
On Automatically Explaining Bisimulation Inequivalence*

Rance Cleaveland
Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695-8206
USA

Abs t rac t

This paper describes a technique for generating a logical formula that differentiates between
two blshnulation-inequivalent finlte-state systems. The method works in conjunction with a
partition-refinement algorithm for computing blshnulatlon equivalence and yields formulas that
are often minimal in a precisely defined sense.

1 I n t r o d u c t i o n

A popular technique for verifying finite-state systems involves the use of a behavioral equivalence. In this
approach, specifications and implementations are formalized as finite-state machines, and verification
consists of establishing that an implementation is equivalent to, in the sense of behat~ng the same as,
its specification. A number of equivalences have been proposed in the literature [1, 3, 7, 8, 12, 14], and
several automated tools include facilities for computing them [2, 5, 6, 13].

One particularly interesting equivalence is bisimulation equivalence [14]. In addition to the fact
that a number of other equivalences may be described in terms of it [4], the relation has a logical
characterization: two systems are equivalent exactly when they satisfy the same formulas in a simple
modal logic due to Hennessy and Milner [9]. This fact suggests a useful diagnostic methodology for
tools that compute bisimulation equivalence: when two systems are found not to be equivalent, one
may explain why by giving a formula satisfied by one and not the other.

The purpose of this paper is to develop a technique for determining a Hennessy-Milner formula
that distinguishes two bisimulation-inequivalent finite-state systems. To this end, we show how to use
information generated by the partition-refinement algorithm of Kanellakls and Smolka [11] to compute
such a formula efficiently. On the basis of our results, the tools mentioned above may be modified to
give users diagnostic information in the form of a formula when a system is found not to be equivalent
to its specification.

HilhrstrSm [10] also gives a technique for computing a Hennessy-Milner formula. However, his
method relies on the use of a backtracking-based algorithm that is less efficient that the more popular
partltion-based algorithms we are interested in.

The remainder of the paper is organized as follows. The next section defines bisimulation equiva-
lence and examines the connection between it and the Hennessy-Milner Logic. Section 3 then describes
a modification of Kanellakis-Smolka bisimulation algorithm that computes distinguishing formulas; a
small example is also presented to illustrate the workings of the new algorithm. The final section
contains our conclusions and directions for further research.

*Research supported by NSF/DARPA research grant CCR-9014775.

365

2 Transition Graphs, Bisimulations and Hennessy-~/Iilner
Logic

Finlte-state systems may be represented as transition graphs. Vertices in these graphs correspond to
the states a system may enter as it executes, with one vertex being distinguished as the start state.
The edges, which are directed, are labeled with the actions and represent the state transitions a system
may undergo. The formal definition is the following.

Def in i t ion 2.1 A transition graph is a quadruple (Q, q, Act,--*), where:

* Q is a set o~ states (vertices);

• q E Q is the start state;

• Act is a set of actions; and

• --,C_ Q × Act × Q is the derivation relation (set of labeled edges).

We shall often write q1.2, q2 to indicate that there is an edge labeled a from state ql to state q2; in
this case, we shall sometimes say that qz is an ,~-derivative of ql. When a graph does not have a start
state indicated, we shall refer to the corresponding triple as a transition system. A state in a transition
system gives rise to a transition graph in the obvious way: let the given state be the start state, with
the other three components of the transition graph coming from the transition system.

Reactive systems [16] compute by interacting with their environment. For such systems, the tradi-
tional language equivalence of automata theory is insufficiently discriminating, since the resolution of
nondetermlnistic choices may leave a system in states that react dltferently to stimuli offered by the
environment. Bislmnlation equivalence remedies this shortcoming by requiring that equivalent systems
have state sets that "match up" appropriately: the start states must be matched, and if two states
are matched then they must have matching a-derivatives for any action a either is capable of. These
intuitions may be formalized in terms of blsimulations on a sinyle transition system.

Def in i t ion 2.2 Let (Q, Act, --*) be a transition system. Then a relation R C_ Q × Q is a bisimnlation
if, whenever qx R q2, the following hold.

a t 1. I f ql -~ q'~ then there is a q'2 such that q2 ---' qz and q~ R q~.

~. If q= -~ q'~ then there is a ~ such that qx -~ q~ and q~ R q'~.

Two states and in a transition system are bisimulation equivalent if there is a bisimuiation relating
them. When qx and q2 axe bisimuiation equivalent we shall write ql ~ q=.

Let G1 = (Qx, qx, Act, -"1) and G2 = (Q2, q2, Act, --'s) be two transition graphs satisfying Q~nQ~ =
0. Then G1 and G= are bisimulatlon equivalent exactly when the two start states, qa and q2, are
equivalent in the transition system (Qx U Q2, Act,-.-~1 U --'=). This definition may be generalized to
arbitrary transition systems (i.e., ones whoses state sets are not disjoint), at the cost of a slightly more
complicated definition for the transition system in which blslmuiation equivalence is to be computed.
In the remzinder of the paper we only consider the problem of determining a formula that distinguishes
two ineqnivalent states in a transition system.

A number of behavioral equivalences may be characterized in terms of bislmnlatlon equivalence on
suitably transformed transition systems [4, 5, 6]. For example, if the transition system is determinis-
tic, meaning that every state has at most one ~-derivative for a given a, then blslmulatlon equivalence
coincides with language equivalence from formal language theory. To determine if two states in an ar-
bitrary transition system axe language equivalent, it suffices to apply a "determlnlzing" transformation
to the transition system and then determine whether their corresponding states in this new system axe
blsimulation equivalent. Other equivalences, including testing equivalence [7, 8], failures equivalence
[3], and observational equivalence [14], may be computed in an analogous fashion.

366

[t+~, = +

~-"+]T = Q - ~+]r
~+., A +:;,It = l+1]r n ~'+2]r

l(a)+']+ = {q E Q 13+'. q -~ q ' A ¢ ~ ~'+']+}

Figure 1: The semantics of formulas in Hennessy-Milner Logic.

Bisimulatlon equivalence also has a logical characterization in terms of Hennessy-Milner Logic
(HML) [9]: two states are equivalent exactly when they satisfy the same HML formulas. The syntax
of HML is defined as follows, where a E Act.

• ",= ttl --+ I + A + I (~)+

Given a transition system T = (Q, Act,--,), the interpretation of the logic maps each formula to the
set of states for which the formula is "true"; Figure 1 gives the formal definition. In the remainder of
the paper we shall omit explicit reference to the transition system used to interpret formulas when it
is clear from the context. Intuitively, the formula tt holds of any state, and --~ holds of a state if

does not. ~t A ~2 holds of a state if both ~1 and ~ do, while the modal proposition (a)~ holds
if the state has an a-derlvatlve for which ~ holds. We shall say that a state q in transition system T
sat/sties formula ~ if q E ~] T -

Let H(q) he the set of HML formulas that a state q satisfies:

H(q) = { + I q ~ ~+]).
The next theorem is a corollary of a result proved in [9].

T h e o r e m 2.3 Let (Q, Act, --*) be a finite-state transition system, with q, qt E Q. Then H(q) = H(q e)
if and only if q ... q'.

It follows that if two states in a (finite-state) transition system axe inequlvalent, then there must be
a HML formula satisfied by one and not the other. This is the basis of the following definition of
distinguishing formula.

Def in i t ion 2.4 Let (Q, Act,--~) be a ~ransition system, and let Sx C ~ and $2 C_ ~. Then HML
formula ~ distinguishes $1 from S~ if the following hold.

~, S . n [+] = 0.

So • distinguishes $1 from S~ if every state in St, and no state in $2, satisfies ~. Theorem 2.3 thus
guarantees a formula that distinguishes {ql) from {q2) if ql 7 ~ q~.

Finally, we shall adopt the following criterion in assessing whether a distinguishing formula contains
extraneous information.

Def in i t ion 2.5 Let • be a HML formula distinguishing $1 from S~. Then • is minimal if no ~'
obtained by replacing a non-trivial subformula of ~ with the formula tt distinguishes $1 from S~.

Intuitively, ~ is a minimal distinguishing formula for $1 with respect to $2 if each of its subterms plays
a role in distinguishing the two.

3 C o m p u t i n g D i s t i n g u i s h i n g F o r m u l a s

In this section, we describe an algorithm for computing bislmulation equivalence [11] and show how
to alter it to compute distinguishing formulas. We then consider a small example that illustrates the
behavior of the modified algorithm.

367

f u n c t i o n spli(B , a, B') =
{{s e B 1 3 s ' e B'. s ~ s ' } , { s e B I -,is' e B'. s A s'}} - {¢};

a lgor i thm biaing Q , Act,--,);
begin

Pz := {Q};
Ps := ¢;
.hilo P, # P= do begin

P, := PI;
P, := 0;
fo reach B 6 P, do P, := PI U split(E, a, B');

end
end.

Figure 2: The partition refinement algorithm for bisimulation equivalence.

3 .1 T h e K a n e l l a k i s - S m o l k a A l g o r i t h m

The Kandlakls-Smolka algorithm exploits the fact that an equivalence rdation on a set of states
may be viewed as a partition, or set of pairwise-disjolnt subsets (called blocks) of the state set whose
union is the state set. In this representation blocks correspond to the equivalence classes--so two states
axe equivalent exactly when they belong to the same block. Beginning with the partition containing one
block (representing the trivial equivalence relation consisting of one equivalence class), the algorithm
repeatedly refines this partition (by splitting blocks) until the associated equivalence relation becomes
a bisimulation. In order to determine whether the partition needs further refining, the algorithm looks
at each block in turn. If a state in a block B has an a-derivative in a block B' and another state in B
does not, then the algorithm splits B into two blocks, one containing the states having an a-derivative
in B ' and the other containing the states that do not. When no more splitting is possible, the resulting
equivalence relation corresponds exactly to bisimulation equivalence on the given transition system.
The algorithm is given in Figure 2. Function s p l i t is used to split one block with respect to another;
notice that s p l i t (B , a, B') = {B} (i.e. B is not split with respect to a and B') if either all the states
in B, or none of them, have an a-derivative in B'. It should also be pointed out that P1 = P2 exactly
when no more splits in/ '1 are possible. The worst-case complexity of blsim is 0(]-~ [* Iql).

3 . 2 G e n e r a t i n g D i s t i n g u i s h i n g F o r m u l a s

One straightforwaxd way to compute distinguishing formulas is to associate a formula, ~(B), with
each block B in the partition in such a way that that the following hold.

• B c_ [6 (B)I .

• B' n ~ (B) I = ~ if B' # B.

In the initial partition, {Q}, 6(Q) is set to ft. Now suppose a block B is split, i.e. suppose there is
an action a and another block B t such that split(B, a, B') - {B,, B2}, with every state in B~ having a
transition into B ' and no state in B2 having one. Then ~(B~) may be set to ¢(B) A (a)6(B'), while
6(B2) becomes 6(B) A -,(a)6(B'). Arguing inductively, it is easy to establish that for any block B,
a state satisfies ~(B) exactly when it is contained in B. Since two states that are not bisimulation
equivalent will eventually wind up in different blocks, it is a simple matter to compute a formula that
distinguishes such states: just return the formula assodated with one of the containing blocks.

Although intuitively appealing, this approach has a drawback; it generates very large formulas.
In general, the size of a formula assodated with a block will grow in size as 2", where r is defined
as the number of iterations of the while loop in blsim. In certain cases r = 1Q1, so the formulas

368

obtained using this method may be exponential in the size of the state space. There is, however,
a polynomlal-size representation using a set of propositional equations, so this complexity is not as
severe as it seems; moreover, it is the case that an exponential-size formula may also be minimal.
More importantly, the formulas include a large amount of extraneous information: not only does such
a formula distinguish one state from another inequivalent state, it a~o distlnguisbes it from every state
to which it is inequivalent. In fact, the formulas generated this way are rarely minimal, and because
of this, they are not useful from a diagnostic standpoint.

A n o t h e r A p p r o a c h

We now describe a better technique for generating distinguishing formulas. The method uses infor-
mation computed by a slightly altered version of 5/s/m that, in addition to computing the partition
as described above, retains information about how blocks are split. Then, a postprocessing step con-
structs a formula that generates a formula distinguishing the states in one block from the states in
another.

Bisim is modified as follows. Rather than discarding an old partition after it is refined, the new
procedure constructs a "tree" of blocks as follows. The children of a block are the new blocks that
result when the block is split; accordingly, the root is labeled with the block Q, and after each iteration
of the f o r e a c h loop the leaves of this tree represents the current partition. When a block B is split
(by spli~B, a, B')) , we place the new block ~1 ~--- { S E ~ I 3S' E ~ ' . S - ~ S # } 8,8 the left child and the
new block Bs = { s E B ["~Ss t E B'. s -~ s ' } as the right child, and we label the arc connecting B to
BI with a and B ~. Recall that every state in BI has an a-transltion into B' and that no state in B2
does. If a block is not split during an iteration of the fox'each loop, it is assigned a copy of itself as
its only child. I Figure 5 contains an example of such a tree.

Given a block tree computed by the new version of bisim, and two states 81 and s2 that are
ineqnivalent and hence in different blocks, the postprocesslng step builds a formula ~(sl ,ss) that
distinguishes (s l} from {s=}. Although this formula wili not necessarily be minimal either, it will in
general be much smaller than the formula computed using the method described above; it is guaranteed
to be no larger. The details are as follows.

1. Determ;ne the deepest block P in the block tree such that st E P for i = 1,2. Let L and R be
the left and right children of P , with a, B ~ labeling the arc from P to L. Note that either sl E L
and s= E R, or vice versa. Let sL be the state in L, and sR the state in R.

2. Execute the code in Figure 3. The idea is the following. For each state in B t that is an a~
derivative of 8~ we will generate a minimal set of formulas satisfied by sL whose conjunction is
satisfied by no derivative of of 8R. We will then take the set yielding the smallest conjunction.
Size is the variable used to record the size of the current shortest conjunction, while P contains
the current collection of formulas being built.

3. I f sL = sl then return (a)~; otherwise, return -~(a)~.

T h e o r e m 3.1 The .formula 6(sz,ss) distlnguishes { sl } from {s=}.

P roof . By induction on the depth of the deepest block in the block tree containing both 81 and 82.
D

In general, / /(sl,ss) will not be minimal. However, it is possible to characterize situations when
6(sl,s~) will be minimal, as the following result indicates.

T h e o r e m 3.2 Suppose that in each recursive call to ~ generated by 8(sl ,ss) (sx 76 s=) the following
holds.

1Strictly speaking, this is not necessary; these blocks may be left childless. We include these spurious children to
simplify our inductive azgument of correctness.

369

Size :~ 00;
Sz : = { s' I sz -~ s' } n B';
SR := { 8' 18s ~ a' };
foreach 8~ E St, do begin

F := (~;
fo reach s~ E SR do beg:in

r := r u {~'};
end;
~oreach ~i E r do beg:in

"if ~/ = ~ then 1 ~ := r -- {~i};
end;
if [A rl < Size then begin

S i z e : = I h rl;
:= A l";

end;
end;

Figure 3: Code for generating conjunctions.

1. Let F be the set of conjuncts used to build • and n~ the state in sL that was used to create r.
Then for each ~' E r there is an sj E SR such that • minimally distinguishes {s~} from {sj},
and aj E [~ I for all other ~" E r.

~. { 8' I sL -~ 8' } - B' c_ SR.

Then 6(sx, 82) is minimal

Proof . By contradiction. Of importance is the fact that ~ is the shortest length formula that 8 can
build to distinguish an a-derlvative of s~ from all a-derivatives of 8R. [3
It is also the case that a minimizing procedure can be applied to ~(sl, s2) once it has been computed;
the result of this would be a minimal formula. The minimizing procedure is straightforward: repeatedly
replace subformulas in the formula by tt and see if the resulting formula still distinguishes sl from s2.
If so, the subformula may either be omitted (if it is one of several conjuncts in a larger conjunction)
or left at ft. The computational tractability of this procedure remains to be examined, however.

It should be noted that 6 may still generate exponential length formulas. However, one may
represent such a formula (as a set of propositional equations) in space proportional to [QI s. This
results from the fact that there can be at most [Q[2 total recurslve calls generated by the above
procedure and the fact that each distinguishing formula is of the form (-~)(a)~, where ~ contains at
most]QI conjuncts, each of the form 6(81, 8j) for some sl and 8j. By saving information appropriately
and modifying the procedure for ~ so that the semantic information of the formula computed is also
returned, we may establish the fo]lowlng bound on the amount of computation needed to compute
such a series of equations.

T h e o r e m 3.3 An equational representation o/~(sz,s2) may be calculated in O(IQI 5) time, once the
tree of blocks has been computed.

Proof . Follows from the fact that determining the equation for each recurslve call of 5 requires
O(IQI s) work. o

We close this subsection with some genera] remarks about our method. One feature of our approach
is that the overhead involved in maintaining the block tree is minimal; nodes need not be labeled with
the corresponding sets of states, except at the leaves. Also, the postprocesslng step is only invoked after

370

bl ~ e

Figure 4: Two inequivalent transition systems.

B t : { qx , q2 , q3 , q4 , qs , qs , qT }

B= : {ql,q4} Bs : {q2,qs,qs,qs, qT}

Bs : {q~,q~,q~}

Bxo : {qz} Bxl : {q4} { } {qs} {qs,qT}

Figure 5: The tree of blocks generated by bisim.

equivalence is computedmso if the states of interest are found to be equivalent, then the postprocessing
may be avoided altogether.

3.3 A n Example
To illustrate our a~orithm we consider a weU-known example of two transition graphs that are not
bisimulation equivalent. Figure 4 shows the transition system that includes the two transition graphs.
State ql is the start state of one graph, while state q4 is the start state of the other. Figure 5 contains
the tree of blocks generated by the altered b~sim algorithm. Notice that ql ~ q4, as they are in different
blocks.

In order to build G(qx, q4), the algorithm first locates the lowest common ancestor of the two blocks
(B2, in this ease). The left child is B10, the right child is Bxl, the action causing the split is a, and the
block causing the split is Be. The formula that will be returned, then, will be

(a)(S(q2,qe) A S(q2, qs));

this formula holds of ql and not q4- By repeating this process, it turns out that

g(q2,qs) = (c}tt and
~(q2, qs) = (b)tt.

371

So the formula distinguishing ql from q, is

(~)((c)tt ̂ (b) tt).

This formula states that ql and q, are inequivaient because qx may engage in an a-transition and evolve
into a state from which both b- and c-transitions are available. Note that this formula is minimal. By
way of contrast, the formula generated by the first naive method would be the following.

This formula is clearly not minimal, since, for example, the formula obtained by substituting tt for
subformula (a)tt is still distinguishes ql from q4.

4 C o n c l u s i o n s a n d F u t u r e W o r k

This paper has shown how it is possible to alter partition-refinement based algorithms for computing
bisimulation equivalence to compute a formula in the Hennessy-Milner Logic that distinguishes two
inequivalent states. The generation of the formula relies on a postprocessing step that is invoked on a
tree-based representation of the information computed by the equivalence algorithm. The formulas are
often minimal in a certain sense, and the postprocessing step has an O([Q[~) effect on the worst-case
complexity of the equlvaience-checking algorithm.

There axe several avenues for future work to be pursued. Clearly, the complexity of the minimization
procedure mentioned in passing at the end of Section 3 needs to be analyzed fully; if this procedure
is efficient enough, then it may be incorporated into the distinguishing formula generation procedure.
Another area of investigation would involve an implementation of our technique; we plan to incorporate
this distinguishing formula capability into the Concurrency Workbench [5, 6], a tool for the analysis of
finlte-state systems. Yet another involves determining appropriate ways of using formulas computed
in the course of checking equivalences other than bisimulation equivalence. Of particular interest is
testing (or failures) equivalence [3, 7, 8]. These equivalences may be characterized in terms of the tests
a process may pass and must pass. One method for distinguishing states that axe not testing equivalent
would be to build a test based on the formula computed by the bisimulation equivalence checker that
one state may (or must) pass and that the other must (or may) not. Fina~y, it may be possible to
extend our techniques to the computation of distinguishing formulas in the context of preorderchecldng.
Another method of verifying processes involves the use of a behavioral preorder; in this setting, an
implementation satisfies a specification if the implementation is "greater than" (intuitively: "behaves
at least as well as") the specification. One interesting preorder is the prebisimulation preorder, which
has a logical characterization in terms of an intultionistic variant of the Hennessy-Milner logic: one
state is Ugreater than" another if it satisfies all the formulas satisfied by the latter. This property
could serve as the theoretical basis for computing diagnostic information in the same way that the
logical characterization d bisimulation equivalence served as the theoretical basis for the techniques
described in this paper.

A c k n o w l e d g e m e n t

I would llke to thank Henri Korver for spotting errors in, and for his helpful comments on, previous
drafts of this paper.

References

[1] Bloom, B., S. Istrail and A. Meyer. "Bisimulation Can't Be Traced." In Proceedings of the ACM
Symposium on Principles of Programming Languages, 1988.

372

[2] Boudol, G., V. Roy, R. de Simone and D. Vergamlui. "Process Algebras and Systems of Com-
municating Processes." In Proceedings of the Workshop on Automatic Verification Methods for
Finite-State Systems, Lecture Notes in Computer Science 407, 1-10. Springer-Verlag, Berlin, 1990.

[3] Brookes, S.D., C.A.R Hoare and A.W. Roscoe. "A Theory of Communicating Sequential Pro-
cesses." Journal of the ACM, v. 31, n. 3, July 1984, pp. 560-599.

[4] Cleaveland, R. and M. Hennessy. "Testing Equivalence as a Bislmulation Equivalence." In Pro-
ceedings of the Workshop on Automatic Verification Methods for Finlte-State Systems, Lecture
Notes in Computer Science 407, 11-23. Springer-Verlag, Berlin, 1990.

[5] Cleave]and, It., J. Parrow and B. Stef(en. "A Semantics-Based Tool for the Verification of Finite-
State Systems." In Proceedings of the Ninth IFIP Symposium on Protocol Specification, Testing
and Verification, 287-302. North-Holland, Amsterdam, 1990.

[6] Cleaveland, R., J. Parrow and B. Stet~en. "The Concurrency Workbench." In Proceedings of the
Workshop on Automatic Verification Methods for Finite-State Systems, Lecture Notes in Com-
puter Science 407, 24-37. Springer-Verlag, Berlin, 1989.

[7] DeNicola, R. and Hennessy, M. "Testing Equivalences for Processes." Theoretical Computer Sci-
ence, v. 34, 1983, 83-133.

[8] Hennessy, M. Algebraic Theory of Processes. MIT Press, Boston, 1988.

[9] Hennessy, M. and R. Milner. "Algebraic Laws for Nondetermlnism and Concurrency." Journal of
the Association for Computing Machinery, v. 32, n. 1, January 1985, 137-161.

[10] Hillerstr~m, M. Verification of CCS-processes. M.Sc. Thesis, Computer Science Department, Aal-
borg University, 1987.

[11] Kanellskis, P. and Smolka, S.A. "CCS Expressions, Finite State Processes, and Three Problems
of Equivalence." In Proceedings of the Second A CM Symposium on the Principles of Distributed
Computing, I983.

[12] Larsen, K. and A. Skou. "Bislmulation through ProbahiHstic Testing." Proceedings of the ACM
Symposium on Principles of Programming Languages, 1989.

[13] Malhotra, J., Smolk~, S.A., Giacalone, A. and Shapiro, R. "Winston: A Tool for Hierarchical
Design and Simulation of Concurrent Systems." In Proceedings of the Workshop on Specification
and Verification of Concurrent Systems, University of Stifling, Scotland, 1988.

[14] Milner, R. Communication and Concurrency. Prentice Ha~, 1989.

[15] Psige, R. and Tarjan, R.E. "Three Partition Refinement Algorithms." SIAM Journal of Comput-
ing, v. 16, n. 6, December 1987, 973-989.

[16] Pnueli, A. "Linear and Branching Structures in the Semantics and Logics of Reactive Systems."
Lecture Notes in Computer Science 194, 14-32. Springer-Verlag, Berlin, 1985.

