1 ) = L ) A . . . A ( a n ( t - 1 ) = L )  =~ ( z ( t ) = z ( t - - 1 ) ) .  (2-2) 

If a transfer condition or source expression is a boolean expression, e.g., 

IF a & b THEN x <- y ENDIF 

then an anonymous time-function is associated with the boolean expression (Section 2.1). The 
time-functions of all carriers are thus bound to point ~- 1 of time. In the example, we obtain 

• (o) = L, 
V t :  (0 < t) A ( a n d ( a ( t - 1 ) , b ( t - 1 ) ) =  H) =v (z(t) = V(t-1)), 
V t :  (0 < t) A ( a n d ( a ( t - 1 ) , b ( t - 1 ) ) =  L) =~ (x(*) = z(t-1)).  

2 . 3  Q u a s i - t r a n s i t i o n a l  b e h a v i o r  

A system has quasi-transit ional behavior iff O(t)  is uniquely determined by I( t)  und O ( t -  1) for 
0 < t An example is the behavior of a latch (Fig. 5) described by a conditional assignment to a 

IF a THEN r := y ENDIF 

y @  r I] g [ 0 1 2 3 4 5 ... 
a(~) L L H L L H ... 
V(¢) H H H L L L ... 

a r(~) L L H H H L ... 

Fig. 5: Quasi-transitional behavior of a latch 

carrier of type bvar l  (boolean variable). Note that in the example of Fig. 5, the output r follows 
the input V directly at points 2 and 5 of time. 
The meaning of the conditional assignment of Fig. 5 is defined by 

x(o) = L, 
v t:  (0 < t) ^ (~(t) = a )  ~ (x(t) = v(t)), 
V t : (0 < t) ^ (aCt) = L) ~ (z( t )  = z(t-1)) .  (2-3) 

The input/output behavior of an automaton of Mealy-Type [6] is also quasi-transitional. 

3 S t a t i c  D e s c r i p t i o n s  v s .  S t a t i c  D e s c r i p t i o n s  

The first type of extensions applies to situations where the specification as well as the implemen- 
tation are given by static descriptions. 

Def in i t ion  3: A description is called atafic iff all carriers have static behavior. 
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Fig. 6: An example of loglc-verification 

EXOR-function is implemented by means of a network of NAND-gates. To prove the correct 
implementation, the boolean terms of the output f are derived for the specification as well for the 
implementation; then the equivalence -~ of both terms is shown: 

a I I  b ~ "(~(a & "(a&b)) & - (b  & "(a & b)) )  

Efficient procedures for the equivalence-proof of complex boolean expressions are available due to 
the work of Bryant [2] and Madre/Billon [7]. Since most HDL's provide bit-vectors as a basic type 
for the convenient description of complex circuits, the problem of logic-verification involves also 
the equivalence-proof of ~ec~or.ezpr~ssions. 

Defini t ion 4: Two vector-expressions are equivalent, a ~ b, iif for all elements i holds a [ i ]  __ 
b[i]. 

The semantics of vectors and vector-operations can be defined by means of lists and list-operations 
[4]. Three examples of increasing complexity are shown in Fig. 7. The first problem is easily 
solved if the commutativity of the boolean and-function is extended for vector-functions. In the 

a[1:8] /~ b[1:8]  ~ b [ l : 8 ]  ~ a[1:8] 

ado( a[1:8],  a [ l : 8 ] ,  O) ~ a1"1:8] # 0 

gt(a, b) ~ "(adc( O#a, l#'b, 0)1;2]) 

Fig. 7: Three examples of equivalent vector-expressions 

second problem, the function adc is used which adds two n-bit vectors and a carry-input returning 
a normalized n + 1-bit vector 1 : n + 1. The left-most bi~ is the most-signiflcant bit. For instance, 

adc( a [ l : 8 ] ,  b [ l : 8 ] ,  c) 

is a 9-bit vector; the carry-output is adc( a [ 1 : 8 ] ,  b [ 1 : 8 ] ,  c ) [ I ] .  The second equivalence of 
Fig. 7 is based on the fact that a plus a is equivalent to a multiplication of a by 2, i.e., a left-shift of 



a or the concatenation # of a and 0.1 The third problem is even more difficult: in order to compare 
two vectors a and b, b is subtracted from 6 adding the complement of b to a; the most-significant 
bit of the sum has to be inverted. 
To address such a variety of proof-complexity, the LOVERT approach [1] follows a two-step pro- 
cedure: 

• S t e p  1: two expressions are rewritten using a number of rewrite-rules. If the rewriting results 
in textually identical expressions then the equivalence is proven (Fig. 7). An example of a 
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Fig. 8: Transformation of an equivalence-proof into an identity-proof 

rewrite-rule is the concatenation of the 6dc-function: two concatenated adders 

ado( x, y,  ado( v l ' l : n ] ,  w [ l : n ] ,  c in ) J ' l ] )  # 
6dc( v [ l : n ] ,  w [ l : n ] ,  c in) [2 :n ' l  

are equivalent to one adder with catenated inputs: 

ado( x # v[l:n], y # w[l:n], tin). 

• Step 2: if the rewrite-technique fails, the vector-expressions are compiled into the basic 
boolean functions and, or and not. Vector expressions are sliced into single bits. The 
Madre/BiUon tautology checking technique [7] is then applied (Fig. 9). Since the rewrite- 
rules used in Step 1 are not confluent, the second step ensures the completeness of the 
approach. 

The following table shows the cpu-time of a SPARC-station needed to solve the third problem 
of Fig. 7 depending on wordlength: 

Wordlength 
CPU_time II 8 0.8 sec. I 1.0 sec. 1.8se c. 3.4 sec. 

The two-step procedure has a significant advantage in a situation where a design error is detected. 
The behavior of a verification tool in an error situation is an important aspect for its acceptance 
by a designer. In the example of Fig. 10, a 16-bit adder is implemented by means of four 4-bit 
adders; however, the carry chain is broken at the carry input of the instance a2 since the carry 
input is erroneously set to 0 rather than to the carry output a l .  co of the first adder. 
If the implementation of Fig. 10 is compared with the specification of an 16-bit adder 

6tic( a E l : l S ] ,  b E l : l S ] ,  0) 

XFor convenience, the HDL constants 0 and 1 are overloaded and repr~eat the boolean conatant~ L and H as well 
as the integers 0 and 1 



ra  L] 
a [1 :n] Rewr i te -  

Rule  - Compi la t ion ,  
S y s t e m  rb _1 Slicing 

b [ l : n ]  r a  ---- rb ~[ 

ra[i] ~I 

- Tau to logy-  
Checker  

rb[i] 'I ra[i]~-rb[i] 

Fig. 9: Equivalence-proof of vector expressions 

DESCRIPTION rt7483(IN x, y: btml[1:4]; ci: btml; 
OUT s: btml[l:4]; co: btml) BODY 

s .= adc( x, y, ci)[2:5], 
co .= adc( x, y, ci)[l] 

ENDrt7483 
USE a l (  a [13 :16] ,  b [13 :16] ,  O, sum[13:16]) ,  

a2( a[9: 12], b[9:12], O, sum[9:12]), 
aS( a [ 5 : 8 ] ,  b [ 5 : 8 ] ,  a2.co, sum[S:8]) ,  
a4( a [ l : 4 ] ,  b [ l : 4 ] ,  a3 .co ,  sum[ l :4 ] ) :  r t7483 ENDUSE 

Fig. 10: Incorrect implementation of a 16-bit adder 

then the response of LOVERT is the simplified expression of the implementation: 

adc( a [ 1 : 1 2 ] ,  b [ 1 : 1 2 ] ,  0) # a d c (  a [13 :16] ,  b [13:16] ,  0 ) [2 :5 ]  

The rewrite-rule system is able to simplify the expression for the three correctly chained 4-bit 
adders applying the simplification-rule for adders shown above; this results in an 12-bit adder 
which is concatenated with the last (and erroneously uncoupled) 4-bit adder. The expression gives 
thus a hint to the place where the problem is located. 
This example shows also that LOVERT is able to cope with the problems involved in the aggre- 
gation of bit-sliced circuits. 

4 Transit ional  vs. Structure-Oriented S t a t i c / T r a n s i t i o n a l  
Descr ipt ions  

The second type of extensions applies to systems with sequential behavior. 

Definit ion 5: A description is called ~ra~si~io~al iff all carriers have transitional behavior. 

Clearly, a description consisting of a collection of conditional transfers is transitional. 
The main purpose of a transitional description is to display which transfers take place under which 
mutually exclusive conditions. The class of transitional descriptions comprises representations of 
simple state-diagrams as well as specifications of complex microprograms. 
A further class of descriptions is the classical implementation of finite state machines as a compo- 
sition of a transitional and a static subsystem (Fig. 11). 

Definit ion 6: A s~atic/transitio~al description is a combination of a static and of a transitional 
description. 
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Fig. 11: Mixed t rans i t ional /s ta t ic  description 

D e f i n i t i o n  7: A structure-oriented description is a s ta t ic / t rans i t ional  description where each 
carrier of the  transi t ional  part  occurs exactly once as destination. 

Structure-oriented descriptions are amenable to an implementa t ion by hardware  since each transfer 
and each connection refers to one substructure.  
We will now discuss a si tuation where the specification is a t ransi t ional  description and where the 
implementa t ion is a s t ructure-oriented s ta t ic / t rans i t ional  description• 
Assume several transfers into one carrier x in the transit ional  description dl:  

DESCRIPTION dl ... 

IF al THEN x <- yl ENDIF, 

..°p 

IF an THEN x <- yn ENDIF 

ENDdl 

According to Definition 7, there is only one transfer into x in the description d2: 

DESCRIPTION d2 ... 

IF ta THEN x <- %y ENDIF, 

ta .ffi . . . ,  

ty .= .... 

ASSE~T cl, ..., cm END 

ENDd2 

The assertions cl, ... cm are used to specify don't care conditions, e.g., to exclude unreachable 

states or input combinations which must not occur. 

To demonst ra te  1-9., it must  be proven for each transfer 

IF a i  THEN x <- yi ENDIF 

of dl that 

I. the condition ai of dl implies the condition ta of d2: 

~-T(d2) V t : ( e l ( t )  = H )  A • . .  A (CW%(,) = .R')  A ( G i ( t )  ---- H )  =~ ( tGCt )  = ~ )  ( 4 - 1 )  
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2. the condition a i  implies the equality of the sources y i  and ty ,  respectively: 

~'r(~2) V t : (cl(t) = H) ^ . . .  ^ (cm(t) = t t )  ^ Cad(t) = 11) ~ Cry(t) = yi(t)). (4-2) 

3. in the storage s i tuat ion (see 2-2) the content of x remains unchanged if there is no a i  active: 

~'T(d2) V t :  (el(t) = H)  ^ . . .  ^ (era(t) = H)  ^ (al(t) = L) ^ . . .  ^ (an(t) = L) =~ 

(ta(t) = L) V (ty(t) = z(t)).  (4-3) 

Note that  4-1, 4-2 and 4-3 refer to the point t of t ime only and amounts thus to an equivalence 
proof of vector-expressions. The LOVERT system is also able to cope with this type of extensions. 
Typical examples of application are the proof of the correct implementation of microprograms 
by means of a register-bus structure and a mieroprogram-sequencer including a P~OM. An aver- 
age verification t ime of 1 - 2 sec. per  transfer on a SPARC-station was observed. The correct 
implementation of a complete microprogram is thus proven in a few minutes. 

5 Trans i t iona l  vs.  Quas i -Trans i t iona l  D e s c r i p t i o n s  

In the third type of extensions, transitional ("buffered") behavior of transfers is implemented by 
means of quasi-transitional ("unbuf fered")  assignments. 
An example-specification of transitional-behavior is given in Fig. 12. 

DESCRIPTION dl . . .  
DECLARE rl, r2: budvl END 

IF p2 & bl(r2) THEN rl <- vl(r2) ENDIF, 
IF pl & b2(rl) THEN r2 <- v2(rl) ENDIF 

ENDdl 

Fig. 12: Specification of transitional behavior 

The implementation by means of a quasi-transitional description using conditional assignments is 
shown in Fig. 13. 

De f in i t i on  8: A description is called q~tasi-transitional iff all carriers have quasi-transitional 
behavior. 

As an example of the proof of 1-2, we study one of the axioms associated with r l  of the specification 
(see 2-1): 

V t : (0 < t) ^ (p2(t-  1) = H) ^ (b l ( r2( t -  1)) = H) =~ (r l ( t )  = v l ( r 2 ( t -  1))). (5-1) 

The corresponding axiom of the implementation of r l  is according to 2-3 

V t : (0 < t) A (pl(t) = H) A (bl(r2(t)) = H) =~ (r l ( t )  = vl(r2(t))) .  (5-2) 

In order to accommodate 5-1 and 5-2, we have to require: 

V t :  (0 < t) ^ (pl(t) = H) =~ (p2(t-1) = H) (5-3) 

and 

Vt :  (0 < t) A (pl(t) = H) =~ (r2(t) = r2( t -1)) .  (5-4) 



11 

DESCRIPTION d2 . . .  
DECLARE r l ,  r2 :  b v a r l  END 
IF p l  ~ b l ( r 2 )  THEN r l  :ffi v l ( r 2 )  ENDIF, 
IF  p2 & b 2 ( r l )  THEN r2 := v 2 ( r l )  ENDIF 

ENDd2 

Fig. 13: Quasi-transitional implementation 

The axioms associated with r2 are (see 2-3) 

r2(0) = L, 
V t : (0 < t) h (p2(t) = H) A (b2(rl(t)) = H) =~ (r2(t) = v2(rl(t))), 

V t : (0 < t) ^ ((p2(t) = L) V (b2(rl(t)) = L)) =¢ (r2(t) = r 2 ( t -  1)). 

Hence 5-4 is satisfied by 

V t :  

Considering 5-3 and 5-5 we see 
with the two phases p l  and p2. 

(0 < 0 A (p1(t) = B) :~ (p2(0 = L). (S-s) 

that the correct implementation is ensured by a two-phase clock 
An example behavior is given in Fig. 14. 

0 1 2 3 4 ... I 

H L H L H . . . I  

I L H L H L 

Fig. 14: Two-phase clock 

As a result, it  was shown that  the quasi-transitional description of Fig. 13 has also transitional 
behavior. Note that  the specification d2 of Fig. 12 is an abstraction from real hardware: there is 
no circuit that corresponds, e.g., to the expression 1)2 & b l  ( r2) .  

6 S u m m a r y  

The relatively simple concept of extension covers a number of relevant design and verification 
problems including the problem of logic-verification, the problem of the correct implementation 
of state-diagrams by means of structural resources, and the problem of the implementation of 
state-diagrams by means of two-phase clocked systems. 
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The introduction of several classes of temporal behavior represented by appropriate HDL-constructs 
allows for a systematic discussion of several types of extensions. 
HDL-based hardware specification techniques offer a number of advantages: (i) hardware is re- 
presented in a convenient and user-friendly way, (ii) relevant classes of verification problems can 
be discussed in terms of the relationship between different forms of HDL-descriptions, (iii) the 
designer does not need proof-expertise since specialized verification tools support hilly automatic 
verification. 
The proof problems are complicated by the vector-functions provided by most HDL's for the com- 
pact representation of hardware. The LOVERT-approach proposes a combination of rewrite and 
tautology-checking techniques which makes the automatic verification of complex designs feasible. 
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