
The Parallel C o m p u t a t i o n of Part ial
E igenso lut ions of Large Matr ices on a Mass ive ly

Parallel Processor *

J. Weston 1, M. Szularz 1, M. Clint 2, and K. Murphy 2

1 School of Information & Software Engineering, University of Ulster, Coleraine
BT52 1SA, Northern Ireland

2 Department of Computer Science, The Queen's University of Belfast, Belfast BT7
1NN, Northern Ireland

Abst rac t . The computation of a few eigenvalues and their correspond-
ing eigenvectors of large, usually sparse, real symmetric matrices is often
required in the determination of the solution of many of the important
problems encountered in scientific and engineering applications. A com-
mon characteristic of two distinct classes of iterative methods for the
computation of such eigenvalues and eigenvectors is the construction of
a sequence of subspaces which contains, in the limit, the desired eigen-
vectors. In this paper two algorithms, one from each class, for the parallel
computation of a few extreme eigenvalues and their associated eigenvec-
tors of large symmetric matrices are discussed. The first algorithm is a
simultaneous iteration method in which the subspaces are of a constant
dimension; the second is the Lanczos algorithm in which the subspaces
increase in dimension. Modified versions of each of the algorithms are pro-
posed and implemented on an MPP Connection Machine CM-200 with
8K processors. A comparative evaluation of the efficiency of the most
efficient version of each of the two algorithms for a variety of different
types of matrices of maximum order 11,948 is also presented.

1 Simultaneous Iteration Algorithms

Two variations of the simultaneous iteration method of Clint and Jennings [1] for
the computation of a few of the largest eigenvalues and associated eigenvectors of
a real symmetric matrix are discussed below. The original method, which utilises
the Ritz vectors in each iteration subspace, is given in Algorithm 1. A variation
of the method in which the Ritz vectors are replaced by approximations, which
are much less expensive to compute, is given in Algorithm 2. This algorithm
has been shown to be efficient for moderately large matrices (n < 256) when
implemented on an array processor [6].

* This work was supported by the Engineering and Physical Sciences Research Coun-
cil under grants GR/J41857 and GR/J41864 and was carried out using the facilities
of the University of Edinburgh Parallel Computing Centre

27

1.1 A l g o r i t h m 1

Consider a real symmetric matr ix A, of order n, whose eigenvalues Ai, 1 < i < n,
are such that I A1 I~1 A2 I .. ~1 Am I. Let D,~ be the real diagonal matrix, of
order m, whose diagonal components (A1, A2, .., Am) yield the required subset
of eigenvalues, and let Xm be the orthonormal matrix, of order n • m, whose
columns represent the associated eigenvectors (x l , x2, .., xm). Let U0 be an n x m
orthonormal matr ix whose columns represent approximations to these eigenvec-
tots. Generate a sequence of eigenvector approximations Uk as follows :

Vk = AUk ; Bk = U~Vk ; Uk+i = o r t h o (V k t r a n s f o r m (B k))

where :

(i) the function t r a n s f o r m returns a matr ix Tk whose columns are the eigen-
vectors of Bk. Note that any appropriate algorithm may be used in the
computation of the eigensolution of Bk.

(ii) the function o r t h o generates from its matr ix argument a matr ix whose nor-
malised columns are mutually orthogonal. It is implemented using a modi-
fied Gram-Schmidt algorithm [3] in which the columns are processed, not in
strictly left-to-right order, but are processed according to decreasing order
of magnitude in the eigenvalue approximations to which they correspond

(namely, diag(0~k),.. . , 0~)) = T~BkTk).

Then Uk -+ Xm and Bk -+ Din.
Observe that the convergence of the algorithm depends on the ratio I Ara+i/Am [.
Thus, the closer this ratio is to unity, the poorer the convergence rate will be.
Moreover,

Ara+i 10} k)-A l=o(l l k) i = l : m
Hence, if p eigenvalues are required it can be advantageous, particularly on an
MPP machine, to choose the dimension of the iteration subspace m to be greater
than p. Thus, in this paper, versions of Algorithm 1 in which m is greater than
p are critically examined.

1.2 A l g o r i t h m 2

Versions of the above algorithms have been developed in which the function
t r a n s f o r m is replaced by another function e i g e n a p p r x which generates from
its symmetric argument Bk a non-orthogonal matr ix whose columns are approx-
imations to the eigenvectors of Bk. This approximation, Tk, with components
denoted by t(i, j) , is defined as follows

t (i , j) = l , i = j ; t (i , j) = e (i , j) , i > j ; t (j , i) = - t (i , j) , i < j

where

e(i , j) = 2b(i , j) / (b (j , j) - b(i, i) • ~ / (b(j , j) - b(i, i)) 2 + 4b(i , j) 2)

28

and b(i, j) is the i, j - th component of the matr ix Bk.
Algorithm 2 is a version of Algorithm 1 in which the function t r a n s f o r m is
replaced by the function e i g e n a p p r x .
The question now arises as to whether the performance of Algorithm 1 in an
MPP environment for large matrices is better than that of Algorithm 2.

1.3 C o n v e r g e n c e C r i t e r i a fo r A l g o r i t h m s 1 a n d 2

The accuracy of an eigensolver is often measured by the residual error and the
orthogonality error where these errors are given by :

residual error = T~ = max [[Axi - Aixi [[2
i Ai

and

orthogonality error = O = max [[(x t x p - I)ei [[2
i

where i = 1 : p and p < m. Since Vk = AUk has to be computed in each iteration
it follows that T~ can be computed with little extra cost. Consequently,

T~ < tol

is used as the stopping criterion for the simultaneous iteration algorithms, where
tol is related to machine accuracy.

2 A l g o r i t h m 3 : T h e L a n c z o s A l g o r i t h m

Let A be a real symmetric matr ix of order n and let ql be an arbitrary vector of
length n which satisfies [] ql 112 = 1. Then the 'standard' Lanczos algorithm gen-
erates a sequence of tridiagonal Lanczos matrices Tj E ~J • and Lanczos vectors
qj E ~'~ with the properties that Tj-1 E ~ j - l • is a principal submatrix of
Tj, Tj = QTAQj where Qj = [q l , - . . , qj] is orthonormal, and for j << n, the ex-
treme eigenvalues of A are well approximated by the eigenvalues of the Lanczos
matrices Tj. In the j - th step the accuracy of these approximations is determined
by computing at least a partial eigensolution of the current Lanczos matrix, Tj
and monitoring the last elements of each of its eigenvectors [4]. Although the
overhead associated with this convergence monitoring process is assumed to be
inexpensive in comparison with the other operations of the Lanczos algorithm,
it can be quite significant in terms of the absolute time when j is large, say of
order 10 3. However, a new and efficient convergence monitoring process which
substantially reduces this overhead has been proposed by Szularz et al [7]. Al-
gorithm 3 is a version of the Lanczos algorithm which incorporates this new
convergence monitoring process, a brief outline of which appears elsewhere in
these proceedings [5].
It has been shown already that Algorithm 3 is more efficient than the 'standard'
Lanczos algorithm when implemented both in a shared-memory environment [7],
and in an MPP environment [8].

29

3 N u m e r i c a l E x p e r i e n c e

The performances on a Connection Machine CM-200 with 8K processors of Al-
gorithms 1 and 2 for the partial eigensolution of a variety of positive definite
matrices taken from the Harwell-Boeing collection [2] have been compared and
analysed. Further, partial eigensolutions have also been obtained using versions
of these algorithms in which the number of eigenvector approximations used, m,
exceeds the number of maximal eigenvalues required, p. In addition the perfor-
mances of the implementations of the best versions of Algorithms 1 and 2 were
compared with the performance of Algorithm 3.
All of the algorithms have been implemented in CM Fortran 90 using single
precision arithmetic.
In the case of Algorithm 3, the Lanczos algorithm, the prescribed tolerance, tOll,
was assigned a value toll = cll A 112u, where c is a user-defined constant, II d t12
is approximated by A1, and u is the machine unit round-off. In the case of the
CM-200 u = 0.11920929 • 10 -6. Recall that in the case of the simultaneous it-
eration algorithms the convergence criterion required that T/, the residual error,
be less than a prescribed tolerance, tol, which is related to machine accuracy.
Thus, in order to compare the simultaneous iteration algorithms with the Lanc-
zos algorithm, tol is assigned the value of clTr where el is a constant and Tr is
explicitly computed using the partial eigensolutions obtained using Algorithm
3. In the case of Algorithm 3 k = 4096 and ql = [l / v ~ , . . . , 1 / V ~ . The initial
approximations U0 in the simultaneous iteration algorithms are either Qm or
U, where Qrn is the matr ix of the first m Lanczos vectors and U is the matr ix
[ql, e2 , . . , e,~], with orthonormalized columns.
In the examples which follow n denotes the order of the target matr ix A, nz
denotes the number of upper (lower) triangular entries of A, and n(A) denotes
the condition number of A. The examples are taken from the Harwell-Boeing
collection of sparse matrices and are identified by means of character strings.

3.1 I m p l e m e n t a t i o n

In the case of Algorithms 1 and 2 all matrices are stored as CM (distributed)
arrays thereby enabling advantage to be taken of the highly optimized CMSSL
routines. In particular, the use of the CMSSL Jacobi routine to compute the
eigensolutions of the distributed matrices Bk in Algorithm 1 is most efficient
since m is usually reasonably large and the matrices Bk tend to diagonal form.
However, in those cases where m is very small a better option would be to
compute the eigensolutions of these matrices on the front-end machine and to
use the appropriate routines from the LAPACK library.
Observe that the function e i g e n a p p r x in Algorithm 2 has been designed for
efficient implementation on MPP machines [6].
In the case of Algorithm 3 only the elements of the matr ix Tj are stored in the
front-end machine ; all other arrays are involved in highly parallel computations
and, consequently, are stored as CM arrays.

30

3.2 E x a m p l e 1

Matrix NOS3 (n -- 960, n z = 8402, and g(A) -- 3.5 • 103) is taken from
the field of structural engineering and arises in the context of a finite element
approximation to a biharmonic operator on a rectangular plate with one side
fixed and the others free. Algorithm 3 was used to compute a part ial eigensolution
of NOS3 and yielded the following results when the parameters c and p were
assigned the values of 1 and 16, respectively :

(i) A 1 ~--- 0.68990387 • 10 3 ; computed in 48 steps/i terations.
(ii) A16 = 0.62797619 x 103 ; computed in 150 steps/i terations.
(i i i) eigenvalues A1, . . . , A16 were computed in 14.496 sec.
(iv) 7~ = 0.152 • 10 -6 ; O = 0.369 • 10 -5 .

Table 1 presents the results obtained for various values of m when Algorithms
1 and 2 were used to compute the 16 largest eigenvalues of mat r ix NOS3. The
entries in the second and fourth rows refer to Algorithm 1 and the boldface
entries in the third and fifth rows refer to Algori thm 2. For each each algorithm
U0 and tol were assigned the values Qm and 7~, respectively, where 7~ is given
in (iv) above.
Additionally, for this matrix, max,~ O = 0.158 • 10 -5.

Im] 1 24 132 140]481 56 I
i terations 1290 167 102 66 54 47

7 4 7 1 6 4 9 2 66 5 7 1 0 4
t ime (seconds) 413 81 63 59 59 62

198 6 9 5 0 5 4 58! [3 0

Table 1. (Simultaneous Iteration - Example 1)

3.3 E x a m p l e 2

Matrix NOS7 (n = 729, nz = 2673 and ~ -- 1.8 • 109) arises in the finite
difference approximation to a diffusion equation with varying diffusivity in a 3D
unit cube with Dirichlet boundary conditions. Algorithm 3 was used to compute
the 16 largest eigenvalues of this matrix.
In the case when c = 1.0 it was observed that four separate clusters of eigenvalues
- (As, A6), (As, A9), (A12, A13) and (A14, A15, A16) - were identified as four sets of
multiple eigenvalues. Thus, for example, A12 and A13 were both located in the
interval (0923, 0924), where (0924 - 0923) =- t o l l . When c was assigned the value
0.1 the following results were obtained :

(i) A1 = 0.98640301 • 107 ; computed in 19 steps/i terations.

31

(ii) A16 : 0.52361851 x 107 ; computed in 114 steps/iterations.
(iii) A1, . . . , A16 were computed in 10.416 sec.
(iv) 7~ = 0.262 • 10 -6 ; O = 0.442 • 10 -6 .

Further, the separation of the 16 eigenvalues was at least 0.11758840.
When Algorithm 1 is used to compute a partial eigensolution of matr ix NOS7
with the parameters m, p, cl and U0 assigned the values 16,4, 103 and Q16,
respectively, the four largest eigenvalues are identified as A1, A2, A5 and A9. Fur-
ther, within the same limits of precision, it is possible to compute the nine largest
eigenvalues correctly if U0 is assigned the value U. Table 2 presents the results
obtained for various values of m and tol when Algorithm 1 was used to compute
the 16 largest eigenvalues of this matr ix with U0 assigned the value U. The prin-
cipal entries in rows 2 - 4 represent the number of steps required for convergence
and the entries in brackets are the times taken in seconds. The entry '-' indicates
that the algorithm failed to converge in fewer iterations than its predesessor in
the same row. The value of Tr is given in (iv) above.
For the same problem Algorithm 2 failed to converge in fewer than 500 iterations
for all choices of m in Table 2. Further, very slow convergence has been observed
when Algorithm 2 is used to compute as few as four eigenvalues of matr ix NOS7
with much relaxed tolerances.

Jm [16 J 24] 32] 40] 48 156]
[tol = 102~]379(104)[17(8)]10(6)] 9(8)]9(10)]-]

Itol = 10~]499(138)]23(9)112(8)11!(10)]10(12)] -]

] t o l = n J610(165)]-]] - J -] -]

Table 2. (Simultaneous Iteration (Algorithm 1) - Example 2)

3.4 E x a m p l e 3

Matrix BCSSTK18 (n = 11,948, nz = 80,519) models a static problem arising
in an application of the GT-STRUDL structural engineering code related to the
construction of the R.E. Ginna Nuclear Power Station. Algorithm 3 was used to
compute a partial eigensolution of BCSSTK18 and yielded the following results
when parameters c and p were assigned the values of 1 and 8, respectively :

(i) A1 = 0.42951982 • 1011 ; computed in 16 steps/iterations.
(ii) As = 0.25322804 • 1011 ; computed in 63 steps/iterations.
(iii) eigenvalues A1, . . . , As were computed in 8.398 sec.
(iv) 7r = 0.330 • 10 -6 ; O = 0.262 • 10 -6 .

32

In this example all of the required eigenvalues are well separated. Thus, the
simultaneous iteration algorithms should, in theory, benefit from the use of U0 =
Qs as an initial approximation. The results obtained for various choices for m
and tol when Algorithm 1 was used to compute the 8 largest eigenvalues of
matr ix BCSSTK18 with U0 assigned the value Qs are shown in Table 3. The
principal entries in rows 2 and 4 represent the number of steps required for
convergence and the entries in brackets in rows 3 and 5 are the corresponding
execution times in seconds. The entry '-' indicates that the algorithm failed to
converge in fewer than 2,000 iterations. The value of R is given in (iv) above.
Additionally, for this matrix, max,~ O = 0.238 • 10 -6

I m

l tol

tol

I 8 116124 132 40 48156b
1111 1

(220) (97) (89) (86) (60) () ()
;2 57 I 45 27 13113 I

(183) (183) (184) (150) (85) (97)

Table 3. (Simultaneous Iteration (Algorithm 1) - Example 3)

For the same problem Algorithm 2 failed to converge for all choices of m in
Table 3 except for m = 8. In this instance the value o f to l was 103T~, the number
of iterations required for convergence was 100, and the time was 201 seconds.

4 C o n c l u s i o n s

In the case of the simultaneous iteration algorithms (Algorithms 1 and 2) the
results presented enable the following observations to be made :

(i) In all cases Algorithm 1 computed the required subset of eigenvalues to
machine accuracy. However, it was not possible to predict in advance the
smallest value of m which would guarantee convergence.

(ii) Whenever the accuracy requirements were less stringent than in (i) Algo-
r i thm 1 converged for all selected values of m. Further, in these circumstances
the trade-off between the speed of convergence and amount of computation
in this MPP environment is justified if m is moderately larger than p. How-
ever, the algorithm may become unstable if m is large.

(iii) The use of b" (non Krylov vectors) as an initial approximation to the eigen-
vectors in Algorithm 1 was less efficient than the use of Qm (Krylov vectors)
except when the target matrix contained multiple or closely clustered eigen-
values.

(iv) In general Algorithm I can use the hardware to advantage providing that
a suitable choice of m can be made.

33

(v) Algorithm 2 is not stable as is demonstrated by Examples 2 and 3 even
though, in certain cases, it performs substantially better than Algorithm 1.
Since it is not known at present what causes the loss of stability (Example
2 suggests it is due to problem ill-conditioning, closely clustered/multiple
eigenvalues or a combination of both) Algorithm 2 must be used with cau-
tion.

4.1 A l g o r i t h m 1 ve r su s A l g o r i t h m 3

On the basis of the problems which arise in 'real' world applications and which
have been used to test the methods discussed, the Lanczos algorithm (Algorithm
3) performs significantly better than Algorithm 1. In addition, what was unex-
pected, the orthogonality among the computed eigenvectors is as good as that
obtained by the use of Algorithm 1. In general, the numerical properties of Al-
gorithm 1 inhibit it from gaining much advantage from the hardware by having
m > p. For the Lanczos algorithm the MPP machine is preferable to a shared
memory machine, mainly because of the efficiency with which the matrix-vector
product can be performed.

R e f e r e n c e s

1. Clint, M., and Jennings A., The evaluation of eigenvalues and eigenvectors of real
symmetric matrices by simultaneous iteration, Comput. J., (1970) 76-80.

2. Duff, I.S., Grimes, R.G., and Lewis, J.G., User's Guide for the Harwell-Boeing
Sparse Matrix Collection (release I), available online ftp orion.cerfacs.fr, (1992).

3. Golub, G, and Van Loan C.F., Matrix Computations, John Hopkins University
Press, London, (1989).

4. Kim, S.K, and A.T. Chronopoulos, A class of Lanczos-like algorithms implemented
on parallel computers, Parallel Computing, 17 (1991) 763-778.

5. Murphy, K., Clint, M., Szularz, M., and Weston, J.S., The Computation of Par-
tial Eigensolutions on a Distributed Memory Machine Using a Modified Lanczos
Method, Proceedings Euro-Par'96, (1996).

6. Stuart, E.J., and Weston J.S., An Algorithm for the Parallel Computation of Sub-
sets of Eigenvalues and Associated Eigenvectors of Large Symmetric Matrices us-
ing an Array Processor, in Proceedings Euromicro Workshop on Parallel and Dis-
tributed Processing, 27-29 January, 1993, Milligan, P., and A. Nunez (Eds.), IEEE
Computer Society Press (1992), 211-217.

7. Szularz, M., Weston, J., Murphy, K., and Clint M., Monitoring the Convergence of
the Lanczos Algorithm in Parallel Computing Environments, Parallel Algorithms
and Applications, Vol.6, (1995), 287-302.

8. Szularz M., Weston J., Murphy K. and Clint M., An Improved Lanczos Algorithm,
Abstracts : ParCo 95, Gent, Belgium, 19-22 September 1995, p.l13.

