
M i n i m a l M o d e l G e n e r a t i o n *

A. Bouajjani, J-C. Fernandez, N. Halbwachs
IMAG/LGI (U.A. CNRS 398)

B.P. 53, 38041 - Grenoble, France

A b s t r a c t

This paper adresses the problem of generating a minimal state graph from a program, without
building first the whole state graph. The minimality is considered here with respect to bisimula-
tion. A generation algorithm is presented and illustrated.

1 I n t r o d u c t i o n

Model generation consists of building a state graph from a program, a formula or any comprehensive
expression of a transition system. It is used in program verification ("model checking" [6,11]) and
compiling (scanner and parser generation {I], control structure synthesis [2,5],...). A crucial problem
with model generation is the size of the graph, which can be prohibitive. This size can be large not
only because of the intrinsic complexity of the model, but also because the graph contains a lot of
states which are in some sense equivalent. Some solutions have been given to this problem, by applying
reduction algorithms [8,9,10]. However, these algorithms can only be applied once the graph has been
entirely generated. It is often the case that a tremendous amount of time and memory is necessary
to generate a graph, which afterward reduces to a very simple one. It even happens that an infinite
model reduces to a finite one. So, it would be interesting to reduce the graph during the generation,
on one hand to improve the performances of model generation, and on the other hand, to allow finite
model generation from infinite systems. This paper presents and illustrates an algorithm performing
this task, when the equivalence considered on states is a bisimulation.

After fixing some terminology and notations (section 2), the algorithm is presented (section 3) and
illustrated on a simple example (section 4).

2 D e f i n i t i o n s a n d n o t a t i o n s

Let 8 -- (Q, ---~, q ~ t) be a transition system, where Q is a set of states, ---~C Q × Q is a transi t ion rela-
tion, and q~.~t is the initial state. Let -~ be an equivalence relation on Q. Our problem is to explicitely
build the quotient of the set of reachable states from q~,,~, by the coarsest bisimulation compatible with
~ . Of course, this is only possible if this quotient has finitely many elements. Moreover, the method
presented here. only works if the quotient of Q by the coarsest bisimulation is finite (notice that Q
itself can be infinite). The basic idea is to progressively build a parti t ion of Q, by distinguishing two
parts of Q only when their respective elements clearly don' t bisimulate ewch other. Henceforth, we
shall consider partit ions instead of equivalence relations.

Let p be a parti t ion of the set of states Q. The following notations will be used:

*This work was partially supported by ESPRIT Basic Research Action "SPEC"

198

For any state q e Q, postp(q) is the set of classes in p immediately reachable from q

postp(q) = { X E p I 3q ~ E X such that q --* q~}

An equivalence relation, noted L, is associated with p as follows:

q, ~ q2 *=* post~(q,) = postAq2)

A subset X of Q is said to be stable with respect to p if and only if it is included in some equivalence
class of ~. The partition p is said to be stable if and only if all of its classes are stable with respect to
itself. In other words, a partition is stable if and only if it is the set of classes of a bisimulation.

A refinement of a partition p is a partition p~ such that: VX E p~, 3Y E p such that X C_ Y

The reduction of a transition system ,q with respect to a stable partition p is the transition system
(p,-,~, [q,.,,]p), where

[qi,u]p is the class of the initial state in p

X - ~ Y <==~ 3 q 6 X , q I E Y s u c h t h a t q - - * q '

With the above terminology, given an initial partition p of Q, we axe looking for the reduction of
8 with respect to the least stable refinement of p.

3 A l g o r i t h m

The algorithm consists of progressively refining the partition p. At each step, two subsets of classes
will be distinguished:

• The set R of reachable classes, i.e. the classes containing at least one element which has been
found reachable from q~,it.

• The set S of stable classes, i.e. the reachable classes which have been found to belong to ~.

The algorithm is the following:

n = {[q,.,,lp}; S : ~; (1)
while R ¢ S do (2)

choose X in R - S; (3)

let N = X /L; (4)
if N = {X} then (5)

S := S U {X}; R :-- R U {postp(q) [q E N}; (6)

else (7)

n : : n - { x } ; (a)

if 3Y E N such that q;.. E Y then R := R O {Y}; (9)

S := S - { r 6 S I X E post.(Y)}; (10)

p := (p - {X}) U N; (11)

fi (z2)
od (13)

199

P r o o f : Let Rea be the set of reachable states, that is the least subset X of Q containing qi~a, and
such that

(qe X Aq.-, ¢) ~ q' E X

Then,

(i) x ~ s ~ x e ~
since a subset X is only put into $ if X = X / ~ (line 6), and as soon as a refinement of p can
involve a refinement of X / £ , X is extracted from S (line 10).

(ii) X e R ~ X N Rea ~ ~b
since a subset X is only put into R if either it contains qi,,u (line 9), or it contains successor
states of a stable sub#et belonging to R (llne 6).

(ii~) When R = S, all the reachable classes are in R: If X E S, all the classes directly reachable from
X have been put in R (line 6).

(iv) So, when R = S, R defines a stable part i t ion of Rea.

(v) The finiteness of the set of classes insures that the algorithm terminates.

S p l i t t i n g a c l a s s : Line 4 of the algorithm splits a reachable class X into a part i t ion N = X/L ,
whose elements are stable with respect to the current p. Let us detail the computat ion of this partit ion.
Let pre denote the precondition function ~Y.{q E Q [3q' E Y such that q - , q'}. Then,

N = {X n M zy 1 z y e {p,e(r) , Q - P '4Y)} }
YEp

Instead of considering such an exponential number of intersections, most of which are generally empty,
we propose to compute N as follows:

N = {x};
for each Y E p do

M : = ¢ ;

for each W in N do

let W1 = W M pre(Y);

if W1 = W or W1 = ¢ then M := M U {W}

else M := M U {W1, W - W1};

od;

N:=M;
od

4 Example

Let us consider the following program, which could be a boolean abstraction of a more realistic program:

x := true; y : - false; read(a);
loop

write(x or y);
Z := a; read(a);
w : = x ; x : = n o t y ; y : = w o r z ;

end;

200

We want to examine all the possible input/output behaviours of this program. So, we consider it
as a transition system, whose states are the values of the variables when the output is written. Now,
since we are only interested in the output, we may consider as equivalent all the states which produce
the same output. So, we start with the initial partition:

{ (. , ~ , ~, y, ~-) I • v y = t,,,,..,e}, { (a , ~ , ~, y, ~.) I • V ~ = .false}

In the following, classes are represented by their characteristic formulas. The initial partition will be
noted:

Standard rules of weakest precondition provide the precondition of a class X, with respect to the body
of the loop:

p~(X) = X[~, V zlz,]l-~Ylzllzl,~] ~ a la /z]

where X ~ ~ = 3~oXlaola] = X~atse/a] V Xlt,',,~/a]

So, p ~ c ~) = • v -~y v ~ , p , ~ (c 2) . = - ~ A y A - ~

The successive partitions built by the algorithm axe illustrated on figure 1.

Step 1: The only reachable class is C1, since z is initially true. For splitting it, we compute:

C 1 A ~lPe(Cl) = (x V ~) A (x V -n~ V o,) = ~ V (~ A a)

Cl A pre(C,) A pre(C2) = false

C 1 A "npre(Cl) A pr~C2) = C1 A "- '~(CI)

So, 671 is split into:

and only Cu is reachable. We have: pre(Cll) = z V -,y V a , pre(C12) = y ^ (z V a)

Step 2: For splitting C13, we compute:

C11 A P~(C11) : (z V (y ̂ a)) A (-~y V z V a) ---- C11

c~, ̂ p~(c~) ^ p~(c~) = (~ v (y ̂ a)) ̂ (y ̂ (~ v a)) = y ̂ (~ v a)

C11 A pre(C l l) A "~pre(012) A p~(C2) ----- false

So, 011 is split into:

and only Cl12 is reachable. We have: pre(Cm) = z V a , pre(Cllz) = -~z ̂ ~y A -,a

201

Step 3: When splitting Cn2, we get only:

cm ^ p~(c~) ^ ~p~(c~) ̂ ~p,~(c~) ̂ ~p~e(c~) = • ^ ~ = c112

So Cn2 is stable, and leads to Ol11- So, Olll is reachable.

S t ep 4: C m is also found stable since:

cln = cm ^ p~(c~u) ^ ~p~(C.2) ^ p~(c~2) ^ ~p,~(c~)

It leads to itself and to C12, which is found reachable.

S t ep 5: C,2 is stable, and leads to 6'2, since:

c~ = c~ ̂ ~p,~(c~1~) ̂ ~p~(c~) ̂ ~p,~(c~) ̂ p,e(C~)

Step 6: C2 is split into:

C21 = 02 A p r e (C n l) = -~z A -~y A a

C2z = C2 A pre(Cn2) = -~z A -~y A -~a

So 6',2 is removed from stable classes. We have: p r e (C 2 ,) = pre(C22) = -~z A y A -~a

Step 7: C12 is again found stable, since:

c~2 ̂ p~(c21) ^ p,~(c22) = c.2

It leads to 021 and 022.

S t e p 8 and 9: Prom

C22 = C22 ̂ pre(CH2)

we get that 021 and C22 are stable, and respectively lead to Oll I and Oll 2.

We get a graph with 5 vertices (Fig. 2), instead of 10, which would be produced by standard generation
(Fig. 3).

5 C o n c l u s i o n

We have presented an algorithm combining generation and reduction methods. In our opinion, this
algorithm is interesting for program verification: a state graph with several thousands (or even infinitely
many) states may be reduced to one with a few number of states by considering an equivalence relation.

Of course, one must be capable to compute the function pre and intersections of classes, and to
decide the inclusion of classes. Such a symbolic computation is achievable in the boolean case, with
reasonable average cost [3,7].

Applying our algorithm to program verification appears very close to formal proof (in the
Floyd/Hoare sense) or to what is now called "symbolic model checking" [4]. Concerning other ap-
plications, the algorithm is being implemented in the new version of the LUSTRE compiler.

We have not presented complexity measures. A comparison with classical reduction methods is
difficult, mainly because the complexity of these methods is evaluated as a function of the size of the
initial graph, whereas the cost of our method obviously depends on the size of the reduced graph.

202

Initial partition Result of step 1 Result of step 2

Result of step 3 Result of step 4 Result of step 5

Result of step 6 Result of step 7 Final result

Figure 1: The successive partitions built by the algorithm

Figure 2: The reduced graph of the example

203

Figure 3: The complete graph of the example

R e f e r e n c e s

[1] A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] G. Berry and G. Gonthier. The synchronous programming language Esterel, design, semantics t
implementation. Tech. Report 327, INRIA, 1985. To appear in Science of Computer Program-
ming.

[3} R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35(8), 1986.

[4] J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, J. Hwang. Symbolic Model Checking: 102°
states and beyond. Technical Report, Carnegie Mellon University, 1989.

[5] P. Caspi, D. Piland, N. Halbwachs, J. Plaice. Lustre: a declarative language for programming
synchronous systems. In l$th POPL, january 1987.

[6] E. Clarke, E.A. Emerson, A.P. Sistla. Automatic verification of finite state concurrent systems
using temporal logic. In lOth. Annual Syrup. on Principles of Programming Languages, 1983.

[7] O. Coudert, C. Berthet, J. C. Madre. Verification of synchronous sequential machines based on
symbolic execution. In International Workshop on Automatic Verification Methods for Finite
State Systems, LNCS ~07, Springer Verlag, 1989.

[8] J. C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science
of Computer Programming, 13(2-3), May 1990.

[9] P. Kanellakls and S. Smolka. CCS expressions, finite state processes and three problems of equiv-
alence. In Proceedings ACM Syrup. on Principles of Distributed Computing, 1983.

[i0] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6), 1987.

[11] J.L. Richier, C. Rodriguez, J. Sifakis, J. Voiron. Verification in Xesar of the sliding window
protocol. In 17th International Workshop on Protocol Specification Testing and Verification, 1987.

