A Data Path Verifier for Register Transfer Level
Using Temporal Logic Language Tokio

Hiroshi NAKAMURAx Yuji KUKIMOTO} Masahiro FUJITA}
Hidehiko TANAKAf

Institute of Information Sciences and Electronics, The University of Tsukuba, Japan *

Department of Electrical Engineering, The University of Tokyo, Japan t
Fujitsu Laboratories Ltd., Japan i

Abstract

A data path verifier for register transfer level is presented in this paper. The
verifier checks if all the operations and the data transfers in a behavioral description
can be realized on a given data path without any scheduling conflicts. Temporal
logic based langnage Tokio is adopted as a behavioral description language in this
verifier. In Tokio, designers can directly describe concurrent behaviors controlled
by more than one finite state machine without unfolding parallelism. The verifier
checks for the consistency between a behavior and a structure automatically and
lightens the load of designers. The actual LSI chip which consists of 18,000 gates on
CMOS gate array has been successfully verified. This verifier is concluded to have
the ability to verify practical hardware design.

1 Introduction

Recently, extensive studies have been carried out on the derivation of efficient and error-
free data paths in register transfer level assistance. High-level synthesis [5] is one of the
solutions to this problem. The approach adopted in high-level synthesis is to synthesize
a data path automatically from a given behavioral description. The derived data paths
with this approach, however, are not as satisfactory as those which are designed manually
yet .

On the other hand, designers initially have the image of a data path to be designed in
an actual design process, because they have designed many similar circuits. In addition,
they seldom develop hardware which is completely different from the one ever designed.
In such situations, it is better to utilize the designers’ experience positively instead of
synthesizing a data path automatically. It is very important to construct an effective

*Address: 1-1-1 Ten’nou-dai, Tsukuba, Ibaraki 305, Japan. E-mail: nakamura@arch3.is.tsukuba.ac.jp
tAddress: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan. E-mail: kuki@mtl.t.u-tokyo.ac.jp
t Address: 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan. E-mail: fujita@fiab.fujitsu.co.jp

77

design assistance system based on this approach. However this has not been discussed
well so far. Thus we propose a practical assistance system of register transfer level design
based on this approach and present a data path verifier, which is the core part of the
system.

Figure 1 shows the design flow of the proposed assistance system. The basic idea in
this flow is to construct final data paths by modifying initial data paths given by designers.

Initial Behavior
Initial Data Path

| Modification |

Figure 1: Flow Chart of Practical Design Assistance

At first, a designer gives an initial behavioral description and an initial structure
of a data path to be designed. The initial structure is formed through the designer’s
experience. Now we must verify whether the given behavior can be realized on the given
structure. The proposed data path verifier points out when and where scheduling conflicts
happen, i.e., which paths and functional units are doubly allocated at which time slot.
The structure and the behavior are modified to compensate for that error, and again they
are verified. If there is no design error, the performance of the behavior is simulated
and the cost of the structure is estimated. If the behavior and the structure satisfy
required performance and permitted cost, the design at register transfer level finishes
and it proceeds to the lower level design such as logic synthesis. If the cost/performance
constraints are not satisfied, the design flow is followed by the stage of modification and
the process of verification. This design flow of Figure 1 is justified because the initial data
path given by a designer is fairly good in many cases. If the initial data path is fairly
good, the revised data path will be very efficient. The data path verifier proposed in this
paper plays an important role in this assistance system.

2 An Example

In this section, we explain the semantics of Tokio by showing some simple Tokio programs.
After that, taking the example of the circuit which computes square roots, we show how
this verifier is effectively used in the process of deriving the proper data path for a pipelined
behavior from the data path for a sequential behavior with modification.

78

2.1 Behavioral Description Language Tokio

Tokio [2][1]{4] is a logic programming language based on first-order interval temporal
logic [6]. Intuitively, Tokio is regarded as an extension of Prolog with temporal operators.
Since Tokio has the notion of time in its own semantics, the various algorithms of hard-
ware can be described flexibly. The essential notion of hardware, such as concurrency
and sequentiality, can be specified accurately and simply. Using Tokio, designers can
directly describe concurrent behaviors controlled by more than one finite state machine
without unfolding parallelism. Parallel behaviors such as pipelined execution can be easily
described.
Now we explain the semantics of temporal operators. The expression

head :- p,q.

denotes that the predicates p and q are executed in the same time interval where the
predicate head is defined. Concurrency is represented with a comma operator.
Sequentiality is expressed as follows.

head :- p && q.

The chop operator (&&) specifies the sequential execution of the two predicates p and
q. This operator divides the interval where the predicate head is defined into two sub-
intervals as shown in Figure 2. The predicate p is executed in the former interval and q
is executed in the latter interval.

Figure 2: Chop Operator

Conditional branches are described by using cut operators(!). The semantics of the
following predicates is explained on the right side.

head :- conditionl !, p. if condition! = true then execute p
head :- condition2 ,!, q. else if condition? = true then execute ¢
head :- Lr. else ezecute r

Let us take a simple example shown in Figure 3-(a). The statement “*¥tmp <= *c
+ *tmp” represents that the data of register *c is added to the data of register *tmp
and that the result of the computation is stored in register *tmp at the next clock. The
predicate sub denotes the parallel execution of the computation described above and the
decrement of the data of register *c. The predicate main denotes that the computation
of the predicate sub is repeated until the data of register *c is equal to zero.

sub
main :~ *c=0 ,!,*output <= *tmp. "'*--.._\\ main
main :~ !,sub &% main. "
sub :- *tmp <= *c + *tmp, e
*C <= %c - 1. p-maing
(a) Sample Tokio Program (b) Timing Chart of Sample Program

Figure 3: Sample Tokio Program

As seen from the example, the description in Tokio is based on a top-down approach.
This approach is very useful for describing hardware because designers can give behavioral
descriptions with high modularity. Using this programming style, we need not unfold
concurrency of hardware for every clock cycle. On the other hand, it becomes rather
difficult for designers to check the consistency between a behavior and a data path. Our
strategy is to adopt a flexible behavioral description language and to verify the consistency
auntomatically.

2.2 Computing Square Roots by Sequential Execution

The example to be taken is the circuit which calculates square roots by using Newton’s
method. The algorithm of Newton’s method is shown in Figure 4-(a). The behavioral
description in Tokio and the structure of a data path are shown in Figure 4-(b) and
Figure 4-(d) respectively. In this behavioral description, the computation of Newton’s
method is realized by sequential execution for each input data. In this case, the verification
of the data path is not so difficult because there is little concurrency in the description.
We have only to verify the data path for each local interval and need not check whether
some of these intervals occur concurrently.

2.3 Deriving a Data Path for Pipelined Execution

Now we modify the sequential behavioral description of the circuit computing square roots
and derive a pipelined behavioral description from it. It is quite easy to get a pipelined
description from the original one by using temporal operators. The pipelined description is
shown in Figure 4-(c). We have only to change the top-level predicate main. The second
main predicate denotes that stagel is followed by both main and (stage2 && true).
Since main starts the computation for the next input data, this behavior represents a
pipelined execution. Figure 5 shows a timing chart for the pipelined execution.

At this point, we must construct a data path for the pipelined behavior, because the
data path for sequential computation may not be sufficient. To construct a completely
new data path, however, is not efficient. It is better to modify the original data path

80

Y := 0.222222 + 0.888889 * X;

C :=0;

DO UNTIL C = 2 LOOP
Y:=(Y+X/Y)/ 2

C:=0C+ 1;
ENDDO;
(a) Algorithm of Newton’s Method
main :~ *adr = 8,!,true.

main :~ !,input && stagel && stage2 && main.
input :~ !, *inputl <= *memory(*adr), *adr <= *adr + 1
&& *regl <= 0.222222 + 0.888889 * *inputi.
stagel :~1, *reg2 <= *inputl / *regl
k& *reg2 <= *reg2‘§"*reg1
&& *reg3 <= ¥reg2 / 2, *input2 <= *inputil.
stage2 :~ !, *reg4 <= *input2 / *reg3
&% *regd <= *regd + *¥reg3
&% *output <= *regd / 2.

(b) Sequential Behavioral Description in Tokio

main :- *adr = 8,!,true.
main :- !,input && stagel && main, (stage2 &% true).

(c) Pipelined Behavioral Description in Tokio

addB
int out
in2
addA addA
a4 il in2 |- > inl in2 |-
3 4 out A | \ out

GE @ HE GO @ =6

! [X A I
in out in out
divA 1 diva |
out °“;t :“2 ol ou.t 1in2
mitA in2 n mith in2 n
In1 in1]
Y i
address

out
memory

) address [
input2 ’ ‘ output , out input1 input2 ’ ' output '
memory

(d) Data Path for Sequential Execution (e) Data Path for Pipelined Execution

Figure 4: Computation of Square Roots

81

and to get the proper one. In such a case, we can use this verifier effectively. At first,
the verifier checks whether the pipelined behavior can be realized on the original data
path. If there are some scheduling conflicts, the behavioral description or the data path is
modified considering the output of the verifier in order to avoid the conflicts. This process
is repeated until there are no conflicts and the proper data path is constructed.

From the result of the verification, we can say that adder addA is doubly used in the
second interval of input and the second interval of stage2 and that these intervals occur
concurrently. Thus we add one more adder to the original structure and the final data
path is obtained. The data path for the pipelined behavior is shown in Figure 4-(e).

main

f!;t istage‘l Estagez } irue
main

'inm? stage1 ;stagez } true

main

Figure 5: Timing Chart for Pipelined Execution

3 Verification Method

3.1 Overview

Behavioral Description Structural Description
{in RTL-Tokio) (in Prolog)

Operation Rule

.| Data Transfer
Table

[Data Path Usage Table |
]

»f State Transition Table |

[Scheduling Conflicts |

Figure 6: Structure of Data Path Verifier

The data path verifier proposed in this paper checks if all the operations and the data
transfers in a behavioral description can be realized on a given data path without any
scheduling conflicts. The structure of this verifier is shown in Figure 6. The inputs of this

82

system are a behavioral description in RTL-Tokio (Register Transfer Level Tokio, which
is a subset of Tokio), a structural description in Prolog, and operation rules in Prolog.
The operation rule is a rule for linking an operation in the behavior with a functional unit
in the data path.

The process of the verification is divided into two stages.

Linking a behavior with a data path: To find a set of paths and functional units for
each data transfer and operation from the structural description. In this stage,
all the data transfers and operations in the behavior are linked with appropriate
data path elements in the structure using operation rules, and the link information
between them is recorded in a data path usage table. This stage is executed by a
translator and a facility checker.

Detection of scheduling conflicts: To verify whether any paths or functional units are
doubly allocated in concurrent time intervals. The concurrency of the behavioral
description in RTL-Tokio is unfolded in this process. The state transition table of
a control part is also extracted. This stage is executed by a time irecer.

3.2 Linking a Behavior with a Data Path:

The link information between the behavior and the structure is derived in accordance
with the following steps.

1. To find a set of functional units which realize an operation of each data transfer
from the structure.

2. To search for a data path from a source register to the input of the functional unit
and that from the output of the unit to a destination register.

The function of each unit is defined by operation rules. At the end of this stage, the
link information is recorded in a data path usage table. From this table, we can know
which data path element is used by each data transfer and operation. The names of the
registers and those of the memories in the behavior are assumed to be the same as those
in the structure.

3.3 Detection of Scheduling Conflicts

In this stage, scheduling conflicts in data paths are detected by unfolding the concurrency
of a behavior to actual data transfers with a time tracer. The time tracer makes clear
what operations and data transfers are done concurrently by traversing all the transitions.
After that we check if any paths or functional units are doubly allocated in concurrent time
intervals by using a data path usage table. If no path or functional unit is doubly allocated,
the given data path turns out to be correct. Otherwise designers modify the behavior and
the data path to avoid the detected scheduling conflicts. We have implemented this time
tracer in two ways: a forward tracer and a backward tracer,

83

¢ Forward Trace: At first all the concurrent time intervals are searched for by tracing
transitions forward. In the second stage, all these intervals are checked whether
they use the same data path element. The scheduling conflicts of data paths are
detected in this stage.

¢ Backward Trace: In a backward trace, all the pairs of time intervals which use the
same data path element are searched for at first, and they are verified whether they
occur concurrently by tracing transitions backward in accordance with an interval
transition table.

In this paper, only the algorithm of the forward trace is explained. The algorithm of
the backward trace is similar to that of the forward trace except for a direction of tracing.

3.3.1 Unfolding Concurrency of a Behavior

In the first stage, all the concurrent time intervals are searched for with a forward tracer.
It traverses all the transitions from an initial state in depth-first. A state in RTL-Tokio
description is defined by [interval-name,clock-number].

stepl: An initial interval I,;; and an initial clock I (usually 0) are selected.
So = {[LinitsTctock] }-

step2: (Unfolding the concurrency of a behavior)
If S; has predicate calls, all these concurrent intervals are added to S; and S,f is
obtained. S; is a list of the intervals which occur concurrently at the i-th clock.

step3: (Proceeding to the next clock)
Si;1 is obtained from S; by proceeding to the next clock. The computation of this
process 1s as follows.

1. Increment the clock number I, for each element of S; if the obtained clock
number is not larger than the length of that interval.

2. Transfer to the next interval after chop operator &&.

Step3 is followed by step2.

Detection of the iteration of a search: Let S, be the newly obtained state in step2.
If 0< 3i<n, S, CS; holds or S,41 next to S, cannot be obtained, the iteration
of a search is detected.

3.3.2 Detection of Scheduling Conflicts

All the intervals in each S; occur concurrently unless they have exclusive transitive con-
ditions. Using a data path usage table, all the concurrent intervals are checked whether
they use the same data path resource or not. If they use the same path or the same
functional unit, it results in scheduling conflicts of data paths. In this stage, we check if
the data path conflicts can be avoided by using some alternative data paths.

84

4 Experimental Results and Evaluation

4.1 Network Interface Processor

The largest example to which we have applied this verifier is a network interface processor
(NIP) in PIE64 [3]). PIE64 is a parallel inference machine which executes knowledge
information processing in parallel, and is under development in our laboratory. This
machine consists of 64 inference units and two high speed interconnection networks. The
processor manages data transfers and process synchronization between inference units. It
has already been designed and is going to be implemented on CMOS gate array. The
total number of the gates is about 18,000 including both a data path and a control part.
The structure of the processor is divided into four parts. The data path verifier has
been applied to the main parts which consist of about 11,000 gates. Since the required
performance of this processor is very severe, the behaviors of NIP are 6-stage pipelined.
The verification results of the two parts of the processor are shown in Table 1. The
data path verifier is implemented on SUN4/260 using SICStus-Prolog (about 80KLIPS).

CPU time (sec) Number of | Number
Trans- | Facility | Forward | Backward | Derived of State
lator | Checker | Trace Trace States Transitions
Data Transfer Part
(Upper Part) 0.80 1.07 2.36 40.1 14 53
Data Transfer Part
{Lower Part) 3.23 4.66 183.3 >3600 81 379
Process
Synchronization Part | 5.97 7.85 1488 >3600 236 1168

Table 1: Verification Results of Network Interface Processor

4.2 Evaluation

Most of the CPU-time is spent in a time trace part. Since a forward tracer traverses all
the state transitions, its cost is proportional to the number of transitions. The cost of
detecting the iteration of the search is proportional to the number of states because traced
states are presently recorded with enumeration, Thus the computational complexity for
the forward trace is O(n X m), where n is the number of state transitions and m is the
number of states.

In a backward trace, yC, pairs of intervals are listed in the worst case, where N
is the number of intervals. The worst case occurs when a certain data path element
(such as a bus) is used in all the intervals. Though a backward tracer is not so efficient
for complete verification from a computational aspect, it is quite useful and efficient for
partial verification by selecting one interval and searching for concurrent time intervals
with it. Therefore, it is recommended that the important part of design is tested partially

85

using the backward trace at first, and then the whole design are verified using the forward
trace.

5 Conclusion

We have presented a data path verifier at register transfer level and proposed a design
assistance system based on this verifier. The verifier has been successfully applied to a
real LSI chip. Practical hardware design can be assisted with this verifier if an interactive
tool for improvement is provided. Our current research aims at the assistance of this
improvement stage.

References

{1] T. Aoyagi, M. Fujita, and T. Moto-oka. Temporal Logic Programming Language Tokio. In
Logic Programming Conference ’85, pages 128-137, Springer-Verlag, 1985.

[2] M. Fujita, S. Kono, H. Tanaka, and T. Moto-oka. Aid to Hierarchical and Structured Logic
Design Using Temporal Logic and Prolog. In IEE Proceedings, Vol.133, Pt.E, pages 283-294,
IEE, 1986.

[3] H. Koike and H. Tanaka. Multi-Context Procesing and Data Balancing Mechanism of the
Parallel Inference Machine PIE64. In Fifth Generation Computer Systems, pages 970-977,
ICOT, 1988.

[4] S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka. Implementation of Temporal Logic Pro-
gramming Language Tokio. In Logic Programming Conference 85, pages 138-147, Springer-
Verlag, 1985.

[5] M.C. McFarland, A.C. Parker, and R. Camposano. Tutorial on High-Level Synthesis. In
25th Design Automation Conference, pages 330-336, ACM/IEEE, 1988.

[6] B. Moszkowski. A Temporal Logic for Multi-Level Reasoning about Hardware. In CHDL
83, IFIP, 1983.

