
A Unified Approach to the Deadlock Detection Problem in

Networks of Communicating Finite State Machines

W U X U P E N G

Dept of C o m p u t e r Science

Southwest Texas State University

San Marcos, T X 78666

S. P U R U S H O T H A M A N

Depar tmen t of Compu te r Science

The Pennsylvania Sta te Universi ty

Universi ty Park, PA 16802

Abstract

We consider the deadlock detection problem (DDP) of networks of communicating
finite state machines (NCFSMs). The DDP problem is known to be undecidable for
NCFSMs. In this paper, we provide a characterization of those subclasses of networks for
which the deadlock problem is decidable. We also provide a proof technique based on our
characterization and illustrate our technique on an example.

1 I n t r o d u c t i o n

Communicating finite state machines are a very useful abstract model for specifying, verifying

and synthesizing communication protocols [2, 3]. In this model a system of communicating

finite state machines can communicate typed messages a.synchronously with each other over

uni-directional, unbounded FIFO channels.

A central issue in this model is whether a network of communicating finite state ma-

chines (NCFSMs) is free of progress errors. Several widely addressed progress properties are:

freedom from deadlocks, freedom from unspecified receptions, and freedom from unbounded

communication. The problem of checking for non-progress in NCFSMs is known to be unde-

cidable [1, 2, 3]. Because of this negative conclusion a natural question is: "For what classes

of NCFSMs is the progress problem decidable?" A large amount of literatures (e.g. [8, 6, 7])

has been devoted to identifying classes of NCFSMs for which some of the progress problems

are decidable. Specific classes of NCFSMs are usually obtained by placing restrictions on the

structure of the systems. For instance, the number of machines in the system, the number of

message types allowed, and channel capacity (maximum number of pending messages allowed

in channels) etc. However the underlying question

For what classes of NCFSMs are the progress problems decidable?

has not been answered before.

In this paper, we investigate the deadlock detection problem from the language-theoretic

point of view. Techniques developed here are applicable to other progress problems. Specifi-

cally, we give a necessary and sufficient condition on execution sequences of a class of network

244

such that the deadlock detection problem is decidable for that class of NCFSMs. We believe

that our work provides insight into the underlying nature of decidability of deadlock detection

problem. We provide an example to illustrate our technique.

This paper is organized as follows: In Section 2 we introduce necessary notations and

definitions, we present our main result in Section 3, in Section 4 we give an example to

illustrate the main result and conclude in Section 5.

2 P r e l i m i n a r i e s

A communicating finite state machine (CFSM) is a labeled directed graph with a distinguished

initial state, where each edge is labeled by an event. The events of a CFSM are send and
receive commands over a finite set of message types M. The communication between CFSMs

is assumed to be asynchronous (i.e., non-blocking sends and blocking receives). Consequently,

we assume the availability of an infinite buffer between each pair of machines to store pending

messages.

Let I = {1 , . . . , n}, where n _> 2 is some constant. Formally, we have

Def in i t ion 2.1 (CFSM) A CFSM PI is a four-tuple (Si, (Mi j) jE IU(Mj , i) jE I , •i,Poi), where

(1) Si is the set of local states,

(2) Mid is the set of message types that Pi can send to machine Pj, and Mj,i is the set of

message types that Pi can receive from machine Pj. It is assumed that Mi,i = 0, since

Pi can not directly send messages to or receive messages from itself.

(Z) Let - M i d = { -mi ra ~ M~,j} and +M~,i = {+mira ~ Mj,i}.

~i is a partial mapping, 5i: S i x ((-Mid) jEl U (-I-Mj,i)jE1) x I ----} 2 & . 6i(p,-ra, j) is
the set of new states that machine Pi can possibly enter after sending message of type

m to machine Pj, and 6i(p, +re, j) is the set of new states that machine t~ can possibly

enter after receiving message of type m from machine Pj.

(4) Pol is the initial local state.

A state p in Pi is said to be a send (receive, resp.) state iff all of its outgoing edges are

send (receive, resp.) edges, p is said to be a mixed state iff it has both outgoing send and

receive edges. Let RMsg(p) be the set of message types that can be received in state p, i.e.

RMsg(p) = {ml31¢ 3j f E 5i (p ,+m,j)} . Define

Ms = uj z(i,j u Mj,i),
M = Ui~1Mi, and

- M i = uj~z - Mid,

rkMi = - M i u +Mi,

- M = UiEl - Ms,
4-M = + M u - M .

+Ms = ui~z + M~,i,

+M = ui~z + Ms,

245

Without loss of generality, we assume that Mid N Mk,t = 0 if (i , j) ~ (k, l) . Due to this

assumption, for any a E =l=Mi we can simplify the notation $i(P, a , j) to $/(p, a).

Definition 2.2 (Network of communicating finite state machines) A network of communi-
caring finite state machines (NCFSM) is a tuple N = (P1,'" ",Pn), where each Pi (i E I) is
a CFSM.

A global state of N is a tuple [(Pi)iEz, (eld)i,jEi], where Pi is a local state of machine Pi,
eid is the sequence of messages in the channel from machine Pi to Pj. Let V be the cartesian-
product of the sets 81 , . . . ,Sn , i.e. V = $1 × . . . x Sn, and let C be the cartesian-product of

the sets M~.2,... , M~,n, M~,I, . . . , M~,n_ 1 .

Initially, N is in its initial state [(Pol)iel, (ei,j)i,jeI], where ei,j = e (i ¢ j) . Let
[(Pi)iet, (cid)i,jEX] be a global state. The global state transition function $N : (V x C) x rkM

" 2 v × c is a partial function defined as:

(1) if 3i, j E I (i ¢ j) such that p~ E ai(Pi, - r e , j) then

[(p~)tiEI,(~,j)tiEI] E ~N([(Pi) iEi , (ci , j) idEi] ,--m), where
Pk = P~ (k ~ i), ck,t = c~, t (k ~ i or l ~ j) , and c~,j = c~,j.m.

(2) if 3 i , j E I (i ~ j) such that p~ E ~i(pi, + m , j) then

[(p~)~EI,(C~,j)~EI] E ~N([(Pi)iE/,(ci , j) i , jEt],q-m), where
ek, I ~ C t , = k,t (k C j or l ~ i), and m.c~i cs,i.

We use Pi "* Pj to denote the channel from Pi to Pj. In essence, the first case in Definition

2.2 denotes the event tha t Pi sends a message m to Pj, which causes the message m to be

appended to the end of channel Pi ~ Pj. The second case represents the event that Pi receives

a message of type m sent by Pj, which has the effect of removing the first message (which

must be of type m, or error (unspecified reception) would occur) in the channel Pj ~ Pi.
In both cases, after the successful completion of the event, Pi enters local state ~ while all

other machines remains in the same local states and the contents of all other channels are

unchanged.

To simplify the expressions, we will use the notation [v, c] to denote a global state whenever

necessary, where by convention v = (Pl)iez E V, and c = (ci,j)i,jEl E C. ['00, Co] will be used

to denote the initial state.

D e f i n i t i o n 2.3 (Reachability function) Let N = (P 1 , ' " , P N) be an NCFSM. The global
state transition function 6N can be easily extended to the following teachability function 5~r :
(V x C) x +M* ~ 2 vxc ,

(1) {[v,c]}.

(e) = {[¢,e'] I 3[¢',c"1 e [¢ ,e] e aN([¢' ,e'] ,a)}.

We often write a~([vo, c0], e) as a~(e). Furthermore, we will drop the subscripts in aN and
~¢ if no confusion arises.

246

Given a reachability function ~*, we define the set of all states reached as a result of some

execution to be the teachability set. More formally,

D e f i n i t i o n 2.4 (Reachability sets) Let N = (P 1 , ' " , P.) be an NCFSM. The reaehability set
R S (N) is the set of all reachable global states, R S (N) = {[v, e] I [v, e] e $*(e), e e +M*}.

In the rest of this paper sequences of events will form the back bone of our discussions.

Hence, we will use the following abbreviations:

E v e n t S e q u e n c e A string e E +M* is an event sequence.

E x e c u t a b l e An event sequence e is executable, notated as 5*(e) ¢ 0, if 6*(e) is defined.

Feas ib l e An event sequence e E q-E* is feasible, if 1

1. Ve' E pre](e) Vg E ~ M+a < le'l-u; and

2. Vi , j E I, if +gid is the k th receive event in lid(e), then -g id is the k th send event

in lid(e).

Feasibility is a very strict requirement. We can easily show tha t feasible sequences are

context-sensitive. We will use F (N) to denote the set of all feasible event sequences of

a network N .

S t a b l e An event sequence e is stable, if it is feasible and in addition it contains the same

number of send and receive events of any message type, i.e., Va E ~ 1 e+= I=1 e_° I. We

will use S E (N) to denote the set of all stable event sequences of a network N.

It should be clear to the reader tha t a definition of deadlock (or any progress error) can be

stated in terms of execution sequences. Of course, execution sequences capture the semantics

(and causality) of processes and buffers present in a network. The causality constraints among

possible actions in a network can be split into those imposed by the behavior of FIFO buffers

and those imposed by the sequencing constraints of the processes. The notion of feasible

and stable (event) sequences defined above capture th e constraints of the FIFO buffers in the

network. The sequencing constraints of the network can be easily captured as a shuffle of the

sequencing constraints of the individual processes. Formally, we define:

D e f i n i t i o n 2.5 (Shuffle-product of NCFSMs~ Let N = (P 1 , ' " , P .) be an NCFSM. The
shuffle-product of N, notated as S P(N), is a f our-tuple (V, M, A, v0), where

(Ov=S~xS2x...xS..

(~) vo = [p o l , p o 2 , . . . , p o .] e v .

(3) The transition function A: V × :t:M ~ 2 v is defined as

1For a string to, I~1 is the length of w, Iwl, is the number of occurrence of letter a in w and pre(to) is the
set of all prefixes of to.

247

v' E A(v,a), where a E -t-Mi C_ +M, iff v~ = vj (j e I & j ¢ i) and v~ E $1(vi, a).

The shuffle-product SP(N) can be viewed as a (nondeterministic, in general) finite automaton

by identifying some subset of V as final state set. We use SP(N) (F) to notate the finite

automaton obtained from the shuffle-product with F C_ V as the final state set.

A tuple v E V is a receive node if for each i E I v/ is a receive state in Pi. R E V (N)
denotes the set of all receive nodes in V.

A number of progress properties have received wlde attention and one of the well known

progress properties is the deadlock detection problem (DDP).

Def in i t ion 2.6 (Deadlock) Let N = (P i , ' " , Pn) be an NCFSM and Iv, c] e R S (N) be a
global state.

[v, e] is a deadlock state if the predicate

d([~ ,c]) : ~ e R E V (I V) ~ c = co

holds.

The network N is free of deadlocks, if the predicate

V[v, c]E RS(N) (not d([v, c]))

holds.

It is well known that in general it is undecldable whether an NCFSM is free of deadlocks

([2, 3]). We state this fact in following theorem.

T h e o r e m 2.1 DDP is undecidable.

3 A Unif ied Approach to D D P

Theorem 2.1 states that the problem of detecting deadlocks in a network is undecidable
in general. To cope with this negative result, many special classes of NCFSMs have been

identified for which the DDP is decidable. This usually involves finding sufficient conditions

under which the problem becomes decidable.

In this section we take a different approach to this problem. Instead of trying to find

special classes of NCFSMs with decidable DDP, we give a necessary and sufficient condition

under which the DDP of a given class of NCFSM is decidable.

First let us formalize the concept of classes of NCFSMs.

A class AI" of NCFSMs is a tuple (O, ~, T), where

1. ~ is a finite (or countably infinite) set of message types,

2. Q is a collection of NCFSMs each of which draws message types from ~,

248

3. T is a predicate which characterizes the properties of NCFSMs in the Q. For instance,

T may be the predicate: "each N E Q has only two CFSMs", which is the class of

NCFSMs with two CFSMs.

Let Af = (Q,~ . ,T) be a class of NCFSMs, and let N = (P x , ' " , P ~) EAf . We say that

the DDP is decidable for a network class Af, if the predicate

: W V e 3Iv, c] RS(N) V(N)S e = co).

is decidable. In the following we would like to relate the decidability of deadlock to conditions

on execution sequences. It is easy to see that if an execution sequence e leads to a deadlock

state, then it should have the property that for every send event in e there should be a

corresponding receive event. In fact, e should be a stable event sequence.

In general the set S E (N) is context-sensitive, since we can easily construct a linear

bounded automaton (LBA) that accepts SE(N). Even for some trivial classes of NCFSMs

S E (N) remains context-sensitive. However in order to check if DDP is decidable for N, it

is not necessary to know every member in SE(N). This observation is based on the fact

tha t there a number of event sequences that are really interleavings of the same set of ac-

tions of the processes, and hence lead to the same global state. We should therefore consider

these interleavings as being equivalent. Formally we have, two event sequences ea and e2 are

equivalent, notated as ea ~ e2, iff

1. el and e2 axe permutat ions of each other,

2.

Since we are really interested in stable event sequences, we will say two event sequences

el and e2 are stable equivalent, notated as el -~st e2, i f fel -~ e2 and both el and e2 are stable.

Define class(e) = {d I e' -~st e}. It is easy to see that -~,t is an equivalence relation on

S E (N) and class(e I is an equivalence class.

As mentioned earlier, we only need a representative from each equivalence class of SE(N)
to check for existence of deadlock in N. To that end, we define a language CN C SE(N) to

be a stable cover set for N if

Ve E SE(N)(equiv(e) N C # 0). (1)

With the concepts of stable cover sets and shuffle-product automata, we have the following

theorem regarding the decidability of DDP for classes of NCFSMs.

T h e o r e m 3.1 LetAf = (Q, ~..,T) be a class of NCFSMs. LetT~ = {L(M~) I My = SPA(N, {v}):

v E VN}, i.e. T~ is the collection of shuffle-product automata, each of which has some node
v E VN as the single final state. The DDP is decidable for]if if and only i~for every network
N E Af, there exists a stable coverset CN C SE(N) such that for every My E T~, the predicate

CN N L(M~) = 0 is decidable.

249

P r o o f i Let Af = (Q, ~ , T) be a class of NCFSMs.

If. Let N be a member in .Af, and assume that we have a stable cover set CN C_ SE(N)
which satisfies the condition listed in the theorem.

Claim: [v, co] is a deadlock state if and only if CN N L(M~) ~ {~.

Proof of the claim:

Assume that CNNL(Mv) ~ 0. Since CN is a stable cover, each e E CN is stable. Moreover

CA, contains at least one element from each equivalence class equiv(e). As L(M~) contains all

executable event sequences which can lead to a reachable global state of the form [v, c], there

must be at least one executable event sequence e E CN n L(M~). such that [v, co] E ~(e).

Conversely assume that [v, co] is a reachable deadlock state. Therefore there exists an

executable sequence e where [v, Co] E ~(e). As CN is a stable cover, there must exist e' ~st e

and e' E C. Obviously e ~ E L(1~/v), hence CIv N L(Mt,) ~ 0.

By definition DDP is decidable for N. Since DDP is decidable for any N EAf we conclude

that DDP is decidable for the class N'.

Only If. Assume that DDP is decidable for Af. We must show that for every network

N E Af there exists a stable cover set CA, for N such that the emptiness problem of CNnL(M~)
is decidable for all v E VN. In the following argument, the symbol =:~ is used to express

logical implication. "A ~ B" means that the decidability of A implies the decidability of

B. We have following logical reasoning:

D(~V)
= ~ v # ~Ar (~ Iv, c] ~ RS(N) (~ ~ R V (#) ~ c = co))
==~ V N e ~V (3 e e # L (#) 3 [~,c] e ~(e) (~ e R V (N) ~ ~ = ~o))

V iV e JV (3 e e S E (#) 3 [~, co] e ~(e))
V # E ~V (3 ~ ~ S E (#) 3 ~ ~ RV(IV) (e ~ L(M,))
V ~ C ~V (3 ~ ~ RV(H) (e e SE(N) n L(M,)))

= ~ V # e Ar (3 ,, ~ R V (N) (SE(H) n L(M,) # ~)).

However, SE(N) itself is a stable cover set.
n

I t is obvious that the problem of finding a cover set with the stated properties is unde-

cidable. However Theorem 3.1 presents a unified view of DDP for NCFSMs. It sheds new

light on the decidability of DDP for NCFSMs in following sense: Given a specific class JV" of

NCFSMs, to test if DDP is decidable for Af we try to find a cover set satisfying the theorem.

If we can find such a cover, we can conclude that DDP is decidable for Af. We shall illustrate

this idea in next section.

In the methodology engendered by this characterization, we expect to be able to define

the cover set CN for a network N independent of the transitions (or semantics) of a particular

network N. Furthermore, we expect to be able to check that such a cover set has the necessary

properties. Based on the fact tha t the language of a shuffle-product automaton is regular, we

have the following:

250

C o r o l l a r y 3.1 For a class of networks Af , let £ be a family of languages such that the cover

set CN for every network N E Af belongs to £. If

1. £ is closed under intersection with regular languages, and

2. The emptiness problem is decidable for £

then the deadlock detection problem is decidable for the class of networks Af.

The Corollary given above provides a very tight sufficient condition to show that a class of

networks has decidable DDP.

4 A p p l i c a t i o n s

An NCFSM N = IP1 , . . . , Pn / i s cyclic if the topology graph of the network N is a simple

cycle. More formally, N is a cyclic network if there exists a permutation { i l , i2 , . . . , in} of

the set I such that Pi i can only send message to P/j+1 and receiving message from Pij_l

(1 < j < n, module n + 1).

All two-machine networks are cyclic. As it is known that DDP is even undecidable for

the class of two-mardaine networks, so DDP is undecidable for general cyclic networks.

However DDP is dhcidable for cyclic networks where only one channel is unbounded. Let

J~l -~-~c be the class of cyclic networks of which only one channel is unbounded (referred to

as 1-U cyclic NCFSMs, for short).

Let N = (P 1 , ' " , P n) be a 1-U cyclic NCFSM. To simplify the discussion we assume

without loss of generality t h a t / ~ can only send to Pi+l sad receive from Pi-1 (1 < i < n,

module n q- 1) and only the channel P1 -'* P2 is unbounded. Let L = (A*B)*H, where

A = (u2< i< . -1 - :~i,i+l) u (-~ . . . 1) u (u2_<i<.-~ + r.~,~+~) u (+r , . ,~) ,

B = (-~.1,2)(+~1,2),

= CA U (-r.~,2))'.
The following lemma is a generalization of a lemma from [4].

L e m m a 4.1 Let N = (191,'" ",Pn} be a 1-U cyclic NCFSM. For each executable event se-

quence e there exists another event sequence e ~ ~- e and e ~ E L.

Proof : Let N = (P 1 , ' " , P ,) be a 1-U cyclic NCFSM. The proof is by induction on the

number k of receive events from +~1,2.

Basis: k = 0. Since e does not contain events from +~1,~, e E H. Clearly the conclusion

is true.

Induction: Assume that the conclusion holds for some k > 0. Let e be an executable

event sequence which contains k + 1 receive events from +~1,2. Let sl,2 be the first send

event from -]E1,2 and rl,2 be the first receive event from +~1,2 in e. We can rewrite e as

e = wl.sl,2.w2.rl,2.w3, where wl and w2 do not contain any events from (+~1,2).

As the network is cyclic (P2 can only send to P3 and receive from P1), we can move all the

send events from (-~2,3) in w2 before sl,2. Let w = w~.sa,2.w~.rl,2.w3 be the event sequence

251

after such a reordering of e, where w~ does not contain any events from (-E2 ,3) U (+E1,2).

I t is easy to see tha t w -~ e. Since w~ does not contain events in i t ia ted by P~, we can move

the event rl,2 as the immedia te successor of sl,2. Let w ~ = wl.sl,2.rl,2.w 2 . ~ ~ w3 be the event

sequence after such reordering of w. Still w ~ -~ e holds.

Since w3 contains k receive events from +~1,2, by induct ion hypothesis there exists another

event sequence w~ -~ w3 and w~ E L. Hence e -~ e' E L, where e t = w~.w2.sl,~.rl,2.w~.

0

Lemma 4.1 says tha t for any executable sequence e there is another sequence e ~ ~ e

such tha t when e I is executed, there is at most one pending message in the only unbounded

channel -Pl --* P2 as long as P2 can still receive. Therefore to check for deadlocks, we need

only concentrate on the behavior of other bounded channels.

T h e o r e m 4.1 There exists a regular stable cover set for each network N E All-u-eve.

P r o o f : Let N = (P1,'" ",Pn) be a 1-U cyclic NCFSM.

To find a s table cover set for N , we need to construct a language which contains at least

one element from each equivalent class S E (e) where e is a s table event sequence.

Let L t = (A*B)*A*, where A, B are defined as above. Notice tha t each e E L ~ contains

the same number of events from -E1,2 and +~'1,2. We can conclude from Lemma 4.1 tha t

for each s table event sequence e, there exists e ~ - e and e t E L ~.

We can construct a finite s ta te au tomaton F to accept the set of all s table events in L I

as follows. Let each s ta te in F record the number of pending event types , message types

and message posi t ions i t has seen so far. The only exception is t ha t when F sees an event

- g E -~1 ,2 , i t will expect another event + g E +~1,2 in i ts next step. Notice tha t since all

the channels except P1 -~ P2 are bounded and the number of message types each machine

can send is finite, the number of states in F is finite. The final s ta te set in F includes only

those s ta tes in which F has seen a s table event sequence (only the s ta r t s ta te need be in the

final s ta te set). Therefore L(F) , the language accepted by F is a cover set for N .

0

By Corollary 3.1, the DDP is decidable for X l -~ -cuc .

5 Conclus ions

Deadlock detect ion problem for networks of communicat ing finite s ta te machines has been

known to be undecidable. The undecidabi l l ty stems from the fact t ha t even a two-machine

NCFSM has the same comput ing power as a Turing machine. Wi th special restr ict ions, spe-

cific classes of NCFSMs have been found for which the deadlock detect ion problem is decid-

able. However the underlying question "For what classes of NCFSMs is the DDP decidable,"

has not been answered before.

In this paper we considered the deadlock detect ion problem in NCFSMs from the formal

language point of view. We have given a necessary and sufficient condit ion to show decidabi l i ty

252

of detecting deadlocks in classes of NCFSMs. We believe our work reveals the nature of
decidability vs. undecidability of DDP.

The language concepts were first (as far as the authors know) introduced in the analysis
of NCFSMs by K. Okumura [5]. The work in [5] concentrated mainly on establishing corre-

spondence between the languages and the networks, in analogy with the traditional formal
languages theory. However, the executable event sequences are context-sensitive even for
many trivial networks. It appears that a direct use of the executable event sequences would
not aid the analysis. This was our main motivation for introducing the concept of cover set
for a particular property (DDP in Chis paper). Although we only discussed the decidability
of DDP in this paper, the idea can also be applied to the decidability of detecting other
properties such as unspecified receptions and unboundedness.

References

[1] G. Bochmann. Finite State Description of Communication Protocols. Computer Net-
works, Vol.2, 1978, pp.361-371.

[2] D. Brand and P. Zafiropulo. On Communicating Finite-state Machines. JACM, 30(2),
1983, pp.323-342.

[3] M. Gouda, E. Manning, and Y. T. Yu. On the Progress of Communication between Two
Finite State Machines. Information and Control, 63(3), 1984, pp.308-320.

[4] M. Gouda, E. M. Gurari, Ten-Hwang Lai, and L. E. Rosier. On Deadlock Detection in
Systems of Communicating Finite State Machines. Computers and Artificial Intelligence,
Vol.6, 1987, No.3, pp.209-228.

[5] K. Okumura. Protocol Analysis from Language Structure. In Protocol Specification,
testing, and verification VIII, S.Aggarwal and K.Sabnani (Editors), North-Holland, 1988,

pp.113-124.

[6] Jan Pachl. Protocol Description and Analysis Based on a State Transition Model with
Channel Expressions, In Protocol Specification, testing, and verification VII, H. Rubin
and C. H. West (Editors), North-Holland, 1987, pp.207-219.

[7] W. Peng and S. Pnrushothaman. Analysis of Communicating Processes for Non-Progress.
In Proc of the 9th IEEE International Conference on Distributed Computing Systems,
June 1989, pp.280-287.

[8] Y. T. Yu and M. Gouda. Deadlock Detection for a Class of Communicating Finite State
Machines. IEEE Transactions on Communications, Dec 1982, pp.2514-2518.

