
Synthesizing Processes and Schedulers
from Temporal Specifications*

Howard Wong-Toi and David L. Dill
Department of Computer Science

Stanford University

Abs t rac t

We examine two closely related problems: synthesizing processes to satisfy tem-
poral specifications of reactive systems, and the synthesis of a scheduler to inter-
act with and control a group of processes in order to meet a specification. Pro-
cesses communicate through shared and distributed variables, either synchronously
or asynchronously. In the finite state case, processes and specifications are arbitrary
w-regular languages, and both synthesis problems are solvable in doubly exponential
time and space. The framework we present is flexible enough to incorporate dense
real time into the model of concurrency, thereby allowing us to study the synthesis
of real-time processes and schedulers, l~eal-time implementability and scheduling
are also doubly exponential.

1 I n t r o d u c t i o n

A specification for a reactive process defines the desired ongoing behavior of the process
along with its environment (the other processes with which it is connected). If the imple-
menter of a process does not have control over the behavior of its environment, it may not
be possible to meet the specification. For example, if a specification says that "x is always
1", and the environment can assign x the value 2, the specification is not implementable
- - the process can set x to l , but cannot prevent it from taking other values.

The fundamental problem is to derive an implementation that always satisfies the
specification in the face of adversariaJ behavior by the environment. Intuitively, an im-
plementation is a winning strategy in the game against the environment. When the
specification can be modeled as a finite automaton on infinite words, or a formula from
a logic interpreted over infinite words, the synthesis problem is decidable. The decision
procedures consist of reductions to the Church solvability problem, [Chu63, BL69] which
can be solved using automata on infinite trees [Rab72].

Our processes have three different types of variables: shared, read-only and "dis-
tributed" (variables that can be read by other processes but written only by one). We
solve the problem of process synthesis under both synchronous and asynchronous paral-

"Supported by NSF under grant MIP-8858807.

273

lel execution 1. These results extend, unify, and simplify previous work [PR89a, PR89b,
ALW89]. Next, we solve the problem of synthesizing a scheduler, which controls a collec-
tion of processes so as to satisfy a specification. For example, a critical region between
processors could be enforced by a scheduling strategy instead of explicit synchronization
within the processes. We also discuss ways to solve the same problem when there are
additional constraints on the scheduler (such as processor availability). Finally, we show
how these methods can also be applied to meet general real-time requirements.

For arbitrary untimed w-regular processes and specifications the implementability
problem is doubly exponential in the length of a temporal logical formula for the speci-
fication. Scheduling is doubly exponential in the number of processes as well, but only
singly exponential in their size. If there is any implementation, the algorithm produces
one of at most doubly exponential size. Real-time implementability and scheduling are
also doubly exponential.

A more detailed presentation of this material appears in [WD91].

2 B a c k g r o u n d

In the last two years, several people have discovered the relevance of the solvability prob-
lem for determining the implementability of a linear temporal specification. In 1988,
Dill considered it as a well-formedness condition on models of asynchronous circuits, but
did not consider synthesis per se [Di189]. Later, Pnueli and Rosner, [PR89a, PR89b],
solved the problem of synthesizing concurrent reactive processes (in both synchronous
and asynchronous models of concurrency) from a linear temporal logic specification. This
solution was applicable to systems with only distributed variables. Shared variables were
not considered:

Abadi, Lamport and Wolper did model shared variables, but their computers had
the ability to observe every change made to the state, including all changes made by
the environment [ALW89]. This is inappropriate for asynchronous parallelism, since in
reality an implementation can base its actions only on the state changes that it can
observe by reading variables. It does not have full observability of the entire system. Our
implementations use only information directly inferable from their own actions.

We simplify considerably Pnueli and Rosner's solution for the asynchronous case.
Their original solution involved transformations on several different representations of
the specification. In our case, all transformations are performed on automata. The key
simplifying idea is that the reductions used in solving implementability can be derived
from projections that are used in the definitions of parallel composition.

3 P r o c e s s e s

We choose an action-based model of execution as opposed to a state-based approach
because a process is always completely aware of its actions, but often ignorant of the

1By synchronous parallelism, we mean that processes run in "lock-step"; by asynchronous parallelism,
we mean that processes run at arbitrary speeds. Elsewhere, these terms are used incompatibly to mean
unbuffered and buffered communication between processes.

274

global state of the system. Our model of a single execution of a process is an infinite
sequence of sets of actions (the reading and writing of variables): A process is assumed to
be acting in an environment of other agents, with the only communication being indirectly
through the values of the variables.

Suppose that 7) is an infinite set of primitive process names. Then every process P
has a type describing what basic components it has and the variables it can access. Its
type is a quadruple Tv = (Procs,~Pv,Sv,£v), where Procs is a subset of 7), ~De is a set
of (owned) distributed variables which it can write and other processes can only read, Sp
is a set of shared variables which may be written and read by P and other processes, and
£v is a set of ezternal variables, which are read-only. We omit the subscripts when no
confusion arises and abbreviate ~D U ,9 U g by V. Procs is used to record which primitive
process performs each action; this seems necessary for dealing with shared variables ~. We
assume all variables range over a common domain, Dora. When discussing finite-state
processes, we assume Dora is finite.

The process P has a set of primitive actions, Ap, consisting of reads of the form
read(P~, z, v) and writes of the form write(P~, z, v), where P~ is a primitive agent name
in 7) and v is some value in the domain of the variable z. A composite action is a set of
primitive actions. These correspond to primitive actions occurring simztltaneo~tsly. The
empty set of actions represents nothing happening and is ca~ed sk/p.

A state, s, is a function assigning a value to every variable in V. An initial condition
is a function mapping from 7) to V. Let ~i be the ith element of ~. An action run of P
corresponds to a trace of actions that P may perform, in which P ' s distributed variables
change only if P writes to them, but shared and external variables can change arbitrarily.
Formally, an action run a = al,a~,.., of type (Proc,~),S, 6) is an infinite sequence of
composite actions of P , satisfying the following consistency condition: there exists an
infinite sequence of states s = &, s2,. . • such tha t

(read-values) if r e a d (- , z,v) occurs in a~, then z must have the value v in s~,

(write-values) for every z E 7), if a write(- ,z , v) occurs in ai, z 's value in si+~ must
be v ' where some write(-, z, v') occurs in a~, and, if no write(-, z, v) occurs in al,
then si(z) = si+l(z), and,

(type) whenever write(-, z,v) occurs in a, z is in 7)U ,9.

Intuitively, if several writes to z occur simultaneously, z arbitrarily takes the value of one
of them. An action run is consistent with an initial condition r if there is a satisfying
sequence of states starting with state sl which agrees, with I on 7).

The behavior of a process P is a triple (Tp, Iv, R~tnsv), where Tv is its type, Iv
its initial condition and R=rtsv (usually denoted R(P)) a set of action runs of type Tp
consistent with its I . We sometimes use P as an abbreviation for R(P) .

3.1 Synchronous parallelism

The behaviors of two processes can be combined to yield the behavior that results when
they run synchronously (in "lock step"). The runs of P = PIII P2 are essentially those

2The usual way of dealing with shared variables is have two labels for actions: ~r if performed by
the process or c if by the envizonment[BKP84]. But for scheduling, it helps to record exactly which
component executed each action.

275

runs of the correct type which look hke runs to both P1 and P2. P is defined only when
Procl and Proc2 are disjoint, T~I and T~tA,.q2 are disjoint, and T>2 and T~I t2S1 are disjoint.
Let deIQ be the projection on action runs that deletes all atomic actions made by agents
in Q. Formally, P = (Yp, I~, R(P)) is defined as follows:

Tp = (Proc, T~,S,E) where Proc = Procl U Proc2, D = ~1 U 2)2, S = $1 U $2 and
e = u &) - i v u s) = - u u (& - Sl)) .

Ip is the extension of both Iv~ and I ~ , i.e. Iv has domain D and agrees with Ip~ on D~
and Ip, on D~.

R(P) = del~-X(R(P~)) ~ del~,,-X(R(P~))
= {r [r is a consistent run of type Tp, delp.(r) ~ R(Px) and delve(r) ~ R(P2)}.

Because del~,~ removes all P~. actions, it deletes everything unobservable to PI, leaving
exactly what P~ observes. Thus delay(r) is in R(Px) precisely when P~'s view of the global
system run r is a run of Px.

3.2 Generalized parallelism
A run is in the parallel composition of P1 and P2 when it is observed as a run by each
process. Process observability is represented by functions fp~ mapping consistent runs of
type T~,~llp 2 to sets of consistent runs of type Tpi 3. In synchronous parallelism, we had
dell, 2 for f/,~ and delp~ for fp2.

R(PaIIP2) = f~,-X(R(P~)) n fp,-X(R(P2))
= {r [r is a consistent run of type Tp, llp2 , fp~(r) C R(Px) and fp , (r) C R(P~.)}

3.3 Asynchronous parallelism
We often want the behaviors of processes that run in parallel asynchronously. Inserting
an arbitrary (finite) number of skip actions between the non-skip actions of a run of
a process allows other processes to perform as many or as few actions as they like be-
tween the process's non-trivial actions. The delskip operation removes the skip actions
of P from an action run. The s~ut~ering closure of an action run a is stut(a) = {a']
delskip(a ~) = delskip(a)} = delskip-l(delskip(a)), see [ALW89]. This definition is ex-
tended to sets of action runs. For convenience, we use R•s(P) to refer to s~ut(R(P)),
the asynchronous runs, or asynchronous closure of P. Asynchronous parallelism, HAS, is
defined as synchronous parallelism on the asynchronous closure of the processes. Tha t is,
R(PI HAs P~) = delp2-1(RAs(P1))AdeIp~-l(RAs(P2)). This is a special case of generalized
paraUelism, with delsk@ -1 o delsk@ o deIp~ for fp~.

4 I m p l e m e n t a b i l i t y

A reactive system consists of processes which communicate among one another and that
are intended to run forever. Suppose P is a reactive process where the only other agent
is a completely unpredictable environment over which it has no control. The interaction
between the implementation and the environment can be viewed as a game. Each player

3It may be that P~'s view of a run is not uniquely determined.

276

takes a turn extending a computation. The implementation wins the game if the resulting
computation satisfies the specification. Moves in the game are actions, the reads and
writes of variables. H the process always wins the game, it is an implementation of the
specification.

A strategy is a special kind of process which decides its next move from its history of
actions. Its moves are read requests of individuatvariables, and write requests of individual
variables with the values to be written. Notice that a strategy is restricted to accessing
only one variable at a time. Formally, a strategy S of type ({ S } , ~ , S , £) is a function
gs : As" --~ Movess, where Movess = {read(vat) I vat E S U £} U {write(vat, value) I
vat E T) U S, value E Dora}. Because the adversarial environment can choose to return
any value in response to a read action by the strategy, R(S) is the set of all sequences of
actions a = at, a s , . . , such that

1. a,+, = read(S, var, value) for some value e Do~ whenever gs (az , a s , . . . , a ,) =
read(vat), and

2. = wrae(S , vat, value) whenever gs(al , a s , . . . , a,) = rite(var, value).

The strategy plays against an environment E of type ({E}, £, $, 7)) whose actions runs
are simply all the action runs for its type. It is an implementation of the specification
Spec if every run of the combined system is in the specification, i.e. R(S H E) C Spec.
In this case it is a winning strategy for the game.

4 . 1 T h e R e a d - W r i t e G a m e

Most of the games in this paper are games of partial information. The implementation
cannot directly observe the entire system; the only information it knows about the envi-
ronment has been inferred from reading the environment's variables. A solution to the
implementability problem proceeds in two steps: reducing the game of partial information
to one of complete information, and then solving the game of complete information, the
read-write game. Runs in this game are traces of strategy actions only, and therefore
reflect exactly what the strategy observes. A read-write game is stated as: Given a set of
action runs W of type ({S}, ~,, .q,£), is there a strategy of the same type whose action
runs are all in W, i.e. R(S) C_ W?

If the problem is finite state (the behaviors of the processes and the specification can
be represented as w-regular sets), the read-write game is decidable. This result follows
almost immediately from the decidability of the Church-Biichi solvability problem, [BL69,
Rub72].

T h e o r e m 1 If A is a nondeterministic Biichi automaton (NBA) defining Spec, a set of
action runs for S over k variables, and A has n states, then the read-write game for Spee
is decidable in 20[(kn)2"log(kn)] time. If there is a winning strategy for Spee, the algorithm
produces one of size 20[(kn)~'t°°(~'~)].

P roof : The solution is a variant on the algorithm for "synchronous implementability"
in [PR89a]. We construct from A a tree automaton that accepts exactly the trees that
correspond to winning strategies. Hence to solve the game, we need only test for emptiness
of the tree automaton [EJ88]. o

277

4 . 2 Cores

It is usual for a process to have only partial observability of the entire system; it cannot
observe all the environment's actions. Suppose the environment owns the variables zl
and x~. While the process is reading zl , the environment may be changing the value
of z~. In an asynchronous system the environment may even change z2 an arbitrary
number of times without the process noticing. Suppose two global system runs, rl and
r2, both look like the action run r to the implementation. The implementation only
observes r and cannot distinguish whether rl or r2 actually occurred. Thus a strategy or
implementation should only generate action runs for which all corresponding global runs
lie in the specification.

We assume the strategy has observability function fs. The core of a global specification
Spec, core(Spec), is the Set of (local) strategy action runs whose inverse images under f s
are all in the specification, i.e. core(Spec) = {a I fs l(a) C Spec}.

L e m a n 1 Let Speca global specification and S be a strategy, interacting with the envi-
ronment under observability function fs. The following are equivalent:
1) S is an implementation of Spec,
~) R(S II E) C Spec,
3) /~ ' (R(S)) : Spec,
~) R(S) C co~e(Spec),
5) S wins the read-write game over core(Spec). []

Therefore implementability can be constructively reduced to the read-write game,
provided we have an algorithm for finding the core of a specification. Since care(Spec) =
{r] f s - l (r) C Spec}, its complement is {r [f s - l (r) f3 Spec # 0}. Thus a run r is in
the complement of the core if it has a preimage under f s in Spec. Hence core(Spec) =
fs(S---~). The core can be found by complementation and substitution.

4.3 Synchronous Implementabil i ty

Until now, we have not considered any particular representation of the specification. We
want to express w-regular properties of variables ranging over finite non-boolean domains.
Rather than defining a temporal logic with finite-valued variables, for convenience we
express properties in propositional temporal logic (PTL). We encode each bit-value of a
variable as a separate proposition.

L e m m a 2 Let ¢ be a PTL formula for Spec. Then there is an algorithm to find a
deterministic Rabin automaton A accepting the cores(Spec).

Proof : We proceed in three steps. From ¢ construct a NBA B for p ~ , ([WVS83]).
Find a NBA B' for cores(Spec), (apply the homomorphism f , = deIE). Complement and
determinize B' to get the desired Rabin automaton A ([EJ89]). []

T h e o r e m 2 Let ¢ be a PTL formula of length no for the property Spec. There is a
2 °[(k'lD°'nl)~'2c3"°)} algorithm for testing the synchronous impIementability of Spec. If Spee
is implementable, it yields a 2 °[(k'fD*"l)~'2¢~'~] folded representation of a strategy for Spec.

Proof : Because of L e m a n 1, we can follow the algorithm of L e m a n 2, then solve the
read-write game. The complexity result follows from analysis of the tableau procedure

278

of [WVS83], the simultaneous complementation and determinization algorithm of [EJ89]
and the test for emptiness of [E J88]. t2

4.4 Asynchronous Implementability

The analogous results from the last section all hold; the observability function is merely
changed from delz to f As = delskip -1 o delskip o deIE. Performing the substitution for
delskip is similar to way e-transitions are removed from finite state automata.

Theorem 3 Let ¢ be a PTL formula of length no, defining the set Spec . The asyn-
chronous implementability of Spec is solvable with complexity 20[(k'lD~l)3"~(3~)]. 1:3

5 S c h e d u l i n g

The ideas in the previous section can be used to find a scheduler, which is a process
designed to provide external coordination for other processes. Such a situation may arise
in the fields of distributed computing, networking, hardware design and operating systems.
For example, we may be given information about the processes to be run and asked to
schedule them to ensure mutual exclusion of their critical sections or guarantee some
form of liveness. The scheduling problem is stated as follows: For processes P1, . . . , P,,
and specification Spec, is there a strategy S such that P1 II "'" II P- 11 S satisfies Spec?

Let P1 11 "'" 11 P- be collectively called P. We assume P It s is a system with
no external variables. A truly external environment can always be modeled as another
primitive process within P. By definition, R(P II a) = f~-~(R(P)) n f s - l (R(s)) .
Thus, P II S satisfies Spec iff f s -X(R(S)) C fF-Z(R(P)) U Spec. This problem is
essentially implementability with a modified specification, Sped = fp -x (R(P)) U Spec,
(see Lemma 1). Intuitively, Spec t asserts that if the environment behaves like the processes
we need to schedule, then the original specification Spec must hold.

5.1 The Finite State Case
For both synchronous and asynchronous parallelism, the processes can be effectively com-
posed and Spec' computed, which implies that the scheduling problem is decidable. The
complexity is the same as that for implementability except for an extra multiplicative
factor of p" for the composition of the processes.

Theorem 4 (Scheduling) Assume the system has k variables over a finite domain Dora.
Let {P1,---,P,~} be a set of processes, where each Pi is defined by a NBA Ai of size <_ p.
Let Spec, a property of action runs with agents P1, . . . , P~ and S, be defined by a PTL
formula of length no. Then there is a 2 °[(~'lDml'p")3"~3"°)] algorithm to solve the scheduling
problem, giving a 2 °[(k'lD'*'l'p~)~'2(n"°)] state scheduler, if any scheduler ezists. (2

6 T r a n s f o r m a t i o n s o n s p e c i f i c a t i o n s

Most specifications are only expected to be met when the processes or the environment
behave in a certain way. For example, a mutual exclusion program may only guarantee

279

progress for each process requesting entry to its critical section if every process has a
terminating critical section, Term_Crit ~ Prog. An environmental assumption can be
handled simply by adding it as an antecedent to the specification.

Additional requirements on the scheduler can be added to specifications. For example,
suppose we have 10 processes to schedule, but only 5 processors available. Then we must
disallow any scheduler that permits more than 5 processes to execute at any time. To
handle this, the scheduler needs substantial control over the processes. One way to achieve
this control is to add a new boolean signal variable ~goi} for each process P~. These new
variables are owned by the scheduler. The process constraints C~, would assert that no P/
ever makes a non-sk/p action when the signal goi is false. We then add to the scheduler
the constraint "no more than 5 go~ signals are true at any time".

A constraint on the scheduler C,ched can be enforced by changing the specification Spec
to C,c~d f~ Spec. The same technique can be used for more general resource constraints,
for example, "processes 5 and 6 can never run on processors A and B at the same time."

7 Rea l -Time Processes and Specif ications

Synchronous parallelism requires all processes to advance at the same time, while asyn-
chronous parallelism is completely speed independent. It is often the case that processes
are not interacting synchronously, but nor are they completely asynchronous - - some-
thing is known about timing in the system. Knowledge of the relative timing of events
may make it easier to implement a specification.

We consider dense time, where events may occur at arbitrarily dose times; time is
interpreted over the nonnegative real numbers, 1;t. The execution of concurrent real-time
processes is modeled by timed traces [ADg0], which are infinite sequences together with
times at which each event occurs. We use the timed Biichi automata (TBA) of [AD90] to
model specifications and processes.

% 1 R e a l - T i m e I m p l e m e n t a b i l i t y

The methodology for solving the implementability and scheduling problems for untimed
processes and specifications also works when timing is introduced. Using the techniques
of section 6, timing assumptions on the environment and timing requirements on the
implementation may all be written into the specification. Thus a strategy has no timing
information itself and may be synthesized from the core of the specification, exactly as
above for the untimed case. To solve real-time implementability then, we must show how
to derive the core from a timed specification.

Timed processes are the natural extension of untimed processes, in that runs are
now timed traces. Let Untime be the function that removes the timing information
from a timed trace. The observabihty function for P1 in P1 I]~ P2 is given by fp~ =
Un~ime o delskip -1 o delskip o delp2. A strategy S is a timed implementation of Spec iff
Untime-l(S) [It Untime-~(E) C Spec. It is clear that S implements Spec if it wins the
read-write game over caret(Spec) = {r [f s - l (r) c Spec}.

L e m r n a 3 Given a TBA A' = (V,,S, so, F,C,6) for b~'~, there is an O([A[s) algorithm
to find a NBA B for core(Spec). B has size O([C[!. [V. I • tS[2. 2a), where d is the number

280

of bits in the binary encoding of A"s timing constants. []

Because TBAs are not closed under complementation, we allow only specifications
given as deterministic timed automata (DTA), which have at most one run for any timed
trace. However DTA with Biichi acceptance conditions are not as expressive as DTA with
Muller, Streett and Rabin acceptance condition. All these deterministic automata can be
complemented, yielding TBA with polynomially many states 4. Timing conditions on the
implementation and the environment can also be included as antecedents to the original
specification. An implementation of Spec' = Timp f'] Tt U Spec implements Spec under
the timing assumptions Ti,~p and T,.

Theorem 5 (Real- t ime ImplementabUi ty) Let Ai,,,p and A, be TBA for timing re-
quirements Tim P and T, on the implementation and the environment respectivelv. Let A s ~
be a DTA 4 for the specification. Then the real-time implementabilit~l problem is solvable
in time ezponential in the number of variables and number of states of the automata but
doublTI ezponential in the number of bits to encode the timing constants. []

7.2 Real-time Scheduling

The problem of scheduling a collection of activities to meet hard real-time deadlines has
been studied extensively [CS88]. Previous work in this area considers schedullng a set of
tasks (which may or may not be known in advance) to meet completion deadlines, usua~y
on a single processor. These problems are usually at least NP-hard.

Here we are scheduling reactive processes which communicate and coordinate among
themselves. This problem is not easily modelled as a collection of tasks to be sched-
nled. Furthermore, the expressiveness of w-regular languages enables us to handle a far
wider range of timing properties than the simple meeting of completion deadlines. For
example, restrictions can be enforced on the ordering of completion times and the differ-
ences between completion times. Our specifications include, for example, "if Z/is set to 1
sufficiently often, it will eventually always be reset to 0 within 2 seconds".

We deal only with static scheduling, where the characteristics of the processes are
known beforehand. Specifications must be given as deterministic TBA, but the processes
to be scheduled and the timing constraints on the scheduler and the environment may
be arbitrary TBA. Real-time scheduling then reduces to real-time implementability over
the property "if the environment behaves like the processes, and all components in the
system satisfy their timing constraints, then the specification is met".

Theorem 6 (Real- t ime Scheduling) Let {P1, . . . , P,~} be a set of processes uritbeach
P~ defined by the TBA Ai of size < p. Let Spec be given by a DTBA As~c of size ns~c, and
let T~,,,p and Tc be timing constraints on the implementation and the environment defined
b~l TBA Airav and Ae of sizes nimv and n, respeetivel~l. Let e be the total number of clocks
and d the number of bits in the encoding of all the timing constants. The complezity of
real-time scheduling is 20([c!'p''k'lD~l('~i'~'ne'~sp~')~'2dP). []

4The number of acceptance pairs of a Rabin automaton must be logarithmic in the number of s tates .

281

8 Conc lus ion

The idea of finding strategies for games is not only applicable to the specific problem of
synthesizing an implementat ion from a temporal specification, but can also be applied to
other problems such as scheduling. Although the doubly exponential algorithms presented
here may prove to be useful for very small systems, easier special cases of the problem
will have to be discovered for real practicality. The problem of synthesizing a scheduler
to meet a specification closely resembles the supervisory control problem in the s tudy of
discrete event systems, which historically has fallen in the domain of control theory. The
relations between these two problems should be studied in greater detail.

Acknowledgements
We thank Amir Pnueli for a helpful discussion, and Elizabeth Wolf for careful reading

of a draft of the paper.

References
[AD90]

[ALW89]

[BKP84]

[BL69]

[csgg]

[Chu63]

[Dil89]

[E388]

[m89}

[PRg9a]

[PR89b]

[Rab72]

[WVSS3]

[WD91]

R. Alur and D. Dill, "Automata for modeling real-time systems", ICALP 1990.
M. Abadi, L. Lamport, P. Wolper, =Realizable and unrealizable specifications of reactive sys-

terns", Inte~ational Colloquium on A ~toma~a, Languages, and Programming, Lecture Notes in
Computer Science, 1989, Springer-Verlag
H. Barringer, R. Kuiper and A. Pnueli, "Now you can compose temporal logic specifications",
Proceedings of the A CM Symposium on Theory of Computing, 1984, pp. 51-63.
J. R. Bfichi and L. H. Landweber, "Solving sequential conditions by finite-state strategies",
Transactions of the American Mathematical Society, 138, 1969, pp. 295-311.
S-C. Cheng and J. A. Stankovic, ~Scheduling algorithms for hard real-time systems - a brief
survey", in Hard Real-Time Systems, IEEE Press, 1988, pp. 150-173.
A. Church, "Logic, arithmetic, and automata", in Proceedings of the International Congress of
Mathemahcians, 196~, Institut Mittag-Lefl~er, 1963, pp. 23-35.
D.L. Dill, "Trace Theory for Automatic Hierarchical Verification of Speed-Independent Cir-
cuits", MIT Press, 1989.
E.A. Emerson, C.S. Jutla, "The complexity of tree automata and logics of programs ~, Proc. of
the ~9th IEEE Syrup. on Foundation8 of Compuf~r Science, 1988, pp. 328-337.
E.A. Emerson, C.S. Jutla, =On simultaneously determinizing and complementing w-automata ",
Pro. of the Syrup. on Logic in Computer Science, 1989, pp. 333-342.
A. Pnueli, R. Rosner, =On the synthesis of a reactive module", P~oc. 16th ACM S~mp. Principles
of Programming Languages, 1989, pp. 179-190.
A. Pnueli, R. Rosner, "On the synthesis of an asynchronous reactive module",]nte~ational
Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science
Vol 372, 1989, Springer-Verlag
M. O. Rabin, "Automata on infinite objects and church's problem", Regional Conference Series
in Mathematics, Vol. 13, American Mathematical Society, 1972.
P. Wolper, M.Y. Vardi, A.P. Sistla, "Reasoning about infinite computation paths", Proc. of
the e4th IEEE Syrup. on Founda~ior, s of Computer Science, 1983, pp. 185-194.
H. Wong-Toi and D.L. Dill, "Synthesizing processes and schedulers from temporal spedfica-
tions', Computer-Aided Verification (Proc. CAVgO Workshop), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science Vol. 3 (American Mathematical Society, 1991).

