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Abs t rac t  

This paper describes a technique for generating a logical formula that differentiates between 
two blshnulation-inequivalent finlte-state systems. The method works in conjunction with a 
partition-refinement algorithm for computing blshnulatlon equivalence and yields formulas that 
are often minimal in a precisely defined sense. 

1 I n t r o d u c t i o n  

A popular technique for verifying finite-state systems involves the use of a behavioral equivalence. In this 
approach, specifications and implementations are formalized as finite-state machines, and verification 
consists of establishing that an implementation is equivalent to, in the sense of behat~ng the same as, 
its specification. A number of equivalences have been proposed in the literature [1, 3, 7, 8, 12, 14], and 
several automated tools include facilities for computing them [2, 5, 6, 13]. 

One particularly interesting equivalence is bisimulation equivalence [14]. In addition to the fact 
that a number of other equivalences may be described in terms of it [4], the relation has a logical 
characterization: two systems are equivalent exactly when they satisfy the same formulas in a simple 
modal logic due to Hennessy and Milner [9]. This fact suggests a useful diagnostic methodology for 
tools that compute bisimulation equivalence: when two systems are found not to be equivalent, one 
may explain why by giving a formula satisfied by one and not the other. 

The purpose of this paper is to develop a technique for determining a Hennessy-Milner formula 
that distinguishes two bisimulation-inequivalent finite-state systems. To this end, we show how to use 
information generated by the partition-refinement algorithm of Kanellakls and Smolka [11] to compute 
such a formula efficiently. On the basis of our results, the tools mentioned above may be modified to 
give users diagnostic information in the form of a formula when a system is found not to be equivalent 
to its specification. 

HilhrstrSm [10] also gives a technique for computing a Hennessy-Milner formula. However, his 
method relies on the use of a backtracking-based algorithm that is less efficient that the more popular 
partltion-based algorithms we are interested in. 

The remainder of the paper is organized as follows. The next section defines bisimulation equiva- 
lence and examines the connection between it and the Hennessy-Milner Logic. Section 3 then describes 
a modification of Kanellakis-Smolka bisimulation algorithm that computes distinguishing formulas; a 
small example is also presented to illustrate the workings of the new algorithm. The final section 
contains our conclusions and directions for further research. 

*Research supported by NSF/DARPA research grant CCR-9014775. 
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2 Transition Graphs, Bisimulations and Hennessy-~/Iilner 
Logic 

Finlte-state systems may be represented as transition graphs. Vertices in these graphs correspond to 
the states a system may enter as it  executes, with one vertex being distinguished as the start state. 
The edges, which are directed, are labeled with the actions and represent the state transitions a system 
may undergo. The formal definition is the following. 

Def in i t ion  2.1 A transition graph is a quadruple (Q, q, Act,--*), where: 

* Q is a set  o~ states (vertices); 

• q E Q is the start state; 

• Act is a set of actions; and 

• --,C_ Q × Act × Q is the derivation relation (set of labeled edges). 

We shall often write q1.2, q2 to indicate that there is an edge labeled a from state ql to state q2; in 
this case, we shall sometimes say that qz is an ,~-derivative of ql. When a graph does not have a start 
state indicated, we shall refer to the corresponding triple as a transition system. A state in a transition 
system gives rise to a transition graph in the obvious way: let the given state be the start  state, with 
the other three components of the transition graph coming from the transition system. 

Reactive systems [16] compute by interacting with their environment. For such systems, the tradi- 
tional language equivalence of automata theory is insufficiently discriminating, since the resolution of 
nondetermlnistic choices may leave a system in states that react dltferently to stimuli offered by the 
environment. Bislmnlation equivalence remedies this shortcoming by requiring that  equivalent systems 
have state sets that "match up" appropriately: the start states must be matched, and if two states 
are matched then they must have matching a-derivatives for any action a either is capable of. These 
intuitions may be formalized in terms of blsimulations on a sinyle transition system. 

Def in i t ion  2.2 Let (Q, Act, --*) be a transition system. Then a relation R C_ Q × Q is a bisimnlation 
if, whenever qx R q2, the following hold. 

a t 1. I f  ql -~ q'~ then there is a q'2 such that q2 ---' qz and q~ R q~. 

~. If  q= -~ q'~ then there is a ~ such that qx -~ q~ and q~ R q'~. 

Two states and in a transition system are bisimulation equivalent if there is a bisimuiation relating 
them. When qx and q2 axe bisimuiation equivalent we shall write ql ~ q=. 

Let G1 = (Qx, qx, Act, -"1) and G2 = (Q2, q2, Act, --'s) be two transition graphs satisfying Q~nQ~ = 
0. Then G1 and G= are bisimulatlon equivalent exactly when the two start states, qa and q2, are 
equivalent in the transition system (Qx U Q2, Act,-.-~1 U --'=). This definition may be generalized to 
arbitrary transition systems (i.e., ones whoses state sets are not disjoint), at the cost of a slightly more 
complicated definition for the transition system in which blslmuiation equivalence is to be computed. 
In the remzinder of the paper we only consider the problem of determining a formula that  distinguishes 
two ineqnivalent states in a transition system. 

A number of behavioral equivalences may be characterized in terms of bislmnlatlon equivalence on 
suitably transformed transition systems [4, 5, 6]. For example, if the transition system is determinis- 
tic, meaning that  every state has at most one ~-derivative for a given a, then blslmulatlon equivalence 
coincides with language equivalence from formal language theory. To determine if two states in an ar- 
bitrary transition system axe language equivalent, it suffices to apply a "determlnlzing" transformation 
to the transition system and then determine whether their corresponding states in this new system axe 
blsimulation equivalent. Other equivalences, including testing equivalence [7, 8], failures equivalence 
[3], and observational equivalence [14], may be computed in an analogous fashion. 
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[t+~, = + 

~-"+]T = Q - ~+]r 
~+., A +:;,It = l+1]r n ~'+2]r 

l(a)+']+ = {q E Q 13+'. q -~  q ' A ¢  ~ ~'+']+} 

Figure 1: The semantics of formulas in Hennessy-Milner Logic. 

Bisimulatlon equivalence also has a logical characterization in terms of Hennessy-Milner Logic 
(HML) [9]: two states are equivalent exactly when they satisfy the same HML formulas. The syntax 
of HML is defined as follows, where a E Act. 

• ",= ttl  --+ I + A + I (~)+ 

Given a transition system T = (Q, Act,--,), the interpretation of the logic maps each formula to the 
set of states for which the formula is "true"; Figure 1 gives the formal definition. In the remainder of 
the paper we shall omit explicit reference to the transition system used to interpret formulas when it 
is clear from the context. Intuitively, the formula tt holds of any state, and --~ holds of a state if 

does not. ~t  A ~2 holds of a state if both ~1 and ~ do, while the modal proposition (a)~ holds 
if the state has an a-derlvatlve for which ~ holds. We shall say that a state q in transition system T 
sat/sties formula ~ if q E ~ ] T -  

Let H(q) he the set of HML formulas that a state q satisfies: 

H(q) = { + I q ~ ~+]). 
The next theorem is a corollary of a result proved in [9]. 

T h e o r e m  2.3 Let (Q, Act, --*) be a finite-state transition system, with q, qt E Q. Then H(q) = H(q e) 
if and only if q ... q'. 

It follows that if two states in a (finite-state) transition system axe inequlvalent, then there must be 
a HML formula satisfied by one and not the other. This is the basis of the following definition of 
distinguishing formula. 

Def in i t ion  2.4 Let (Q, Act,--~) be a ~ransition system, and let Sx C ~ and $2 C_ ~. Then HML 
formula ~ distinguishes $1 from S~ if the following hold. 

~, S . n  [+] = 0. 

So • distinguishes $1 from S~ if every state in St, and no state in $2, satisfies ~. Theorem 2.3 thus 
guarantees a formula that  distinguishes {ql) from {q2) if ql 7 ~ q~. 

Finally, we shall adopt the following criterion in assessing whether a distinguishing formula contains 
extraneous information. 

Def in i t ion  2.5 Let • be a HML formula distinguishing $1 from S~. Then • is minimal if no ~' 
obtained by replacing a non-trivial subformula of ~ with the formula tt distinguishes $1 from S~. 

Intuitively, ~ is a minimal distinguishing formula for $1 with respect to $2 if each of its subterms plays 
a role in distinguishing the two. 

3 C o m p u t i n g  D i s t i n g u i s h i n g  F o r m u l a s  

In this section, we describe an algorithm for computing bislmulation equivalence [11] and show how 
to alter it to compute distinguishing formulas. We then consider a small example that  illustrates the 
behavior of the modified algorithm. 
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f u n c t i o n  spli( B , a, B') = 
{{s e B 1 3 s ' e  B'. s ~ s ' } , { s  e B I -,is' e B'. s A s'}} - {¢}; 

a lgor i thm biaing Q , Act,--,); 
begin  

Pz := {Q}; 
Ps := ¢; 
.hilo P, # P= do begin  

P, := PI; 
P, := 0; 
fo reach  B 6 P, do P, := PI U split(E, a, B'); 

end 
end. 

Figure 2: The partition refinement algorithm for bisimulation equivalence. 

3 .1  T h e  K a n e l l a k i s - S m o l k a  A l g o r i t h m  

The Kandlakls-Smolka algorithm exploits the fact that an equivalence rdation on a set of states 
may be viewed as a partition, or set of pairwise-disjolnt subsets (called blocks) of the state set whose 
union is the state set. In this representation blocks correspond to the equivalence classes--so two states 
axe equivalent exactly when they belong to the same block. Beginning with the partition containing one 
block (representing the trivial equivalence relation consisting of one equivalence class), the algorithm 
repeatedly refines this partition (by splitting blocks) until the associated equivalence relation becomes 
a bisimulation. In order to determine whether the partition needs further refining, the algorithm looks 
at each block in turn. If a state in a block B has an a-derivative in a block B'  and another state in B 
does not, then the algorithm splits B into two blocks, one containing the states having an a-derivative 
in B '  and the other containing the states that do not. When no more splitting is possible, the resulting 
equivalence relation corresponds exactly to bisimulation equivalence on the given transition system. 
The algorithm is given in Figure 2. Function s p l i t  is used to split one block with respect to another; 
notice that s p l i t ( B ,  a, B') = {B} (i.e. B is not split with respect to a and B') if either all the states 
in B, or none of them, have an a-derivative in B'. It should also be pointed out that P1 = P2 exactly 
when no more splits in/ '1 are possible. The worst-case complexity of blsim is 0(]-~ [ * Iql). 

3 . 2  G e n e r a t i n g  D i s t i n g u i s h i n g  F o r m u l a s  

One straightforwaxd way to compute distinguishing formulas is to associate a formula, ~(B), with 
each block B in the partition in such a way that that the following hold. 

• B c_ [6 (B)I .  

• B' n ~ ( B ) I  = ~ if B' # B. 

In the initial partition, {Q}, 6(Q) is set to ft. Now suppose a block B is split, i.e. suppose there is 
an action a and another block B t such that split(B, a, B') - {B,, B2}, with every state in B~ having a 
transition into B '  and no state in B2 having one. Then ~(B~) may be set to ¢(B)  A (a)6(B'),  while 
6(B2) becomes 6(B) A -,(a)6(B'). Arguing inductively, it is easy to establish that for any block B, 
a state satisfies ~(B) exactly when it is contained in B. Since two states that are not bisimulation 
equivalent will eventually wind up in different blocks, it is a simple matter to compute a formula that 
distinguishes such states: just return the formula assodated with one of the containing blocks. 

Although intuitively appealing, this approach has a drawback; it generates very large formulas. 
In general, the size of a formula assodated with a block will grow in size as 2", where r is defined 
as the number of iterations of the while loop in blsim. In certain cases r = 1Q1, so the formulas 
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obtained using this method may be exponential in the size of the state space. There is, however, 
a polynomlal-size representation using a set of propositional equations, so this complexity is not as 
severe as it seems; moreover, it is the case that an exponential-size formula may also be minimal. 
More importantly, the formulas include a large amount of extraneous information: not only does such 
a formula distinguish one state from another inequivalent state, it  a~o distlnguisbes it from every state 
to which it is inequivalent. In fact, the formulas generated this way are rarely minimal, and because 
of this, they are not useful from a diagnostic standpoint. 

A n o t h e r  A p p r o a c h  

We now describe a better technique for generating distinguishing formulas. The method uses infor- 
mation computed by a slightly altered version of 5/s/m that,  in addition to computing the partition 
as described above, retains information about how blocks are split. Then, a postprocessing step con- 
structs a formula that  generates a formula distinguishing the states in one block from the states in 
another. 

Bisim is modified as follows. Rather than discarding an old partition after it  is refined, the new 
procedure constructs a "tree" of blocks as follows. The children of a block are the new blocks that 
result when the block is split; accordingly, the root is labeled with the block Q, and after each iteration 
of the f o r e a c h  loop the leaves of this tree represents the current partition. When a block B is split 
(by spli~B, a, B')) ,  we place the new block ~1 ~--- { S E ~ I 3S'  E ~ ' .  S - ~  S # } 8,8 the left child and the 
new block Bs = { s E B [ "~Ss t E B'.  s -~ s '  } as the right child, and we label the arc connecting B to 
BI with a and B ~. Recall that every state in BI has an a-transltion into B'  and that no state in B2 
does. If a block is not split during an iteration of the fox'each loop, it is assigned a copy of itself as 
its only child. I Figure 5 contains an example of such a tree. 

Given a block tree computed by the new version of bisim, and two states 81 and s2 that  are 
ineqnivalent and hence in different blocks, the postprocesslng step builds a formula ~(sl ,ss)  that 
distinguishes (s l}  from {s=}. Although this formula wili not necessarily be minimal either, it  will in 
general be much smaller than the formula computed using the method described above; it  is guaranteed 
to be no larger. The details are as follows. 

1. Determ;ne the deepest block P in the block tree such that st E P for i = 1,2. Let L and R be 
the left and right children of P ,  with a, B ~ labeling the arc from P to L. Note that either sl E L 
and s= E R, or vice versa. Let sL be the state in L, and sR the state in R. 

2. Execute the code in Figure 3. The idea is the following. For each state in B t that  is an a~ 
derivative of 8~ we will generate a minimal set of formulas satisfied by sL whose conjunction is 
satisfied by no derivative of of 8R. We will then take the set yielding the smallest conjunction. 
Size is the variable used to record the size of the current shortest conjunction, while P contains 
the current collection of formulas being built. 

3.  I f  sL = sl then return (a)~; otherwise, return -~(a)~. 

T h e o r e m  3.1 The .formula 6(sz,ss) distlnguishes { sl } from {s=}. 

P roof .  By induction on the depth of the deepest block in the block tree containing both 81 and 82. 
D 

In general, / /(sl,ss) will not be minimal. However, it is possible to characterize situations when 
6(sl,s~) will be minimal, as the following result indicates. 

T h e o r e m  3.2 Suppose that in each recursive call to ~ generated by 8(sl ,ss)  (sx 76 s=) the following 
holds. 

1Strictly speaking, this is not necessary; these blocks may be left childless. We include these spurious children to 
simplify our inductive azgument of correctness. 
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Size :~ 00; 
Sz : =  { s' I sz -~ s' } n B'; 
SR := { 8' 18s ~ a' }; 
foreach 8~ E St, do begin  

F := (~; 
fo reach  s~ E SR do beg:in 

r := r u {~'}; 
end; 
~oreach ~i E r do beg:in 

"if ~/ = ~ then  1 ~ := r -- {~i}; 
end; 
if [ A rl < Size then begin 

S i z e  : =  I h rl; 
:= A l"; 

end; 
end; 

Figure 3: Code for generating conjunctions. 

1. Let F be the set of conjuncts used to build • and n~ the state in sL that was used to create r.  
Then for each ~' E r there is an sj E SR such that • minimally distinguishes {s~} from {sj}, 
and aj E [ ~ I  for all other ~" E r. 

~. { 8' I sL -~ 8' } - B' c_ SR. 

Then 6( sx, 82) is minimal 

Proof .  By contradiction. Of importance is the fact that ~ is the shortest length formula that 8 can 
build to distinguish an a-derlvative of s~ from all a-derivatives of 8R. [3 
It is also the case that a minimizing procedure can be applied to ~(sl, s2) once it has been computed; 
the result of this would be a minimal formula. The minimizing procedure is straightforward: repeatedly 
replace subformulas in the formula by tt and see if the resulting formula still distinguishes sl from s2. 
If so, the subformula may either be omitted (if it is one of several conjuncts in a larger conjunction) 
or left at ft. The computational tractability of this procedure remains to be examined, however. 

It should be noted that 6 may still generate exponential length formulas. However, one may 
represent such a formula (as a set of propositional equations) in space proportional to [QI s. This 
results from the fact that there can be at most [Q[2 total recurslve calls generated by the above 
procedure and the fact that each distinguishing formula is of the form (-~)(a)~, where ~ contains at 
most ]QI conjuncts, each of the form 6(81, 8j) for some sl and 8j. By saving information appropriately 
and modifying the procedure for ~ so that the semantic information of the formula computed is also 
returned, we may establish the fo]lowlng bound on the amount of computation needed to compute 
such a series of equations. 

T h e o r e m  3.3 An equational representation o/~(sz,s2) may be calculated in O(IQI 5) time, once the 
tree of blocks has been computed. 

Proof .  Follows from the fact that determining the equation for each recurslve call of 5 requires 
O(IQI s) work. o 

We close this subsection with some genera] remarks about our method. One feature of our approach 
is that the overhead involved in maintaining the block tree is minimal; nodes need not be labeled with 
the corresponding sets of states, except at the leaves. Also, the postprocesslng step is only invoked after 
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bl ~ e 

Figure 4: Two inequivalent transition systems. 

B t  : { qx , q2 , q3 , q4 , qs , qs , qT } 

B= : {ql,q4} Bs : {q2,qs,qs,qs, qT} 

Bs : {q~,q~,q~} 

Bxo : {qz} Bxl : {q4} { } {qs} {qs,qT} 

Figure 5: The tree of blocks generated by bisim. 

equivalence is computedmso if the states of interest are found to be equivalent, then the postprocessing 
may be avoided altogether. 

3.3 A n  Example 
To illustrate our a~orithm we consider a weU-known example of two transition graphs that are not 
bisimulation equivalent. Figure 4 shows the transition system that includes the two transition graphs. 
State ql is the start state of one graph, while state q4 is the start state of the other. Figure 5 contains 
the tree of blocks generated by the altered b~sim algorithm. Notice that ql ~ q4, as they are in different 
blocks. 

In order to build G(qx, q4), the algorithm first locates the lowest common ancestor of the two blocks 
(B2, in this ease). The left child is B10, the right child is Bxl, the action causing the split is a, and the 
block causing the split is Be. The formula that will be returned, then, will be 

(a)(S(q2,qe) A S(q2, qs)); 

this formula holds of ql and not q4- By repeating this process, it turns out that 

g(q2,qs) = (c}tt and 
~(q2, qs) = (b)tt. 
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So the formula distinguishing ql from q, is 

(~)((c)tt ̂  (b) tt). 

This formula states that ql and q, are inequivaient because qx may engage in an a-transition and evolve 
into a state from which both b- and c-transitions are available. Note that this formula is minimal. By 
way of contrast, the formula generated by the first naive method would be the following. 

This formula is clearly not minimal, since, for example, the formula obtained by substituting tt for 
subformula (a)tt is still distinguishes ql from q4. 

4 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

This paper has shown how it is possible to alter partition-refinement based algorithms for computing 
bisimulation equivalence to compute a formula in the Hennessy-Milner Logic that distinguishes two 
inequivalent states. The generation of the formula relies on a postprocessing step that is invoked on a 
tree-based representation of the information computed by the equivalence algorithm. The formulas are 
often minimal in a certain sense, and the postprocessing step has an O([Q[ ~) effect on the worst-case 
complexity of the equlvaience-checking algorithm. 

There axe several avenues for future work to be pursued. Clearly, the complexity of the minimization 
procedure mentioned in passing at the end of Section 3 needs to be analyzed fully; if this procedure 
is efficient enough, then it may be incorporated into the distinguishing formula generation procedure. 
Another area of investigation would involve an implementation of our technique; we plan to incorporate 
this distinguishing formula capability into the Concurrency Workbench [5, 6], a tool for the analysis of 
finlte-state systems. Yet another involves determining appropriate ways of using formulas computed 
in the course of checking equivalences other than bisimulation equivalence. Of particular interest is 
testing (or failures) equivalence [3, 7, 8]. These equivalences may be characterized in terms of the tests 
a process may pass and must pass. One method for distinguishing states that axe not testing equivalent 
would be to build a test based on the formula computed by the bisimulation equivalence checker that 
one state may (or must) pass and that the other must (or may) not. Fina~y, it may be possible to 
extend our techniques to the computation of distinguishing formulas in the context of preorderchecldng. 
Another method of verifying processes involves the use of a behavioral preorder; in this setting, an 
implementation satisfies a specification if the implementation is "greater than" (intuitively: "behaves 
at least as well as") the specification. One interesting preorder is the prebisimulation preorder, which 
has a logical characterization in terms of an intultionistic variant of the Hennessy-Milner logic: one 
state is Ugreater than" another if it satisfies all the formulas satisfied by the latter. This property 
could serve as the theoretical basis for computing diagnostic information in the same way that the 
logical characterization d bisimulation equivalence served as the theoretical basis for the techniques 
described in this paper. 
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