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Abs t r ac t .  This paper presents some optimizations based on commu- 
nications/computations overlap for the ScaLAPACK LU factorization. 
First a theoretical computation of the optimal block size is given for the 
block scattered decomposition of the matrix. Two optimizations of this 
routine are presented that use asynchronous communications to hide the 
communication overhead and to obtain optimal speed-ups. 

1 Introduct ion 

The LU factorization is the kernel of many  applications. Thus, the importance of 
optimizing this routine has not to be proven because of the increasing demand 
for solving large dense system. Its efficient parallel implementat ion can bring 
real improvements  in the execution speed of the whole application. High per- 
formances are obtained on vector machines, but a prohibitive cost. Distributed 
memory  machines seem to be a good balance between performances and cost. 

Portabi l i ty is one of the key issue of computer  programming.  Many libraries 
have been designed to ensure portabil i ty and performances across multiple ar- 
chitectures. The BLAS [5, 7] and LAPACK [6] are available on many platforms, 
provided by computers  vendors. LU factorization was released in the LAPACK 
package, using levels 1, 2 and 3 BLAS. ScaLAPACK [1] contains the parallel 
version of subsets of the BLAS and LAPACK and has been designed to ensure 
portability, performances and ease of use across many  parallel machines. Matri- 
ces are distributed in a block scattered way. Parallelism is hidden in a parallel 
version of the BLAS called PBLAS [1]. Communicat ions between processors on 
a virtual grid are done using the BLACS package. 

Various methods have been proposed to improve the parallel LU factoriza- 
tion. The corresponding papers present experiments which are sometimes con- 
firmed by complexity studies [1, 2, 4, 8]. They are presented in our technical 
report  [3]. 

The a im of this paper is to show that  improvements can be obtained in 
the existing ScaLAPACK LU factorization routine by the use of communica- 
t ion /computa t ion  overlap. 

* This work has been supported by the INRIA RhSne-Alpes and the EUREKA- 
EUROTOPS project. 



2 P a r a l l e l  b l o c k  L U  d e c o m p o s i t i o n  

The block LU decomposition consists in three phases, repeated as many times as 
there are block columns to be factorized in the global matrix: instead of working 
on a single column of the global matr ix A at a time, r columns are factored at 
each step. And for convenience, the local L and U matrices are stored in place 
of the matr ix  to be decomposed. 
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Three steps are thus necessary to compute the LU factorization of a matrix. 
In order to obtain (L00, L10) and Uoo, a simple Gaussian elimination is computed 
oll (A::) (LooUoo = A00 and LloUoo = A10). The U01 block is obtained by a 
triangular solve (LooUol = Aol). LMUu is obtained using equation L10U01 + 
L n U u  = All .  A matr ix product is needed (An - LloUol). The three steps are 
recursively computed on L n U u  to obtain Ll l  and Uu. 

In ScaLAPACK, the parallel LU factorization uses a block scattered de- 
composition of matr ix A on a P x Q processors grid. The M x N matrix is 
divided in square blocks (r • r). Thus, each processor owns a local matrix with 
[ M_M__] X [JK_] blocks The general parallel algorithm is given in Figure 1 TRSM 

/ ~ X r l  1 ~ X r ,  " �9 - 

is the level 3 BLAS triangular solve routine and _GEMM is the general matrix prod- 
uct routine. The ScaLAPACK routines PDGETRF and PDGETF2 execute the block 
LU factorization on a matr ix  distributed in a block scattered way. PDGETF2 per- 
forms the factorization of a block column to compute Loo,Llo, and boo (phase 1 
of the general algorithm in Figure 1). PDGETRF calls PDGETF2, then updates the 
remaining blocks of the matr ix by computing U01 and L l l . U u  (pha,,,e 2 and 3 of 
the general algorithm in Figure 1). 

3 A n a l y s i s  a n d  o p t i m i z a t i o n  o f  t h e  S c a L A P A C K  L U  
f a c t o r i z a t i o n  

3.1 C o m p l e x i t y  ana lys i s  

A prediction of the execution time is important  to confirm the experimental 
results. In the ScaLAPACK LU factorization, performance depends greatly on 
the block size used for the block scattered decomposition. Thus, it is interesting 
to compute the optimal block size to avoid a number of tests. It is also interesting 
to compute automatically the best data distribution (for parallel compilers, for 
example). 

The theoretical optimal block size Sb is obtained by an interpolation, based on 
experimental measurements (for a given supercomputer) of the s subroutines. 
For all subroutines function of Sb (see below), the execution time is expressed 
literally as a sum of polynomials (with ai, bi... the coefficients given by the 
interpolation), and then derived to find the optimal Sb. The complexities are 
given below with Sb as the block size, Bc the number of block columns (or 



pco l=O,  p r o w = O  
f o r  k : 0 t o  min(Mb,  N b ) -  1 by s t e p  r do 

f o r  i = 0  t o  r - - 1  do / if (my_col = pool) then find pivot and its position 

broadcast the two values to all processors 
exchange pivot rows phase I 

if (my_col =pool) then 
div. under-diag, elts. of col. i by piv. /* _GER */ 

end for 
if (my_row =prow)  then ] 

broadcast Loo to all processors of the prow row 
solve Loo.Uol = Aol /* _TRSM */ phase 2 

end if 

broadcast Ll0 on proc. rows and Uox on proc. columns 
update Atl 4-A11 -L10.U01 /* _GEMM ,/ )phase 3 

pcol= (pcol+ 1)modQ, prow = (prow + 1)modP 
end  f o r  

Fig. 1. Parallel block LU factorization using a block scattered data distribution. 

rows) in a single processor (i.e. M ~ ) ,  Pc the number of processor columns (or 

rows) on the grid (the grid is assumed to be squared (P~ processors) in order to 
simplify the calculus below) and M the matrix size. The subroutines names are 
the BLAS or LAPACK names. We only give the complexity results of the three 
most important subroutines but the complete study can be found in [3]. 

DGER: is executed Sb times for each PDGETF2 call, with a decreasing data 
size. The execution time of a single DGER call is quadratic (level 2 BLAS), but a 
pseudo-linear time, function of Sb, can replace it: tds~r (i) = adg~r .(i • Sb)+ bd~r 
w i t h  adger : ~dger X Sb a n d  bdger -~ "[dger• Sb + Adger. 

Bc Sb-- 1 

Tdg~r = Z Pc. Z [(adg~r • j)(Sb X i) + ('Tdg~ • J + Adger)] (1) 
i=1 j = l  

DTRSM: is executed Bc • Pc time, with a variable data  size, multiple of Sb. 
The execution time of a single DTRSN call is cubic, but a pseudo-linear time, 

.s~ i ,(i • Sb) + bdtrsm, w i t h  adtrsm = function of 6"6 can replace it: *dt~sm( ) = adtr~m 

O~dtrs*r~ • ~ -~- fldtrsm • ~b -}- ~dtrsm, a n d  bdtr.~m = ~/dtrsm • Sb -I- )~dtrsm. 

Br 

TWRSM = . . . .  (i • Sb) + • S b ) +  (2) 
i=1 

DGEHM: executed Be • Pc time, with a variable data  size, multiple of Sb, The 
execution time of a single DGEMM call is cubic, but a quadratic time, function of 

2 DTRSM is execu ted  one less t ime  at  m a x i m a l  size because  of block s ca t t e r ed  distr i-  
b u t i o n  and  LU a lgor i thm.  



Sb ~ 
Sb, can replace it: tdgemm(~ ) = adgeram.(i 2 X S 2) + bdgemm.(Z X Sb) + Cdgeram, 
with adgemm : Otdgernrn • Sb, bdgemm : ~dgemm • Sb + ~dgemm and Cdgemrn : 
"~dgernrn X Sb "~ ~dgerr~g,.. 

T ,  GEMM = • Sb) + bdg r m.(i • + Cdger ,,] 
i=X 

- [adg~m,~.(B~ x Sb) 2 + bdg~mrn.(B~ • Sb) + Cdg~mm] 3 (3) 

3.2 R e s u l t s  o n  I n t e l  P a r a g o n  

In order to compute the optimal block size for each code, the derivative of each 
complexity over Sb is computed. The total complexity optimum is obtained when 
the sum of the derivatives equals zero. Hence, the optimal block size is given 
by the resolution of a third degree equation. We computed the three roots for 
different grid sizes and matrix sizes, from the coefficients (ai, bi ...) found on 
an Intel Paragon at Lyon. Only one solution was positive each time. Results 
are given in table 1. It gives the theoretical optimal block size as a function of 
different grid sizes and matrix sizes (1000 signifies a 1000 • 1000 matrix in double 
precision). For a 4 x 4 grid and up to matrix size 4000, experimental results are 
also given. 

matr ix size 
grid size 

100012000130001400015000160001700018000 
4 • 4 8 .31 9.28 9.64 9.83 9.94 10.0 10.1 10.1 

4 •  8-  9 8 8 10 / / / / 
8 • 8 7 .38 8.38 8.79 9.03 9.17 9.27 9.35 9.41 

16 • 16 7.26 8.0 8.38 8.61 8.77 8.88 8.96 9.03 

Table 1. Optimal block size on Lyon Intel Paragon. 

Five important  points have to be noticed. Theoretical optimal block sizes are 
not exactly the same as experimental ones but they range between 7.2 and 10.1. 
Actual tests give an optimal block size of 8 or 10 on a 4 • 4 grid. 4 The theoret- 
ical optimal block size is a function of the matrix size, and raises up to a top 
value around 10. Thus, a "good" theoretical block size is given by the asymptotic 
value. The optimal block size does not very depend on the number of processors. 
Asymptotic values are 9 for 256 processors and 10 for 16. Again, experimental 
results confirm this point. The grid is assumed to be squared for convenience. 
According to experimental results, the grid shape has no real influence on the 
optimal block size, though it greatly influences the execution time [1]. A rect- 
angular grid with few rows of processors works faster than a square grid : there 
are less communications since pivoting is achieved more often in local memory. 
Results are identical if only the subroutines DGER, DTRSH, and DGEI~I~ are used 
for block size computation (they represent 95% of total computation time). 

4 A size of 16 was found on previous tests. It has been done on the same machine 
but with an older version of the operating system. Results depend greatly on the 
machine and its system. 



3.3 Op t imiz a t ions  

The ScaLAPACK version of L U  has been implemented in order to be scalable: 
each subroutine call is a BLAS or BLACS call. These two libraries are already 
fully optimized for a lot of computers. Furthermore, the minimal number  of 
operations to achieve a L U  factorization is well-known (-~n 3 + 2n2). Thus, only 
communicat ion phases can be optimized since the computat ion t ime is fixed. 
Asynchronous messages are used to overlap communications with computat ions.  

B r o a d c a s t  o v e r l a p  By looking closely at the algorithm, we can see that  pro- 
cessors are often waiting results from other processors. During the block column 
decomposition, only a processor column is working. And only one processor row 
is working during the triangular solve. This brings us to the first optimization 
solution: " I n s t e a d  o f  b r o a d c a s t i n g  (L00, L10) p a n e l  b e f o r e  t h e  t r i a n g u l a r  
so lve  (_TRSM), do  it at t h e  s a m e  t i m e . "  This means that  general synchronous 
BLACS broadcasting routines (_GEBS2D and _GEBR2D) are used on processors 
tha t  do not compute  _TRSM, and asynchronous communications are used to send 
(Loo,Llo)  during _TRSll on processors that  compute it. Therefore, the single 
block L00 must  be broadcast on the current processor row to perform _TRSM. 
But it takes less t ime than broadcasting (L00, L10). This solution seems inter- 
esting since, at each step i of the factorization, we gain the broadcasting t ime 
of Pb -- i -- 1 blocks, compared to the original version. But, unfortunately, that  
gain represents only 1 to 2 percents of total factorization t ime (on the Paragon 
system).  This is due to the number of times this broadcast is done (only PD -- 1 
times). 

R o w s  p i v o t i n g  o v e r l a p  It  appears that  an opt imal  speed-up cannot be ob- 
tained until a communicat ion phase is overlapped most  of the time. Thus, it is 
interesting to overlap the pivoting t ime since it is executed for each row of the 
matr ix:  " I n s t e a d  o f  b r o a d c a s t i n g  p i v o t  i n f o r m a t i o n s  a n d  t h e n  e x c h a n g -  
ing  r o w s  a f t e r  t h e  (A00, A10) d e c o m p o s i t i o n ,  do  i t  a t  t h e  s a m e  t i m e . "  
This means that  we can use the DSCAL time of the processors column which de- 
compose (A00, A10), to exchange current and real pivot rows using asynchronous 
communications.  Then we use the DGER time to send asynchronously the pivot 
informations to the next processor in the processors row. Thus, as soon as this 
processor receives pivot informations, it can exchange the rows for pivoting and 
send the information to the next processor in the row. And so on, until the 
last processor on the pseudo-ring receives its data. During this step, the block 
colunm decomposition continues on the processor column. 

Figure 2 represents the different steps of these operations for an 64 x 64 
mat r ix  distributed on a 4 x 4 grid using a 8 • 8 block size. We explain this 
example in the following: 

s t e p  1: This is the k th iteration of PDGETF2. The real pivot row has been found 
on processor 11. Then, processor 15, that  owns the current pivot row k, divides 
the current pivot by the real pivot and asynchronously send the whole k th r o w  to 
processor 11. After, it proceeds with DSCAL and after, waits for the completion 
of the asynchronous send and receives the real pivot row. Identically, processor 
11 asynchronously sends the whole pivot row to processor 15 and computes the 
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Fig. 2. One iteration of optimized PDGETF2 routine. 

DSCAL at the same time. After completion, it receives the current pivot row. In 
the best case, processors 15 and 11 do not need to wait for send completion 
since the communication is already over when DSCAL ends. In fact, a wait state 
appears with a very large matrix, when their size reaches memory size limits. 
In this case, the DSCAL time does not completely overlap the communication 
time, since DSCAL domain size decreases each step. Other processors in the pivot 
processor column just execute the DSCAL routine. 

s t e p  2: DSCAL and pivoting is done. Now, the local sub-matrix must be 
updated with DGER. Processors 15 and 11 use this time to send the pivot in- 
formation to their right neighbor on a pseudo-ring made from the processors 
row. In Figure 2, a pseudo-ring is (12, 13, 14, 15), and the right neighbor of 15 is 
12. Processors 12 and 8 are just waiting for pivot information using a blocking 
receive. 

s t e p  3: processors 12 and 8 have just received the pivot information. They 
can now exchange the U h row and the pivot row, and send the pivot informations 
to their right neighbor. Meanwhile, processors in the pivot column continue the 
decomposition, finding the pivot and its position, broadcasting the local pivot 
r o w ,  . . . 



s t e p  4: as in step 1, DSCAL is overlapped by an asynchronous exchange of 
current and real pivot row. But now, processors 13 and 9 are working, exchanging 
rows, instead of waiting for the completion of PDGETF2 to work. 

s t e p  5: as in step 2, but with two more processors working. 

3.4 E x p e r i m e n t a l  r e s u l t s  

All experimental  results have been obtained on Intel Paragon systems, with var- 
ious grid sizes, on two different machines (ORNL, Tennessee, and Lyon, France). 
These two machines have not the same version of the operating system and it 
appeared that  it leads to different experimental  results. There are four different 
grid sizes: 4 x 4, 6 x 5 (Lyon), 8 x 8, and 16 x 16 (ORNL). 

A block size of 16 appears to be the opt imal  value for the LU factorization 
on the ORNL system, and 8 on the Lyon system. So, all Mflops are given for 
these block sizes and one RHS vector for the solve computat ion.  

Figure 3 shows a comparison between optimized and non-optimized results 
for a 16 x 16 grid. The optimized version grows faster (in Mflops) than the non- 
optimized, before becoming almost parallel. Indeed, it works better  for small 
mat r ix  sizes (< 375 x Pc with Pc, the number  of column of processors) because the 
DSCAI. t ime can completely overlap the communication t ime of the pivoting rows. 
After this limit, processors have to wait for the completion of the communication.  

Figure 4 shows the gain in percents over the non-optimized version, for 8 x 8 
and 16 x 16 grids. It can reach 15% for small matr ix  sizes, and stay above 4% 
for the largest matr ix  size that  can be allocated. This figure confirms that  the 
speed-up progressively decreases for a mat r ix  size greater than 375 x Pc. 
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4 C o n c l u s i o n  a n d  f u t u r e  work  

After a description of the LU Mgorithm in ScaLAPACK, a complete analysis of 
complexity has been presented. This theoretical model allows the computat ion of 
the opt imal  block size for the block scattered decomposition. Thus, it is possible 
to have the best performance with a simple pre-computation.  The second part  
has presented two optimizations based on communication / computat ion overlap. 
In the two cases, our aim was to "hide" the t ime of some large communication 
phases. Furthermore, it allows to reduce the idle t ime of some processors that  
are waiting results from other to continue the execution. 

All experimentations have been clone on Paragon systems but the methods 
presented in this paper are general. Thus, they can be applied to any supercom- 
puter.  Meanwhile, some hints can be given. All the updates have been done using 
Paragon system calls syntax. Asynchronous BLACS do not exist. Consequently, 
our code is not portable. But the modifications are simple enough to be rewrit- 
ten on any supercomputer.  The speed-up decreases as the matr ix  size grows: 
the DSCAL time becomes not big enough to overlap the communications due to 
pivoting. Thus, another routine could be used to overlap such communications 
(like DGER, or DGEMM). The optimal  block size computat ion is also interesting as 
input for parallel compilers because it gives the best data  distribution for a given 
mat r ix  size, and number of processors. 

We are now working on the computat ion of optimal  distributions and grain 
size when BLAS routines are chained. 
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