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Abs t rac t  

We examine two closely related problems: synthesizing processes to satisfy tem- 
poral specifications of reactive systems, and the synthesis of a scheduler to inter- 
act with and control a group of processes in  order to meet a specification. Pro- 
cesses communicate through shared and distributed variables, either synchronously 
or asynchronously. In the finite state case, processes and specifications are arbitrary 
w-regular languages, and both synthesis problems are solvable in doubly exponential 
time and space. The framework we present is flexible enough to incorporate dense 
real time into the model of concurrency, thereby allowing us to study the synthesis 
of real-time processes and schedulers, l~eal-time implementability and scheduling 
are also doubly exponential. 

1 I n t r o d u c t i o n  

A specification for a reactive process defines the desired ongoing behavior of the process 
along with its environment (the other processes with which it is connected). If the imple- 
menter of a process does not have control over the behavior of its environment, it may not 
be possible to meet the specification. For example, if a specification says that "x is always 
1", and the environment can assign x the value 2, the specification is not implementable 
- -  the process can set x to l ,  but cannot prevent it from taking other values. 

The fundamental problem is to derive an implementation that  always satisfies the 
specification in the face of adversariaJ behavior by the environment. Intuitively, an im- 
plementation is a winning strategy in the game against the environment. When the 
specification can be modeled as a finite automaton on infinite words, or a formula from 
a logic interpreted over infinite words, the synthesis problem is decidable. The decision 
procedures consist of reductions to the Church solvability problem, [Chu63, BL69] which 
can be solved using automata on infinite trees [Rab72]. 

Our processes have three different types of variables: shared, read-only and "dis- 
tributed" (variables that  can be read by other processes but written only by one). We 
solve the problem of process synthesis under both synchronous and asynchronous paral- 
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lel execution 1. These results extend, unify, and simplify previous work [PR89a, PR89b, 
ALW89]. Next, we solve the problem of synthesizing a scheduler, which controls a collec- 
tion of processes so as to satisfy a specification. For example, a critical region between 
processors could be enforced by a scheduling strategy instead of explicit synchronization 
within the processes. We also discuss ways to solve the same problem when there are 
additional constraints on the scheduler (such as processor availability). Finally, we show 
how these methods can also be applied to meet general real-time requirements. 

For arbitrary untimed w-regular processes and specifications the implementability 
problem is doubly exponential in the length of a temporal logical formula for the speci- 
fication. Scheduling is doubly exponential in the number of processes as well, but only 
singly exponential in their size. If there is any implementation, the algorithm produces 
one of at most doubly exponential size. Real-time implementability and scheduling are 
also doubly exponential. 

A more detailed presentation of this material appears in [WD91]. 

2 B a c k g r o u n d  

In the last two years, several people have discovered the relevance of the solvability prob- 
lem for determining the implementability of a linear temporal specification. In 1988, 
Dill considered it as a well-formedness condition on models of asynchronous circuits, but 
did not consider synthesis per se [Di189]. Later, Pnueli and Rosner, [PR89a, PR89b], 
solved the problem of synthesizing concurrent reactive processes (in both synchronous 
and asynchronous models of concurrency) from a linear temporal logic specification. This 
solution was applicable to systems with only distributed variables. Shared variables were 
not considered: 

Abadi, Lamport and Wolper did model shared variables, but their computers had 
the ability to observe every change made to the state, including all changes made by 
the environment [ALW89]. This is inappropriate for asynchronous parallelism, since in 
reality an implementation can base its actions only on the state changes that it can 
observe by reading variables. It does not have full observability of the entire system. Our 
implementations use only information directly inferable from their own actions. 

We simplify considerably Pnueli and Rosner's solution for the asynchronous case. 
Their original solution involved transformations on several different representations of 
the specification. In our case, all transformations are performed on automata. The key 
simplifying idea is that  the reductions used in solving implementability can be derived 
from projections that are used in the definitions of parallel composition. 

3 P r o c e s s e s  

We choose an action-based model of execution as opposed to a state-based approach 
because a process is always completely aware of its actions, but often ignorant of the 

1By synchronous parallelism, we mean that processes run in "lock-step"; by asynchronous parallelism, 
we mean that processes run at arbitrary speeds. Elsewhere, these terms are used incompatibly to mean 
unbuffered and buffered communication between processes. 
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global state of the system. Our model of a single execution of a process is an infinite 
sequence of sets of actions (the reading and writing of variables): A process is assumed to 
be acting in an environment of other agents, with the only communication being indirectly 
through the values of the variables. 

Suppose that 7 ) is an infinite set of primitive process names. Then every process P 
has a type describing what basic components it has and the variables it can access. Its 
type is a quadruple Tv = (Procs,~Pv,Sv,£v), where Procs is a subset of 7 ), ~De is a set 
of (owned) distributed variables which it can write and other processes can only read, Sp 
is a set of shared variables which may be written and read by P and other processes, and 
£v is a set of ezternal variables, which are read-only. We omit the subscripts when no 
confusion arises and abbreviate ~D U ,9 U g by V. Procs is used to record which primitive 
process performs each action; this seems necessary for dealing with shared variables ~. We 
assume all variables range over a common domain, Dora. When discussing finite-state 
processes, we assume Dora is finite. 

The process P has a set of primitive actions, Ap, consisting of reads of the form 
read(P~, z, v) and writes of the form write(P~, z, v), where P~ is a primitive agent name 
in 7 ) and v is some value in the domain of the variable z. A composite action is a set of 
primitive actions. These correspond to primitive actions occurring simztltaneo~tsly. The 
empty  set of actions represents nothing happening and is ca~ed sk/p. 

A state, s, is a function assigning a value to every variable in V. An initial condition 
is a function mapping from 7) to V. Let ~i be the ith element of ~. An action run of P 
corresponds to a trace of actions that  P may perform, in which P ' s  distributed variables 
change only if P writes to them, but shared and external variables can change arbitrarily. 
Formally, an action run a = al,a~,.., of type (Proc,~),S, 6) is an infinite sequence of 
composite actions of P ,  satisfying the following consistency condition: there exists an 
infinite sequence of states s = &, s2,. .  • such tha t  

(read-values) if r e a d ( - ,  z,v) occurs in a~, then z must  have the value v in s~, 

(write-values) for every z E 7), if a write(- ,z ,  v) occurs in ai, z 's  value in si+~ must  
be v '  where some write(-,  z, v') occurs in a~, and, if no write(-,  z, v) occurs in al, 
then si(z) = si+l(z),  and, 

(type) whenever write(-,  z,v) occurs in a, z is in 7)U ,9. 

Intuitively, if several writes to z occur simultaneously, z arbitrarily takes the value of one 
of them. An action run is consistent with an initial condition r if there is a satisfying 
sequence of states starting with state sl which agrees, with I on 7). 

The behavior of a process P is a triple (Tp, Iv, R~tnsv), where Tv is its type, Iv  
its initial condition and R=rtsv (usually denoted R(P ) )  a set of action runs of type Tp 
consistent with its I .  We sometimes use P as an abbreviation for R(P) .  

3.1 Synchronous parallelism 

The behaviors of two processes can be combined to yield the behavior that results when 
they run synchronously (in "lock step"). The runs of P = PIII P2 are essentially those 

2The usual way of dealing with shared variables is have two labels for actions: ~r if performed by 
the process or c if by the envizonment[BKP84]. But for scheduling, it helps to record exactly which 
component executed each action. 
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runs of the correct type which look hke runs to both P1 and P2. P is defined only when 
Procl and Proc2 are disjoint, T~I and T~tA,.q2 are disjoint, and T>2 and T~I t2S1 are disjoint. 
Let deIQ be the projection on action runs that  deletes all atomic actions made by agents 
in Q. Formally, P = (Yp, I~, R(P) )  is defined as follows: 

Tp = (Proc,  T~,S,E) where Proc = Procl U Proc2, D = ~1 U 2)2, S = $1 U $2 and 
e = u & ) -  i v  u s )  = - u u (& - Sl) ) .  

Ip is the extension of both Iv~ and I ~ ,  i.e. Iv has domain D and agrees with Ip~ on D~ 
and Ip, on D~. 

R(P) = del~-X(R(P~)) ~ del~,,-X(R(P~)) 
= {r [ r is a consistent run of type Tp, delp.(r) ~ R(Px) and delve(r) ~ R(P2)}. 

Because del~,~ removes all P~. actions, it deletes everything unobservable to PI, leaving 
exactly what P~ observes. Thus delay(r) is in R(Px) precisely when P~'s view of the global 
system run r is a run of Px. 

3.2 Generalized parallelism 
A run is in the parallel composition of P1 and P2 when it is observed as a run by each 
process. Process observability is represented by functions fp~ mapping consistent runs of 
type T~,~llp 2 to sets of consistent runs of type Tpi 3. In synchronous parallelism, we had 
dell, 2 for f/,~ and delp~ for fp2. 

R(PaIIP2) = f~,-X(R(P~)) n fp,-X(R(P2)) 
= {r [ r  is a consistent run of type Tp, llp2 , fp~(r) C R(Px) and fp , ( r )  C R(P~.)} 

3.3 Asynchronous parallelism 
We often want the behaviors of processes that  run in parallel asynchronously. Inserting 
an arbitrary (finite) number of skip actions between the non-skip actions of a run of 
a process allows other processes to perform as many or as few actions as they like be- 
tween the process's non-trivial actions. The delskip operation removes the skip actions 
of P from an action run. The s~ut~ering closure of an action run a is stut(a) = {a' ] 
delskip(a ~) = delskip(a)} = delskip-l(delskip(a)), see [ALW89]. This definition is ex- 
tended to sets of action runs. For convenience, we use R•s(P) to refer to s~ut(R(P)), 
the asynchronous runs, or asynchronous closure of P.  Asynchronous parallelism, HAS, is 
defined as synchronous parallelism on the asynchronous closure of the processes. Tha t  is, 
R(PI HAs P~) = delp2-1(RAs(P1))AdeIp~-l(RAs(P2)). This is a special case of generalized 
paraUelism, with delsk@ -1 o delsk@ o deIp~ for fp~. 

4 I m p l e m e n t a b i l i t y  

A reactive system consists of processes which communicate among one another and that  
are intended to run forever. Suppose P is a reactive process where the only other agent 
is a completely unpredictable environment over which it has no control. The interaction 
between the implementation and the environment can be viewed as a game. Each player 

3It may be that P~'s view of a run is not uniquely determined. 
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takes a turn extending a computation. The implementation wins the game if the resulting 
computation satisfies the specification. Moves in the game are actions, the reads and 
writes of variables. H the process always wins the game, it is an implementation of the 
specification. 

A strategy is a special kind of process which decides its next move from its history of 
actions. Its moves are read requests of individuatvariables, and write requests of individual 
variables with the values to be written. Notice that  a strategy is restricted to accessing 
only one variable at a time. Formally, a strategy S of type ( { S } , ~ , S , £ )  is a function 
gs : As" --~ Movess, where Movess = {read(vat) I vat E S U £} U {write(vat, value) I 
vat  E T) U S, value E Dora}. Because the adversarial environment can choose to return 
any value in response to a read action by the strategy, R(S)  is the set of all sequences of 
actions a = at, a s , . . ,  such that  

1. a,+, = read(S, var, value) for some value e Do~  whenever gs (az , a s , . . . , a , )  = 
read(vat), and 

2. = wrae(S ,  vat, value) whenever gs(al ,  a s , . . . ,  a,) =  rite(var, value). 

The strategy plays against an environment E of type ({E}, £, $, 7)) whose actions runs 
are simply all the action runs for its type. It is an implementation of the specification 
Spec if every run of the combined system is in the specification, i.e. R(S H E) C Spec. 
In this case it is a winning strategy for the game. 

4 . 1  T h e  R e a d - W r i t e  G a m e  

Most of the games in this paper are games of partial information. The implementation 
cannot directly observe the entire system; the only information it knows about the envi- 
ronment has been inferred from reading the environment's variables. A solution to the 
implementability problem proceeds in two steps: reducing the game of partial information 
to one of complete information, and then solving the game of complete information, the 
read-write game. Runs in this game are traces of strategy actions only, and therefore 
reflect exactly what the strategy observes. A read-write game is stated as: Given a set of 
action runs W of type ({S}, ~,, .q,£), is there a strategy of the same type whose action 
runs are all in W, i.e. R(S)  C_ W? 

If the problem is finite state (the behaviors of the processes and the specification can 
be represented as w-regular sets), the read-write game is decidable. This result follows 
almost immediately from the decidability of the Church-Biichi solvability problem, [BL69, 
Rub72]. 

T h e o r e m  1 If  A is a nondeterministic Biichi automaton (NBA) defining Spec, a set of 
action runs for S over k variables, and A has n states, then the read-write game for Spee 
is decidable in 20[(kn)2"log(kn)] time. If  there is a winning strategy for Spee, the algorithm 
produces one of size 20[(kn)~'t°°(~'~)]. 

P roof :  The solution is a variant on the algorithm for "synchronous implementability" 
in [PR89a]. We construct from A a tree automaton that  accepts exactly the trees that  
correspond to winning strategies. Hence to solve the game, we need only test for emptiness 
of the tree automaton [EJ88]. o 
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4 . 2  Cores 

It is usual for a process to have only partial observability of the entire system; it cannot 
observe all the environment's actions. Suppose the environment owns the variables zl  
and x~. While the process is reading zl ,  the environment may be changing the value 
of z~. In an asynchronous system the environment may even change z2 an arbitrary 
number of times without the process noticing. Suppose two global system runs, rl and 
r2, both look like the action run r to the implementation. The implementation only 
observes r and cannot distinguish whether rl or r2 actually occurred. Thus a strategy or 
implementation should only generate action runs for which all corresponding global runs 
lie in the specification. 

We assume the strategy has observability function fs. The core of a global specification 
Spec, core(Spec), is the Set of (local) strategy action runs whose inverse images under f s  
are all in the specification, i.e. core(Spec) = {a I fs l(a)  C Spec}. 

L e m a n  1 Let Speca global specification and S be a strategy, interacting with the envi- 
ronment under observability function fs. The following are equivalent: 
1) S is an implementation of Spec, 
~) R(S II E) C Spec, 
3 ) /~ ' (R(S) )  : Spec, 
~) R(S) C co~e(Spec), 
5) S wins the read-write game over core( Spec). [] 

Therefore implementability can be constructively reduced to the read-write game, 
provided we have an algorithm for finding the core of a specification. Since care(Spec) = 
{r ] f s - l ( r )  C Spec}, its complement is {r [ f s - l ( r )  f3 Spec # 0}. Thus a run r is in 
the complement of the core if it has a preimage under f s  in Spec. Hence core(Spec) = 
fs(S---~). The core can be found by complementation and substitution. 

4.3 Synchronous Implementabil i ty 

Until now, we have not considered any particular representation of the specification. We 
want to express w-regular properties of variables ranging over finite non-boolean domains. 
Rather than defining a temporal logic with finite-valued variables, for convenience we 
express properties in propositional temporal logic (PTL). We encode each bit-value of a 
variable as a separate proposition. 

L e m m a  2 Let ¢ be a PTL formula for Spec. Then there is an algorithm to find a 
deterministic Rabin automaton A accepting the cores( Spec). 

Proof :  We proceed in three steps. From ¢ construct a NBA B for p ~ ,  ([WVS83]). 
Find a NBA B' for cores(Spec), (apply the homomorphism f ,  = deIE). Complement and 
determinize B' to get the desired Rabin automaton A ([EJ89]). [] 

T h e o r e m  2 Let ¢ be a PTL formula of length no for the property Spec. There is a 
2 °[(k'lD°'nl)~'2c3"°)} algorithm for testing the synchronous impIementability of Spec. If Spee 
is implementable, it yields a 2 °[(k'fD*"l)~'2¢~'~] folded representation of a strategy for Spec. 

Proof :  Because of L e m a n  1, we can follow the algorithm of L e m a n  2, then solve the 
read-write game. The complexity result follows from analysis of the tableau procedure 
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of [WVS83], the simultaneous complementation and determinization algorithm of [EJ89] 
and the test for emptiness of [E J88]. t2 

4.4 Asynchronous Implementability 

The analogous results from the last section all hold; the observability function is merely 
changed from delz to f As = delskip -1 o delskip o deIE. Performing the substitution for 
delskip is similar to way e-transitions are removed from finite state automata. 

Theorem 3 Let ¢ be a PTL formula of length no, defining the set Spec . The asyn- 
chronous implementability of Spec is solvable with complexity 20[(k'lD~l)3"~(3~)]. 1:3 

5 S c h e d u l i n g  

The ideas in the previous section can be used to find a scheduler, which is a process 
designed to provide external coordination for other processes. Such a situation may arise 
in the fields of distributed computing, networking, hardware design and operating systems. 
For example, we may be given information about the processes to be run and asked to 
schedule them to ensure mutual exclusion of their critical sections or guarantee some 
form of liveness. The scheduling problem is stated as follows: For processes P1, . . . ,  P,, 
and specification Spec, is there a strategy S such that P1 II "'" II P- 11 S satisfies Spec? 

Let P1 11 "'" 11 P- be collectively called P. We assume P It s is a system with 
no external variables. A truly external environment can always be modeled as another 
primitive process within P. By definition, R(P II a) = f~-~(R(P))  n f s - l (R( s ) ) .  
Thus, P II S satisfies Spec iff f s -X(R(S))  C fF-Z(R(P))  U Spec. This problem is 
essentially implementability with a modified specification, Sped = fp -x (R(P) )  U Spec, 
(see Lemma 1). Intuitively, Spec t asserts that if the environment behaves like the processes 
we need to schedule, then the original specification Spec must hold. 

5.1 The Finite State Case 
For both synchronous and asynchronous parallelism, the processes can be effectively com- 
posed and Spec' computed, which implies that the scheduling problem is decidable. The 
complexity is the same as that for implementability except for an extra multiplicative 
factor of p" for the composition of the processes. 

Theorem 4 (Scheduling) Assume the system has k variables over a finite domain Dora. 
Let {P1,---,P,~} be a set of processes, where each Pi is defined by a NBA Ai of size <_ p. 
Let Spec, a property of action runs with agents P1, . . . ,  P~ and S, be defined by a PTL 
formula of length no. Then there is a 2 °[(~'lDml'p")3"~3"°)] algorithm to solve the scheduling 
problem, giving a 2 °[(k'lD'*'l'p~)~'2(n"°)] state scheduler, if any scheduler ezists. (2 

6 T r a n s f o r m a t i o n s  o n  s p e c i f i c a t i o n s  

Most specifications are only expected to be met when the processes or the environment 
behave in a certain way. For example, a mutual exclusion program may only guarantee 
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progress for each process requesting entry to its critical section if every process has a 
terminating critical section, Term_Crit ~ Prog. An environmental assumption can be 
handled simply by adding it as an antecedent to the specification. 

Additional requirements on the scheduler can be added to specifications. For example, 
suppose we have 10 processes to schedule, but only 5 processors available. Then we must 
disallow any scheduler that  permits more than 5 processes to execute at any time. To 
handle this, the scheduler needs substantial control over the processes. One way to achieve 
this control is to add a new boolean signal variable ~goi} for each process P~. These new 
variables are owned by the scheduler. The process constraints C~, would assert that  no P/ 
ever makes a non-sk/p action when the signal goi is false. We then add to the scheduler 
the constraint "no more than 5 go~ signals are true at any time". 

A constraint on the scheduler C,ched can be enforced by changing the specification Spec 
to C,c~d f~ Spec. The same technique can be used for more general resource constraints, 
for example, "processes 5 and 6 can never run on processors A and B at the same time." 

7 Rea l -Time  Processes  and Specif ications 

Synchronous parallelism requires all processes to advance at the same time, while asyn- 
chronous parallelism is completely speed independent. It is often the case that  processes 
are not interacting synchronously, but nor are they completely asynchronous - -  some- 
thing is known about timing in the system. Knowledge of the relative timing of events 
may make it easier to implement a specification. 

We consider dense time, where events may occur at arbitrarily dose times; time is 
interpreted over the nonnegative real numbers, 1;t. The execution of concurrent real-time 
processes is modeled by timed traces [ADg0], which are infinite sequences together with 
times at which each event occurs. We use the timed Biichi automata (TBA) of [AD90] to 
model specifications and processes. 

% 1  R e a l - T i m e  I m p l e m e n t a b i l i t y  

The methodology for solving the implementability and scheduling problems for untimed 
processes and specifications also works when timing is introduced. Using the techniques 
of section 6, timing assumptions on the environment and timing requirements on the 
implementation may all be written into the specification. Thus a strategy has no timing 
information itself and may be synthesized from the core of the specification, exactly as 
above for the untimed case. To solve real-time implementability then, we must show how 
to derive the core from a timed specification. 

Timed processes are the natural extension of untimed processes, in that  runs are 
now timed traces. Let Untime be the function that  removes the timing information 
from a timed trace. The observabihty function for P1 in P1 I]~ P2 is given by fp~ = 
Un~ime o delskip -1 o delskip o delp2. A strategy S is a timed implementation of Spec iff 
Untime-l(S) [It Untime-~(E) C Spec. It is clear that S implements Spec if it wins the 
read-write game over caret(Spec) = {r [ f s - l ( r )  c Spec}. 

L e m r n a  3 Given a TBA A' = (V,,S, so, F,C,6) for b~'~, there is an O([A[ s) algorithm 
to find a NBA B for core(Spec). B has size O([C[!. [V. I • tS[ 2. 2a), where d is the number 
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of bits in the binary encoding of A"s timing constants. [] 

Because TBAs are not closed under complementation, we allow only specifications 
given as deterministic timed automata (DTA), which have at most one run for any timed 
trace. However DTA with Biichi acceptance conditions are not as expressive as DTA with 
Muller, Streett and Rabin acceptance condition. All these deterministic automata can be 
complemented, yielding TBA with polynomially many states 4. Timing conditions on the 
implementation and the environment can also be included as antecedents to the original 
specification. An implementation of Spec' = Timp f'] Tt U Spec implements Spec under 
the timing assumptions Ti,~p and T,. 

Theorem 5 (Real- t ime ImplementabUi ty)  Let Ai,,,p and A, be TBA for timing re- 
quirements Tim P and T, on the implementation and the environment respectivelv. Let A s ~  
be a DTA 4 for the specification. Then the real-time implementabilit~l problem is solvable 
in time ezponential in the number of variables and number of states of the automata but 
doublTI ezponential in the number of bits to encode the timing constants. [] 

7.2 Real-time Scheduling 

The problem of scheduling a collection of activities to meet hard real-time deadlines has 
been studied extensively [CS88]. Previous work in this area considers schedullng a set of 
tasks (which may or may not be known in advance) to meet completion deadlines, usua~y 
on a single processor. These problems are usually at least NP-hard. 

Here we are scheduling reactive processes which communicate and coordinate among 
themselves. This problem is not easily modelled as a collection of tasks to be sched- 
nled. Furthermore, the expressiveness of w-regular languages enables us to handle a far 
wider range of timing properties than the simple meeting of completion deadlines. For 
example, restrictions can be enforced on the ordering of completion times and the differ- 
ences between completion times. Our specifications include, for example, "if Z/is set to 1 
sufficiently often, it will eventually always be reset to 0 within 2 seconds". 

We deal only with static scheduling, where the characteristics of the processes are 
known beforehand. Specifications must be given as deterministic TBA, but the processes 
to be scheduled and the timing constraints on the scheduler and the environment may 
be arbitrary TBA. Real-time scheduling then reduces to real-time implementability over 
the property "if the  environment behaves like the processes, and all components in the 
system satisfy their timing constraints, then the specification is met". 

Theorem 6 (Real- t ime Scheduling) Let {P1, . . . ,  P,~} be a set of processes uritbeach 
P~ defined by the TBA Ai of size < p. Let Spec be given by a DTBA As~c of size ns~c, and 
let T~,,,p and Tc be timing constraints on the implementation and the environment defined 
b~l TBA Airav and Ae of sizes nimv and n, respeetivel~l. Let e be the total number of clocks 
and d the number of bits in the encoding of all the timing constants. The complezity of 
real-time scheduling is 20([c!'p''k'lD~l('~i'~'ne'~sp~')~'2dP). [] 

4The number of acceptance pairs of a Rabin automaton must be logarithmic in the number of s tates .  
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8 Conc lus ion  

The idea of finding strategies for games is not only applicable to the specific problem of 
synthesizing an implementat ion from a temporal  specification, but can also be applied to 
other problems such as scheduling. Although the doubly exponential algorithms presented 
here may prove to be  useful for very small systems, easier special cases of the problem 
will have to be discovered for real practicality. The problem of synthesizing a scheduler 
to meet a specification closely resembles the supervisory control problem in the s tudy of 
discrete event systems, which historically has fallen in the domain of control theory. The  
relations between these two problems should be  studied in greater detail. 
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