Flexible Proof-Replay with Heuristics

Marc Fuchs
Institut fur Informatik
TU Minchen
80290 Miinchen
Germany
e-mail: fuchsm@informatik.tu-muenchen.de

April 7, 1997

Abstract

We present a general framework for developing search heuristics for au-
tomated theorem provers. This framework allows for the construction of
heuristics that are on the one hand able to replay (parts of) a given proof
found in the past but are on the other hand flexible enough to deviate from
the given proof path in order to solve similar proof problems. We substanti-
ate the abstract framework by the presentation of three distinct techniques
for learning appropriate search heuristics based on so-called features. We
demonstrate the usefulness of these techniques in the area of equational de-
duction. Comparisons with the renowned theorem prover OTTER validate
the applicability and strength of our approach.

2 1 INTRODUCTION

1 Introduction

Automatic deduction in general and particularly automated theorem proving can
be interpreted as a search problem that entails huge search spaces. The problem in
automated theorem proving is trying to decide whether or not a given (proof) goal
A, is a logical consequence of a given set of axioms Azx. Although this problem
is not decidable in general it is possible in many cases to construct algorithms
able to recognize each valid goal. These algorithms are usually represented by an
inference system where only weak fairness conditions have to be satisfied in order
to guarantee completeness. But this entails an indeterminism that can only be
tackled with heuristics since usually no a priori knowledge exists to help to solve
the conflicts caused by the fact that often a lot of inference rules are applicable.

The difficulties in overcoming this indeterminism are the main reason why
automated theorem provers are inferior to human mathematicians when trying to
prove difficult problems. Thus improvements in automated reasoning systems are
needed in order to allow for a more “intelligent” search thus avoiding a complete
and exhaustive enumeration of all theorems of a given theory.

A possible method to increase the power of a theorem prover is the use of
solved examples to solve new (and harder) problems. Theorem proving by analogy
tries to find a proof for a given target problem pr by using the proof of a similar
source problem pg. Usually, constructive approaches are applied in order to try
to transform inference steps of the source to the target using analogous matches
(cp. [14]). But this application of analogy is quite problematic in the area of
automated deduction. This is due to the fact that a direct transformation of proof
steps usually fails because of differences in the problem descriptions. Therefore,
sophisticated patching strategies are necessary in order to “fill the gaps” which
are not covered by the analogical reasoning.

Therefore, we will focus in this paper on the heuristical use of proofs. We
will discuss the advantages of such an approach (cp. [10]), and we will present a
general framework for reusing proofs by heuristic means. This framework allows
for the construction of heuristics which perform a proof-replay of a given source
proof. Moreover, the heuristics offer the flexibility to deviate from the given proof
path which is needed in order to solve target problems that are similar to the
given source problem.

We demonstrate the applicability of our general framework by the construc-
tion of three search-guiding heuristics based on “features”. Features describe
structural properties of the objects that are manipulated by a theorem prover.
By mapping them to numbers they allow for an abstraction of the concrete ob-
jects. The choice of features was made according to the good results obtained by
using them in different ways before (e.g. [15], [10]). Our methods using features
are based on the nearest-neighbour rule ([5]) that is refined in various ways in
order to offer sufficient support to guide the search for a new target.

We evaluate the performance of our approach with several experiments in the
area of equational reasoning. We have chosen the domains of Robbins algebra and
group theory for performing experiments with the equational prover DISCOUNT
[1]. We show that we can increase the performance of DISCOUNT in a domain
(Robbins algebra) in which its performance has previously been rather weak.
Furthermore, we can even improve the results of DISCOUNT in the area of group
theory although fairly sophisticated heuristics are already in use (cp. [7]).

Section 2 gives an overview of automated deduction with synthetic calculi we
will concentrate on in the sequel. Section 3 shows the principles of our approach
to reusing proofs. Next, section 4 describes concrete search heuristics based
on features. In section 5 we describe the fundamentals of equational deduction
and discuss some problems regarding the use of features in this area. Section 6
presents an excerpt from our experimental results, and finally section 7 closes the
paper with some conclusions and an overview of future work.

2 Automated Deduction with Synthetic Calculi

Problems of automated deduction can in general be specified as follows: From
a given set Az of facts' (azioms), we must decide whether or not a further
fact Ay, (goal) is a logic consequence of Az. A proof problem is hence given as
P = (A.T,)‘th)-

There are essentially two methods to tackle a proof problem p. Analytic
calculi attempt to recursively break down and transform a goal into sub-goals
that can finally be proven immediately with the axioms. Synthetic calculi go the
other way by continuously producing logic consequences of Ax until a success
inference can be applied. We shall concentrate on synthetic calculi here.

A common principle for solving proof problems algorithmically with a syn-
thetic calculus is employed by most automated deduction systems based, e.g. on
resolution ([4]) or the Knuth-Bendix completion procedure ([3]). Essentially, an
automated deduction system maintains a set F'¥ of so-called potential facts from
which it selects and removes one fact A at a time.) is put into the set F4 of
activated facts, or discarded if it is subsumed by an already existing activated
fact \' € F4 (forward subsumption). Activated facts, unlike potential facts, are
allowed to produce new facts via the application of given inference rules. The
inferred new facts are put into F'”'. At the beginning, F4 = () and F¥ = Az. The
indeterministic selection or activation step is realized by heuristic means. To this
end, a search-guiding heuristic H associates a natural number H()\) € IN with
each A € F¥. Subsequently, that A\ € F¥ with the smallest weight H()) is se-
lected. Ties are broken according to the FIFO-strategy (“first in—first out”). This
way we do not control every inference but restrict ourselves to a special choice

LA fact may be a clause, equation, or a general first or higher-order formula.

4 2 AUTOMATED DEDUCTION WITH SYNTHETIC CALCULI

point (activation step). Experience has shown that this is a viable approach since
controlling each inference step is quite expensive. Furthermore, good heuristics
for selecting the next activated fact usually lead to proofs in a negligible amount
of time despite the fact that time is spent on unnecessary inferences.

There are several possibilities for defining the proof obtained by the deduction
process. The first natural definition of a proof is based on the inference chain
performed by the prover resulting in the application of a success inference. Since
this inference chain usually contains a lot of unnecessary steps we can extract an
inference chain Z by deleting the steps not contributing to the success inference.
This inference chain Z is called a proof.

Another possibility for defining a proof according to our control strategy is
to consider the facts activated by H during the deduction process. If H succeeds
in proving p, we obtain a search protocol § = Ay;...; A\, (n > 1) which contains
the activated facts. A, concludes the proof. By tracing back the application of
inference rules starting with A, all those facts A; of & which actually contributed
to deducing A, can be identified. They are collected together with A, in the
set P of positive facts. The complementary set N = {Ay,...,\,} \ P is the
set. of negative facts. By omitting all A € N from & we obtain a sequence
P=X.. A At =), and m < n, which is a “stripped-down” version of S
which contains no activation steps that are irrelevant regarding the deduction
of At (A,). Note that S, P, P and N depend on H and p, but we shall make
this dependency explicit only if it is necessary to avoid confusion. Although P
may be considered as merely providing instructions on how to attain a proof
of p by traversing the search space efficiently it is nevertheless a correct chain of
reasoning; its components either are axioms or were derived via inference rules
involving facts occurring earlier in P. We therefore also call P a proof. In the
following, we denote proofs represented by inference chains by Z whereas proofs
represented by activation chains are denoted by P.

When solving a problem g we obtain a so-called proof experience £ = (H,S).
The quality of a heuristic can be measured by using the following notion of
redundancy: The redundancy R of a search S performed with heuristic H is
defined by R = %. An optimal heuristic for a problem p (R = 0) only
activates facts which contribute directly to the proof. In practice, we can see
that conventional heuristics even if they are successful in proving a goal show a
rather high degree of redundancy. Often, more difficult problems are often out of
reach of an automated theorem prover because of huge search spaces and often
poorly performing heuristic guiding. Altogether, there exists a great demand for

improvements in search-guiding heuristics.

3 A Heuristical Framework for Proof-Replay

Although there is wide agreement that automated theorem proving systems could
be improved by using past proof experience the reusing of proofs is quite com-
plicated. This is due to the fact that in the area of automated deduction “small
differences between problems usually do not result in small differences of their
solutions”. In order to overcome this problem we propose a heuristical usage of
past proof experience, more exactly of one given proof, as discussed in [10] in
more detail.

Usual methods of applying analogy try to compute a proof (inference chain)
Ir of a target problem g with the help of analogous matches from a solved
source problem pg to pr. But this normally necessitates sophisticated patching
strategies if a direct transformation of inference steps from the source to the target
fails because of the differences in their problem descriptions (cp. [12]). Therefore,
such strategies are normally only well suited if a high degree of similarity between
a source and a target problem exists. However, similarity between proof problems
is difficult to determine a priori.

Hence, we do not try to compute a proof Z;. We still search for it with a
conventional deduction system that uses a source proof Zg delivered by a heuris-
tic H and tries to prove g7 by using a heuristic based on H that is further
incorporated with information on Zg. Such a heuristic is well suited for solving
problems similar to the source problem pg because we can achieve a suitable
compromise between flexibility (allowing for small deviations from Zg) and spe-
cialization (avoiding useless inferences for the target). The flexibility stems from
the “original” heuristic 4 which should usually be general enough to work quite
well for a large set of problems. We achieve specialization by the incorporation
of information on the similar source proof.

In order to realize such reusing of proofs by heuristic means it is sensible
to use our second notion of a proof. This is because we assume that not every
inference step is controllable but only the activation step taken according to a
heuristic weighting. A heuristic specialized in the source proof can be constructed
by weighting all facts A\ € Ps which are positive w.r.t. the source proof Pg
smaller than the minimal weighting of a negative fact A € Ng. Furthermore,
we should take care that such a heuristic does not give facts A € Ps U Ng a
heuristic weight smaller than the maximal weight of positive facts. This could
result in a completely different proof run compared with the proof obtained by
‘H. In particular, it is not guaranteed that such a heuristic will reach the goal (in
an acceptable time limit). The following technique of flexible proof-specialization
of a heuristic keeps these requirements in mind and offers a general framework
for constructing search-guiding heuristics using information on a specific source
proof. We choose the approach to penalize facts A ¢ Ps with a penalty function
w. Thus, we get the following definition of a w-specialization of a heuristic H.

6 3 A HEURISTICAL FRAMEWORK FOR PROOF-REPLAY

Definition 3.1 Let p be a solved proof problem with proof experience £ and proof
P given over a set of facts O. Furthermore, let S be the sequence of facts activated
by heuristic H while searching for P. P denotes the set of positive facts. Let
w: O — IN be a (penalty) function. We call the search heuristic H,, defined by
Ho(A) = H(A) +w(A) an w-specialization of H (w.r.t. £) if w(AT) =0 VAT € P.

w is a function used to estimate whether a fact to be judged by some heuristic
‘H. contributes to a proof or not. It is the main task of w to allow an ordinal
weighting on the facts by w(A;) > w(Ag) iff A2 has a higher probability of useful-
ness for a proof than A;. In order to construct heuristics specialized in a proof
also an appropriate cardinal weighting is necessary. The degree of specialization
of a heuristic H,, in a proof P heavily depends on the values w assigns to negative
facts. We represent the degree of specialization achieved when using w by the
notion of e-consistency:

Definition 3.2 Let p be a source problem with proof erperience £ = (H,S).
Let P be the proof extractable from €. P and N denote the sets of positive and
negative facts, respectively. Let e € [0;100] be a constant. Furthermore, let H} be
the mazimal weight of a positive fact w.r.t. H, (H} = max{H, (A1) : A\t € P}).
An w-specialization H,, is said to be e-consistent with € if |{A: A € N AH,(A) >
HiY > 155 - NI

Thus, an w-specialization H,, being 100-consistent with £ (associated with
problem g) excludes all of the negative facts from the search and is able to
obtain the proof P without any redundancy. Smaller consistency-values with
£ increase the overhead that still remains when using H, for proving p. The
following theorem illustrates the effect of the usage of an w-specialization H,,
being e-consistent with proof experience £.

Theorem 3.1 Let p, £, P, P, and N be as in the previous definition. Let w
be a penalty function such that H, s an w-specialization and H,, is e-consistent
with € for some e € [0;100]. Then it is true that a deduction process using H,
proves g with proof P’ equal to P. Furthermore, the set of positive facts P' is
given by P' = P. For the redundancy R' of the search 8" performed with H,, it
holds R' < % whereby n = 12%86. Particularly, it holds R' < R if e > 0
where R denotes the redundancy of the search obtained using H.

Note that it can be sensible to allow for some redundancy (use H,, that is not
100-consistent with £) in order to avoid “over-specialization”. Over-specialization
arises mainly because of our inability to develop a penalty function w which
judges all facts appropriate while searching for a proof of a new target (cf. the
following section). The “intelligence” or practical success of an w-specialization
(e-consistent with a proof experience belonging to a source problem pg) in solving

target problems pr similar to pg is heavily influenced by the realization of w. A
naive realization, e.g. w(\) = pen_fac-(1—xps(A)) (xps denotes the characteristic
function of the positive facts w.r.t. the source proof) allows a solution of the
source problem to be found more quickly (with increasing pen_fac). But it offers
no real support for the solution of targets which are similar but not equal to
ps. The reason for this is that w only favors facts syntactically equal to positive
facts of the source. A better solution would be to favour facts that share some
properties with positive facts and hence are structurally equal to them. Hence,
we are interested in the detection of more general tendencies what positive or
negative really means.

Due to positive experience obtained with so-called features in the past (e.g.,
[15], [10]) we want to instantiate our abstract framework described above with
some concrete realizations of w based on features. In the following section we
introduce the feature concept, and then we discuss three different techniques
which can be used to develop penalty functions based on features.

4 Heuristical Proof-Specialization with Features

As discussed in the previous section we want to realize “intelligent” penalty func-
tions by using features. Features describe structural properties of facts. We want
to restrict ourselves to represent such properties by functions f : O — Z where
O is the set of facts. We call f a feature, the value f()) is called the feature
value of A w.r.t. f. In order to allow for a better distinction between positive and
negative facts and to detect properties typical for useful and useless facts, it is
sensible to use several (distinct) features fi, ..., f,. Hence, we represent a fact
A by its feature value vector (fi(A),. .., fn(X)). We assume that a fixed sequence
of features fi,..., fa, is given and we define FV(\) = (f1(A), ..., fu(N)).

In the following we are looking for penalty functions w based on features that
estimate whether a fact might contribute to a proof of a target problem @z or
not. As usual let pgs be a solved source problem and & = (#,S) be a proof
experience. Ps, Ng denote the sets of positive and negative facts, respectively. A
common principle for classifying an element in artificial intelligence is to use so-
called nearest-neighbour techniques (cp. [5]). The nearest-neighbour rule (NNR)
in our context allows for a fact A to take on the “class” (positive, negative) of
a “nearest” fact \' € Ps U Ng according to some predefined distance measure
d (based on features) as the class of A. But since we want to use a function w
not only for classifying elements, but also for an estimation of probabilities, we
modify this technique by explicitly using distances to the nearest positive and
negative facts. In the following, we present three different techniques stemming
from the NNR that are based on the explicit use of distance measures in order
to rate facts. We start with a simple distance measure (constructed by hand)

8 4 HEURISTICAL PROOF-SPECIALIZATION WITH FEATURES

and study the effects arising from the use of more and more information on the
source proof which is used to learn appropriate distance measures automatically.

A Penalty Function Based on the Euclidean Distance

Our first technique to construct a penalty function w; uses a distance measure
d: O x0O — R. d(A, \2) is based on the Euclidean distance of the feature value
vectors of the facts A; and \,. The Euclidean distance is a standard distance
measure in the area of metrically represented data. But before we explain our
technical realization of d and w; in detail we should at first clarify for which
objects a distance is important and how this distance should be interpreted.
Therefore, let d be a given distance measure defined over facts. If we assume a
target g7 similar to a source problem gpg it is sensible to consider facts A similar
to at least one positive fact “at the feature level” to be positive but only if no
negative facts exist whose feature representations are similar to \.

We restrict ourselves to the consideration of one positive fact, namely the
fact At € Pg which has the smallest difference d w.r.t. \. We do so because we
cannot assume that all positive facts contain similar or even equal feature value
vectors. Therefore, we would risk giving (deducible) positive facts At € Ps a
penalty although they are the most likely to contribute to a proof of the target
problem 7. Furthermore, we do not take all negative facts into consideration.
Experience shows that it is not sensible to regard the distance of negative facts
which are very dissimilar to A. This way we only use the distances of the k
(k € IN, k£ > 0) nearest negative facts w.r.t. a fact A whose usefulness we want
to estimate. Let di,...,d; be these distances. Using a constant factor f,., € IR
our realization of the function w; is as follows:

min{d(\, A1) : A\ € Ps}

CL)l(/\) = fpen 1+Z§::1(27] d])

The factor f,e, controls the redundancy still remaining if we try to solve pg
with (w;-specialization) #,,, within the limits given by the ability of the features
to distinguish the negative from the positive facts. This means that an increase
of fpen can at most result in an e,,q,-consistency with proof experience £ where
emaz 1S the percentage of negative facts containing a different feature value vector
from all positive facts. Note that it is sensible to allow for some redundancy
(even if possibly €4, = 100) since it could be the case that a fact A is needed
although it is a rather high distance away from positive facts. If we do not allow
for some redundancy this possibly causes a rather large factor f,.,. But this can
result in a weight #,, (\) that makes an activation of A impossible within an
acceptable amount of time. Therefore, we try to find a compromise between a
sufficient degree of specialization and flexibility.

In order to find an appropriate setting of f,., we consider the value e, that is
the maximal value e that allows for an e-consistency of H,, w.r.t. £. If this value
emaz 1S Tather low it is sensible to fully exploit the given potential for eliminating
negative facts from the search for the source proof. But if e,,,, is rather high it
could be better to allow for more redundancy. A possible compromise is to use
efs = min{emqz, es} for a given constant ey < 100. In our experiments settings
of e; in the range of [70;90] reached the best results. Utilizing ey, a possible
method is to set fpe, as the minimal factor that allows for an w;-specialization of
H that is efs-consistent with £.

Finally, we want to discuss in which way an appropriate distance measure d
can be defined. As mentioned above we want to use the Euclidean distance to
realize d. But a direct use of the Euclidean distance at the feature value vectors
could cause some problems because distinct features could have different ranges.
Different ranges can lead to implicit weightings of features. A feature with a
rather large range (e.g.,[0;100]) implicitly has more influence for judging a fact
than a feature with a smaller range (e.g.,[0;1]). Hence, it is sensible to standardize
the feature value vectors w.r.t. the data provided by the source proof. We use the
function n : Z" — Z" defined by n(x1,...,2n) = (y1,...,Yn) Where y; = FH,
o; and p1; denote the variance and the average of the set {f;(A) : A € Ps U Ng},
respectively. This transformation yields to M; = 0 and S; = 1 whereby S;
and M, denote the variance and the average of the set {n(FV(\));: A € PsU
Ns}, respectively. Altogether, a distance measure avoiding implicit weightings of
features can be defined by d(A1, As) = (X7, (21, — 22:)2)? with zj = n(FV(\;)),
j=12.

Learning a Weighted Distance Measure

Since we want to estimate the usability of a fact A by using its feature value vector
the technique previously used is surely justified. But our technical realization
can be furthermore improved. Indeed, we have developed a measure without
implicit weightings of features but we do not explicitly consider the importance
of certain features according to their ability to distinguish positive from negative
facts. Hence, we should try to use an explicit weighting of features w.r.t. their
assumed importance. This way we use the distance measure d,, . 4, : OxO = R
parameterized by (ai,...,a,) € IN* when using features fi,..., f,. It is defined
by day.an (A1, A2) = (S0 a5(z; — 1:)?)7 if FV(A) = (21,...,7,) and FV (X)) =
(Y1, ---,Yn). Important features can get a higher influence on the distance value
than less important features by giving them a higher coefficient. Furthermore,
features f; associated with coefficient a; with a; = 0 can be neglected so as to
contribute to a higher degree of abstraction compared with the method described
above. The use of d, .4, also offers some advantages w.r.t. the computation time
when compared with d. Since we can define the coefficients in such a way that

10 4 HEURISTICAL PROOF-SPECIALIZATION WITH FEATURES

a small (Euclidean) distance to negative facts (which are distinguishable from
positive facts) results in a high distance, no explicit consideration of negative
facts is needed. Altogether, a possible realization of a penalty function wy is

wo(\) = |min{d,, 4, (A, A1) : AT € Ps}

Using this realization the coefficients control the importance of distinct features
as well as the remaining redundancy when proving the source problem gpg. Fi-
nally, we have to discuss how an appropriate setting of the coefficients a,, ..., a,
can be achieved. It is clear that this setting should not be chosen by a human
reasoner but has to be learned automatically. Due to the lack of space we cannot
explain our method in detail. But in order to give a rough idea how to compute
coefficients we should clarify what the “importance” of a feature means. A feature
f is said to be important if it is able to distinguish the negative from the positive
facts w.r.t. the feature values of f. Hence, if a small increase in the coefficient
associated with a feature f results in a rather high increase of the values wq(A)
of a high number of negative facts f can be considered to be quite important.
For a more detailed description of our method we refer to [10] where a similar
technique is used to compute coefficients for a heuristic that weights distances
between feature values of facts and so-called permissible feature values. It should
be mentioned that similar to our first method the algorithm for computing co-
efficients uses a parameter e;. This constant is responsible for controlling the
percentage of negative facts that disappear from the search for the source proof
which is carried out with H,,, as described before.

Abstraction from Positive Feature Value Vectors

Similar to the previous technique we are interested in recognizing relevant features
and in the design of a penalty function wz that rates the distance of a fact A to
the nearest positive fact AT € Pg w.r.t. the relevant features. But compared
with the technique described above we even want to pay more attention to the
source proof in order to learn an appropriate distance measure. This way we try
to find out for every positive fact which deviations from its feature value vector
can cause problems (making it similar to negative facts) and which are harmless.
The central idea is now only to penalize deviations from “positive feature value
vectors” that are quite similar to the feature values of negative facts. This idea
is similar to the concepts applied to find the coefficients a4, ..., a, of our second
method but here we want to consider each positive fact separately.

This way we abstract from the actual positive facts and only represent each of
them by one “positive (contiguous) area” containing the positive fact. The facts
contained in these areas all are considered to be positive. As implied above the
construction of these positive areas is influenced by the negative facts. We are
interested in a rather high abstraction from a positive fact that is consistent with

11

the negative facts, i.e. no negative fact should be contained in a positive area.
The function wj3 is intended to rate the distance of a fact to the nearest positive
area instead of the distance to the nearest positive fact.

In order to substantiate these abstract principles we should at first choose
an appropriate structure of a positive area. We have chosen the approach to
represent a positive area Ay+ associated with a positive fact A* in the following
way (assuming features fi,..., fn):

Ayt = At arane ={ANEO0: 37 i ((NT) = fi(N)* <€} 2

It holdsa; € R, a; >0,1<i<n,ande€ R, e>0. Ifa; >0, Vi € {1,...,n},
then A,+ represents all facts whose feature value vectors are placed in the n-
dimensional ellipse that is parameterized by a1, ..., a,, € and its center FV(\T).
Note, however, that it is explicitly allowed to use a; = 0 for a feature f;. In this
way we can completely abstract from some features in order to measure distances
to certain positive facts.

In order to define a penalty function w3 we assume the existence of a positive
area A+ for each positive fact AT € Pg. A possible definition of ws is

w3(\) = [min{da(A, Ax+) : AT € Ps}|

d4 is a distance measure based on features where d4(A*, Ay+) = 0 VAT € Ps.
Altogether, our definition of ws allows for proof specializations of given source
proofs. In the sequel we shall show how positive areas can be learned and how
to construct an appropriate distance measure d 4.

At first we want to take a closer look at the construction of positive areas. A

positive area Ay+, AT € Pg, is defined by the parameters a,,...,a, and e¢. Thus
we are looking for settings of these parameters. A sensible method is to displace
the learning of Ay+ to the maximization of a function gy+ = py+(aq,-- ., an,€).

The function value of)+ should measure the degree of abstraction from A+
that is consistent with the negative facts. Since the size of the set A+ is usually
infinite we have to use another value in order to measure the degree of abstraction
from AT obtained by using A,+. Thus we use a value approximately proportional
to the size of the n-dimensional ellipse defined by FV (A1), ay,...,a, and e. We
define

C’I’L

e A N Ng=
oa+ (a1, ..., ap,€) = i (Vait1) ’\+’“1’“:’““’ s=0
0 ; otherwise

oa+ (a1, ..., an,€) is large if the corresponding area Ax+ 4, ... 4., i large and con-
tains only positive facts. We have used a simulated annealing algorithm SA

2Naturally, the coefficients a1, ..., an,, € belong to a certain AT € Ps but in the following we
will not make this dependency explicit.

12 5 FEATURES IN THE AREA OF EQUATIONAL DEDUCTION

in order to learn coefficients separately for each positive fact. This algorithm
starts to learn aq,...,a,, € for a fixed positive fact A\ with the initial setting
a, =...=a, = 1. €is set to the greatest value that satisfies that no negative
fact is contained in Ay+. We restricted the solution space of the following maxi-
mization process performed by the SA to a discrete universe (a n+1-dimensional
regular grid) that contains the initial setting.

Finally, we should clarify how the distance measure d,4 is defined. We rate
the distance between a fact A and an area A,+ with the help of the Euclidean
distance between “FV()) and the ellipses defined by A,+”. We do not want
to give an exact definition here. We only want to mention that similar to the
previous method the learning process of the distance measure d4 can be controlled
by a parameter e; which limits the degree of e-consistency reached by the ws-
specialization H,,, w.r.t. the proof experience £.

5 Features in the Area of Equational Deduction

In this section we give at first a brief introduction into the area of equational rea-
soning. We have chosen this area to evaluate our concepts with some experiments
(mainly because of the existence of an implementation). Since the techniques pre-
sented before heavily depend on the quality of the features we discuss afterwards
how features should be constructed within the context of equational reasoning.

5.1 Unfailing Completion

Equational reasoning deals with the following problem: Does it hold Az = u = v
for a given set Ar = {s; =t; : 1 <1i < n,n € IN} of equations (of terms over a
fixed signature sig) and a goal u = v ?

The completion method by Knuth and Bendix ([11], extended to unfailing
completion, [3]) has proven to be quite successful for solving this problem. This
method is a typical example of a synthetic or bottom-up calculus. In the fol-
lowing, we assume the reader to be familiar with rewriting and completion tech-
niques. For an overview see [8] or [2].

As usual, a signature sig is a pair (F,7) with a set of operators F' and a
function 7 : FF — IN that returns the arity of an operator. The set of terms
T(F,V) to a signature and a set V of variables is defined as the minimal set
fulfilling € T(F,V), if x € V and for f € F with 7(f) = n and terms t, ..., t,
ft1,..tn) € T(EV).

Basically, the inference rules of a synthetic prover can be divided into two
classes: extension rules and contraction rules. Completion uses the extension
rule critical-pair-generation and the contraction rule reduction. A basis for the
completion procedure is a so-called reduction ordering > that is used to restrict

5.2 Features for Equations 13

the applicability of the inference rules and avoids cycles. In the following defini-
tions, the right and left hand sides of equations may be exchanged.

A critical pair s = t to two equations /; = r1 and Iy = 19 is defined as the
equation o(ly)[p < o(r2)] = o(r1), if p is a position in I; (and I;/p & V'), such
that o is the mgu of [, /p and Iy and if o(11)[p < o(r2)] % o(l1) and o(r1) ¥ o(ly).
The resulting equation is a valid consequence of the two parent equations.

A reduction of an equation s = ¢t by an equation [= r replaces it by s’ = t.
A reduction only may be performed if there is a position p in s such that there is
a match u from [to s/p, i.e. u(l) = s/p, and p(l) > pu(r). Then s’ is defined by
s' = s[p « p(r)]. If there is no equation that can reduce a term in an equation,
then the term (and the equation) are in normal form. The normalization of a
term (or equation) is always a finite process.

To solve problems algorithmically using unfailing completion an algorithm
based on the principles described in section 2 is applicable. One uses a set C'P
corresponding to the potential facts, and two sets R and E describing the active
facts. R contains the set of processed equations that are orientable with ». F
contains the processed equations that are not orientable w.r.t. >. As described
before it is possible to realize the completion procedure in such a way that the
only indeterminism that remains is which facts should be selected from the set
CP in order to perform further inferences.

5.2 Features for Equations

In order to construct features for equations we should take care that the equa-
tional relation is symmetric. Hence, two equations v = v and v = u that are
equivalent during the completion process should obtain equal feature value vec-
tors. But although the equality relation is symmetric we should not neglect the
fact that equations can become oriented equations (rules) during the proof pro-
cess. This is fairly important since we should not, e.g., make two rules | — r
and " — 7’ equal (or similar) at the abstraction level of feature value vectors
even if [and ' as well as r and I' are quite similar. Considering the role the
rules can play in the proof process (especially if [and " as well as r and r' are
quite dissimilar) they should not contain similar feature values. Thus a feature
function should on the one hand ignore the physical ordering of the equations
produced by the deduction system. But on the other hand a feature should be
aware of the existence of the ordering used in the deduction process and take the
reduction ordering into account when computing a feature value.

We choose the approach to standardize the equations according to the re-
duction ordering, and then use the standardized equations in order to compute
feature values. The process of standardizing an equation is carried out by re-
ordering the equation w.r.t. a total ordering of terms. Hence, we assume that a
fixed reduction ordering > is given. Furthermore, let p. be a relation on the given

14 6 EXPERIMENTS WITH DISCOUNT

set of terms that includes > (>=C p,). Moreover, it should hold for u # v that
ps(u,v) or p. (v,u) but not both (simultaneously). Note that such a relation p,
can easily be defined using > and any total ordering defined on the set of terms
used to orient equations which are not orientable by >. Using p. we define

u=v ;u=vor p.(u,v)

Standardiz6p> (U' = U) = { v=u : otheT’wiSG

With the help of p. and Standardize, we define standardized features f,
according to a feature f by f, (v = v) = f(Standardize, (u = v)). We want
to remark that the choice of the reduction ordering > has no influence on the
fact that penalty functions using features f, result in proof specializations of a
given source problem. But in order to solve a similar though not equal target
problem it is sensible to choose a reduction ordering >'D> in order to compute
the feature values. > denotes the reduction ordering used to prove the chosen
source problem. This is absolutely necessary in order to use the feature values to
estimate whether facts, similar to positive facts at the feature level, can contribute
to inferences similar to the positive inferences of the source proof.

Finally, we want to give a brief overview of the features which we have used
to abstract from a given fact. The features are quite simple and only consider
syntactical properties of the given facts. Altogether, we used 15 features indepen-
dent from the given signature and 4 feature schemata applied for each function
symbol. An example of a feature is the number of function symbols introduced
by an equation.®> Other features can be found, e.g. in [9]. A feature scheme is,
e.g. the number of occurrences of a specific function symbol in an equation. In
the following we will not further distinguish between the standardized and the
“ordinary” features behind them. In the following a feature value of a feature f
is always the value of f applied to an equation standardized w.r.t. a reduction
ordering containing the reduction ordering used to solve the chosen source proof.

6 Experiments with DISCOUNT

We carried out several experiments with the prover DISCOUNT. DISCOUNT is a
distributed prover for pure equational logic employing the TEAMWORK method
([6])- Besides the use of a single heuristic in order to solve a problem, the prover
also allows for the use of several concurring and cooperating heuristics, a so-
called team. We still did not use the heuristics learned from previous examples
in a team.

We only present here an excerpt from our experimental results. We restrict
ourselves to the domains of Robbins algebra and group theory. We report on ex-
periments performed with the problems available in the ROB and GRP domain

3Note that the standardization allows us to explicitly consider a left and a right hand side
of an equation when computing feature values.

15

of the TPTP library ([16]) v.1.2.1. More exactly we tried to solve the prob-
lems in both domains that are not solvable with conventional heuristics of D1s-
COUNT within the time limit of 10 minutes using a SPARCstation 10 (“hard
problems”). A comparison with the renowned OTTER prover [13] demonstrates
the quality of our learning approach.

Methodology: In order to use the concepts previously introduced source proofs
are needed that are in a way similar to the target problems that we want to solve.
In general it is a non trivial task to choose a source problem appropriate for a given
target problem. But since we only apply a heuristical reuse of proofs the choice
of a source problem is not as problematic as if we had chosen a “constructive”
approach.

Therefore, in order to solve the 13 (universally quantified) problems of the
ROB domain that are not solvable with a conventional DISCOUNT heuristic we
used only one source proof, namely ROB003-1 which is the hardest problem
solvable by the conventional addWeight heuristic. addWeight simply counts the
number of functions and variables of an equation. Similarly, in the GRP domain
(more exactly in the area of lattice ordered groups) we chose only the proof for
problem GRP179-1. We can specialize the heuristic mazWeight in this proof.
max Weight computes the maximum of the weights of the left hand side and right
hand side of an equation where weight corresponds to the number of functions and
variables. In the area of “standard” groups DISCOUNT only fails for two prob-
lems which also remained unsolved after employing learned heuristics. Hence,
in the following we only consider the 28 problems in the area of lattice ordered
groups that cannot be solved with conventional DISCOUNT heuristics (within 10
minutes).

Outgoing from the proof of ROB003-1, obtained using add Weight, we learned
three penalty functions wf, wk and wf according to the three techniques de-
veloped before. Although one can construct 100-consistent w/-specializations of
addWeight, 1 = 1,2,3, we allowed for some redundancy by using e; = 80 when

learning the penalty functions. This setting performed best in our experiments.

Similarly, we specialized mazWeight in the proof of GRP179-1. The learning

process was executed using ey = 80. We learned the penalty functions W& wg,
and w§.
Experimental Results: The heuristics add Weight,r and mazWeight c were
applied to perform experiments in the ROB and GRP Homain, respectivelly. The
orderings used to tackle the target problems are equal to the orderings used to
solve their related source problems (lexicographical path orderings). Table 1 gives
an overview about the results we obtained in the GRP and ROB domain. For
each domain we depict the number of successful proof runs and the accumulated
run time (in seconds) counting failures with 600 seconds.

16 7 CONCLUSIONS AND FUTURE WORK

Table 1: Results in the ROB and GRP domain (“hard” problems)

GRP domain || OTTER | maz Wez'ghtwg; mazx Wez'ghtwg; mazx Wez'ghtwg;
successes 3 15 15 15
acc. runtime 15008 8082 7992 8412
‘winner’ 3 4 11 0
ROB domain || OTTER | add Weightw{z add Weightwgz add Weightwéz
successes 6 4 4 5
acc. runtime 4426 5600 5479 4859
‘winner’ 5 0 0 1

All times are measured on a SPARCstation 10. The entry of the row ‘winner’
denotes the number of proof runs in which the learned heuristics or OTTER per-
formed better than the other techniques.

Altogether, we can improve the performance of DISCOUNT significantly. Al-
though OTTER still performs better than our learning approach in the area of
Robbins algebra we could increase the number of successful proofs of DisCOUNT
in this area from 5 to 10. Now the success rate of DISCOUNT almost reaches that
from OTTER (11 problems solved). We can also improve the results of DISCOUNT
in the GRP domain. Using the conventional heuristics and the learned heuristics
we are now able to solve 93 of 105 problems in the area of lattice ordered groups
(78 problems solved without learning). OTTER can only solve 79 problems.

Comparing our different techniques one can see that neither technique is con-
sistently better than the other. But a general tendency is that heuristics based
on w; or we seem to show a higher degree of specialization. Therefore they per-
form fairly well in the area of lattice ordered groups where the problems are more
similar than in the robbins algebra. But in some cases where more flexibility is
needed (to allow for deviations from the source proof) ws improves on the per-
formance of the other heuristics by offering a higher degree of abstraction from
the positive facts. Therefore, the use of this penalty functions allows for the con-
struction of heuristics in the domain of robbins algebra that are clearly superior
to the heuristics based on the other simpler learning schemes.

7 Conclusions and Future Work

We have presented a general framework for flexible proof-replay by using heuris-
tics. We have demonstrated the performance of our method with three distinct
realizations based on features. Experiments in two domains underline the appli-
cability of our approach. Although DISCOUNT is clearly inferior to OTTER when
its inference rate is considered, we nearly achieved the results of OTTER in a

17

domain in which the conventional heuristics of DISCOUNT perform quite badly.
This, together with the fact that we could solve problems in the area of lattice
ordered groups that were out of range before, is a sign that our approach is well
suited for the control of automated deduction systems.

Future work needs to be done in order to allow for an automatical choice
of appropriate source proofs. Especially, it is reasonable to iteratively use the
proofs obtained by (learned) heuristics in order to solve a set of problems. At
first the problems are tackled with conventional heuristics. After that heuristics
are learned that are specialized in the proofs delivered by the heuristics previously
used. These heuristics are possibly able to solve some of the harder problems that
are still unsolved and a new “round” of the solution process can start.

18 REFERENCES

References

[1] Avenhaus, J.; Denzinger, J.; Fuchs, Matt.: DISCOUNT: A system for
distributed equational deduction, Proc. 6 RTA, Kaiserslautern, FRG, 1995,
LNCS 914, pp. 397-402.

[2] Avenhaus, J.; Madlener, K.: Term Rewriting and Equational Reasoning,
in R.B. Banerji (ed): Formal Techniques in Artificial Intelligence, Elsevier,
1990, pp- 1-43.

[3] Bachmair, L. ; Dershowitz, N. ; Plaisted, D.A.: Completion without
Failure, Coll. on the Resolution of Equations in Algebraic Structures, Austin
(1987), Academic Press , 1989.

[4] Chang, C.L.; Lee, R.C.: Symbolic Logic and Mechanical Theorem Prov-
ing, Academic Press, 1973.

[5] Cover, T.M. ; Hart P.E.: Nearest Neighbor pattern classification, IEEE,
Transactions on Information Theory 13, pp. 21-27, 1967.

[6] Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork,
Proc. ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[7] Denzinger, J. ; Fuchs, Matt.: Goal oriented equational theorem proving
using teamwork, Proc. 18th KI-94, Saarbriicken, LNAT 861, 1994, pp. 343-
354.

[8] Dershowitz, N. ; Jouannaud, J.P.: Rewriting systems, in J. van Leeuwen
(Ed.): Handbook of theoretical computer science, Vol. B., Elsevier, 1990, pp.
241-320.

[9] Fuchs, Matt.: Ezperiments in the Heuristic Use of Past Proof Experience,
SEKI-Report SR-95-10, University of Kaiserslautern, 1995, obtainable via
WWW at http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html

[10] Fuchs, Matt.: Ezperiments in the Heuristic Use of Past Proof Ezperience,
Proc. CADE 13, New Brunswick, NJ, USA, 1996.

[11] Knuth, D.E. ; Bendix, P.B.: Simple Word Problems in Universal Alge-
bra, Computational Algebra, J. Leech, Pergamon Press, 1970, pp. 263-297.

[12] Kolbe, T.; Walther, C.: Patching Proofs for Reuse, Proc. 8" ECML ’95,
Heraklion, Crete/Greece, 1995.

[13] McCune, W.W.: OTTER 3.0 reference manual and guide, Techn. report
ANL-94/6, Argonne Natl. Laboratory, 1994.

REFERENCES 19

[14] Owen, S.: Analogy for automated reasoning, Academic Press, 1990.

[15] Suttner, C.; Ertel, W.: Automatic acquisition of search-guiding heuris-
tics, Proc. CADE 10, Kaiserslautern, FRG, 1990, LNAT 449, pp. 470-484.

[16] Sutcliffe, G.; Suttner, C.B.; Yemenis, T.: The TPTP Problem Library,
Proc. CADE 12, Nancy, Springer LNAI 814, pp. 252-266, 1994

