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Abst rac t .  We present the design of and performance results for an im- 
age database system for remotely sensed imagery. The system stores and 
serves level 1B remotely sensed data, providing users with a flexible and 
efficient means for specifying and obtaining image-like products on either 
a global or a local scale. We have developed both parallel and sequential 
versions of the system; the parallel version uses the CHAOS++ library, 
developed at the University of Maryland as part of an NSF Grand Chal- 
lenge project, to support parallel object oriented programming. 

1 I n t r o d u c t i o n  

Earth scientists have been thwarted by the staggering volume of remotely sensed 
data in their a t tempts  to study the earth. Currently, they are forced to use the 
smaller post-processed products known as level 2 data. These level 2 products 
are often projected composite images derived from many level 1, or "raw" data  
sets. As a result, not only is the original sensor radiometry unrecoverable, but 
different level 2 images must be re-projected into a common frame of reference 
for direct comparison. Our goal is to provide a database of level 1 data  capable 
of producing unprojected remotely sensed images that  conform to the require- 
ments of individual users[5]. Systems like Sequoia2000[10, 11] and Client-Server 
Paradise[3] index level 2 products and therefore do not address this goal. 

In this paper, we present a database design for indexing Level 1B remotely 
sensed data on a global scale using parallel methods. Then, we present the results 
of several test suites using this database to generate remotely sensed image 
products. 

2 System Description 

We have implemented a high performance global database for storing Advanced 
Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) Level 

* This research was supported by the National Science Foundation under Grant #ASC 
9318183. The Maryland IBM SP2 used for the experiments was provided by NSF 
CISE Institutional Infrastructure Award #CDA9401151 and a grant from IBM. 



110 

1B data. The following sections describe AVHRR GAC data, the class of queries 
that  the system is designed to answer, and our data structures and retrieval 
algorithms for indexing this data. 

2.1 A V H R R  G A C  D a t a  

AVHRR is a thermal sensor mounted on the NOAA series of satellites. As it 
scans the surface of the earth in a polar orbit, the AVHRR sensor measures 
and records data  for five thermal bands Each measurement is referred to as an 
instantaneous field of view (IFOV) and represents the thermal reflectance for 
a region on the surface of the earth. GAC IFOV's directly beneath the orbital 
path of the sensor (or "on nadir") are approximately a circle with a diameter of 
four kilometers. Off nadir GAC IFOV's are ellipsoids whose major axis increases 
with the distance from nadir. 

The AVHRR sensor sweeps perpendicular to its orbital track. Each sweep 
of the detector yields 409 IFOV's and is referred to as a scan line. AVHRR 
GAC Level 1B data  sets are an accumulation of 110 minutes of scanning, or 
approximately 12,000 scan lines. Each scan line record in a GAC Level 1B data 
set includes five bands of thermal data  for each of the 409 IFOV's, 51 lati- 
tude/longitude pairs for navigating (geo-locating) the IFOV's, 51 solar zenith 
angles, and various other data quality indicators for the scan line. Each GAC 
Level 1B data  file represents just over a single orbit of the sensor and includes 
meta-data  for the collection of scan lines such as temporal bounds, sensor char- 
acteristics, etc. 

2.2 Q u e r i e s  

A query is defined as an an object that  minimally specifies: 

t e m p o r a l  b o u n d s  A start and stop time specified in Greenwich Mean Time. 
Only data  recorded between the start  and stop times will be used to answer 
the query. 

spa t i a l  b o u n d s  The user's area of interest specified, currently, as a polygon on 
the surface of the globe. Only IFOV's incident on this region will be included 
in the query's result. 

s e n s o r  t y p e s  A list of sensors whose data is to be used to answer the query. 
g r i d  p a r a m e t e r s  Grid parameters specify the grid that  will be used for the 

resultant image. This includes spatial extent of a "pixer' (they need not be 
square) and an origin for the grid. 

r e s u l t  t y p e  The type of image returned as described below. 

The result of a query is one of two types of image. For simplicity we label 
the two types as multi-attribute images, and list images. For all image types, 
the database generates pixel values in the resultant images by finding all of the 
IFOV's incident on that  pixel that satisfy the spatio-temporal bounds of the 
query. 



111 

M u l t i - a t t r i b u t e  I m a g e s  are images in which each pixel may  have several val- 
ues associated with it. For example,  AVHRR data  consists of five separate 
channels. A multi-valued image for this sensor type might include a value 
for each of the five channels for each pixel. Attr ibute values are determined 
from the set of IFOV's  contained in a pixel with a function supplied by the 
user as par t  of the query. 

L is t  I m a g e s  are the simplest, and potentially the largest, image type. Each 
pixel contains the entire set of IFOV's  incident on that  pixel. 

We use a variety of image types to give users greater flexibility and control 
over image creation. 

- In all cases, the images conform to a user specified grid. Two images with 
the same grid parameters  are co-registered 4 , greatly simplifying multi-sensor 
analysis. 

- Traceability is preserved. Queries are repeatable given identical grid param-  
eters. A user could specify a grid tha t  contained exactly one pixel, and, using 
a list image, retrieve the list of IFOV's  incident on that  pixel. 

- Mapping errors can be controlled. The grid used for a query is not necessarily 
linked to any projection. Thus, a user can choose to display the da ta  using 
any projection desired. 

2.3 I n d e x i n g  S c h e m e  

AVHRR GAC Level 1B data  is, in effect, a 6x409x12000 matrix.  

- 5 bands and a geographic location for each IFOV. 
- 409 IFOV's  for each scan line. 
- Approximately 12,000 scan lines per da ta  set. 

Unfortunately, a simple matr ix  is not sufficient to capture the spatial  a t t r ibutes  
of the data. The distance between IFOV's  is not uniform. The distance between 
scan lines varies due to eccentricities in the sensor's orbit. The distance between 
IFOV's  in a single scan line varies with respect to the IFOV's  distance f rom 
nadir and eccentricities in the sensor's orbit. 

We considered spatial structures such as R-trees[6] and quadtrees[7]. Good- 
child et. al.[4] suggest a hierarchical tessellation of triangles over the globe as a 
global spatial index. We found that ,  in general, the use of a global index for all 
IFOV's  would require replication of large amounts  of meta -da ta  for each IFOV. 
Furthermore, a global index whose a toms are IFOV's  tends to be prohibitively 
large. Obviously some bucket method is called for. In order to minimize da ta  
growth from replication of meta -da ta  and to provide the greatest flexibility, we 
use a hierarchical indexing scheme based on global and local indices. 

4 This co-registration is accurate only to within the spatial accuracy of the level 1B 
data 
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T h e  G l o b a l  I n d e x .  The global index is a coarse spatio-temporM index of local 
indices. Each entry in the global index consists of: 

- spatial bounds for a local index. 
- temporal bounds for a local index. 
- coarse meta-data  such as sensor type and number. 

From the global index perspective, a local index is an encapsulated object. 
The global index only needs to determine if a given query intersects the local 
index and pass the query to the local index for resolution. By implementing 
local indices as objects, and by keeping the global index general we can avoid 
the problems associated with global spherical approaches. Furthermore, imple- 
menting local indices as objects allows us to include remotely sensed data from 
other sensors in the future without re-engineering the global index. Finally, a 
coarse index allows a very fast way to reject large portions of the data  base when 
presented with localized queries. 

The global index is currently implemented as a packed R-Tree, however any 
general spatio-temporal index would be satisfactory. The root node of the global 
index is a bounding solid for all local indices in the global index. The packed 
structure is built from a list of local indices that  has been sorted spatially. This 
allows us to use the global index as a range tree for faster query processing. 

T h e  Loca l  I n d e x .  Local indices provide fine grained spatio-temporal indexing 
into AVHRR GAC Level 1B data. Recall that AVHRR GAC data  is essentially 
a matrix. While the distance between IFOV's is not uniform, adjacency in the 
matr ix does correspond to adjacency on the sphere. Therefore, a good solution 
would preserve the innate matr ix qualities of the data  while providing spatial 
indexing into that  matrix. If we preserve the matrix,  data selection using tem- 
poral criteria is trivial. We know the temporal bounds for the entire file and 
can calculate a time for each scan line. Spatial indexing is significantly more 
complicated. 

Before we discuss our spatial indexing scheme for local indices, some prepro- 
cessing issues must be mentioned. Our first step is to divide the raw Level 1B 
file into seven files: one file for meta-data,  one file for geographic locations of 
IFOV's and five files for the individual band data. This approach reduces I /O 
overhead for queries where only one or two sensor bands must be retrieved. The 
file containing geographic data is an implicit key to the band data files. One 
lati tude/longitude pair is stored for each IFOV, so that  the file offset to the 
geographic location of an IFOV can be used to find the offset to the IFOV's 
sensor values in the band files. 

The minimum granularity in our index is a 16x16 block of 256 adjacent 
IFOV's. This approach yields 25 adjacent blocks of IFOV's for every 16 scan 
lines. We found that far off-nadir IFOV's are rarely, if ever, used in real analysis. 
For ease of implementation we do not index the nine IFOV's at the far ends of 
each scan line. We chose to index blocks of IFOV's to reduce the overall size of 
the index. 
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Our index is a hierarchy of binary trees whose keys are quadrilaterals (see 
Figure 1). For convenience we will refer to these as block trees. As with R-trees, 
the key for each interior node must be a quadrilateral that  wholly contains 
the keys of all its children. To construct the index, a bounding quadrilateral 
is derived from the four corner IFOV's for each 16x16 block. Each "row" of 
25 blocks (comprising 16 scan lines) gives us the leaves of a block tree. These 
are horizontal trees. The interior nodes of the tree are generated by finding the 
minimum bounding quadrilateral for both of the node's children. The root of 
each block tree is a minimum bounding quadrilateral for the entire tree. This 
allows us to build a single vertical tree for the file whose leaves are the root 
nodes of the horizontal trees. The root node of the vertical tree is a bounding 
quadrilateral for the entire local index and is used to determine spatial extent 
in the global index. While this local indexing scheme is satisfactory, there are 
several things we can do to significantly improve spatial performance. 

Horizontal Tree 

~ Ver:ical 

Fig. 1. Hierarchy of block trees. 

L o c a l  I n d e x  O p t i m i z a t i o n s .  Spatial indexing efficiency is determined by how 
well the bounding quadrilaterals approximate the spatial extent of the underlying 
data. We refer to this quality as f i t  The chance of a null query in a local index 
is inversely proportional to the fit of that  index's bounding quadrilateral. In 
other words, given a poor fit, it is more likely that  a query will intersect the 
bounding quadrilateral, but not intersect any of the IFOV's within that  bounding 
quadrilateral. Our optimizations strive to achieve good fit at low computational  
cost. 

Local indices can be generated for entire Level 1B files, or for any portion of 
a Level 1B file. By dividing single AVHRR GAC Level 1B data  files into several 
local indices we achieve a much better fit. Figure 2 shows a plot of left-most, 
right-most and center IFOV's for every sixteenth scan line in an entire AVHRR 
GAC Level 1B data  file. Generating a bounding quadrilateral for this data  is 
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difficult due to the extreme curvature of the data near the poles and the range 
of the data  extending over one orbit. By dividing the whole file into eight separate 
files, each approximately 1/8 of an orbit, bounding quadrilaterals are easier to 
generate and yield a much closer fit to the data. Simple division of the file does 
not, however, address the severe curvature in the data encountered at the earth's 
poles. 
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Fig. 2. IFOV's in a level 1B file. 
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Figure 3 is a plot of the bounding quadrilaterals for 16x16 IFOV blocks from 
a segment of an AVHRR GAC Level 1B file. To achieve a better fit we need to 
"square up" our view of the data. The problem is that  we are plotting spheri- 
cal angular data (latitudes and longitudes) in a planar frame of reference. Our 
solution is to project these bounding quadrilaterals using a Lambert Conformal 
Conic Projection[9]. Figure 4 shows the same blocks from Figure 3 projected 
using a Lambert  projection. Projecting the index yields a much better fit. Pro- 
jecting the index does, however, require us to project the query for use with 
the index, but we have found the computational cost of projecting queries to be 
significantly less than the cost of unnecessary disk accesses from null queries. It 
is important  to note that  only the index is projected, not the underlying sensor 
data. The original latitude and longitude of each IFOV is preserved. 

R e s o l v i n g  a Que ry .  When a query (as defined in w is received, a blank 
output  image is created based on the spatial extent and grid parameters of the 
query. This output  image and the query are then passed to the global index. The 
global index determines which, if any, of the local indices intersect the query, 
and passes the query and that  portion of the output  image that intersects each 
qualifying local index to the local indices. 

Each local index first projects the query and output  image into its local 
frame of reference and then searches its block trees for 16x16 blocks of IFOV's 
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that intersect the query space. As the query descends the trees, the output 
image is pruned to just those pixels that intersect the tree node's bounding 
quadrilateral. When the query reaches a leaf node in a horizontal tree, the 16x16 
block of IFOV's referenced by the leaf node is retrieved from disk. Finally, we 
iterate through the 256 IFOV's in the retrieved block to determine which, if any, 
IFOV's to include in the output image. 

High Pe r fo rmance  Imp lemen ta t ion .  The prototype for our system was de- 
veloped using C++ in a sequential environment. However, AVHRR GAC Level 
1B data volume is so large that efficient indexing methods are not enough to 
ensure timely processing of queries. The obvious solution is to parallelize the sys- 
tem. Unfortunately, parMlelization is notoriously difficult and tends to change 
application codes in fundamental ways. Our solution is based on the use of ob- 
jects and high-performance tools specifically designed to facilitate parallelization 
of sequential codes. In particular, we use the CHAOS++ [1, 2] runtime library. 

CHAOS++ is a runtime library targeted at parallelizing object-oriented ap- 
plications with dynamic communication patterns. CHAOS++ provides support 
for both array and pointer-based data structures, and allows flexible and effi- 
cient data exchange of complex data objects among processors. CHAOS++ is 
implemented as a C++ class library, and can be used directly by application 
programmers to parMlelize applications with adaptive and/or irregular data ac- 
cess patterns. The design of the library is architecture independent and assumes 
no special support from C++ compilers. Currently, CHAOS++ uses message 
passing as its transport layer and is implemented on severM distributed memory 
machines, including the Intel iPSC/860 and Paragon, the Thinking Machines 
CM-5, and the IBM SP-1 and SP-2. 

Parallelization of the system is achieved by first replicating the global in- 
dex across all available processors, then dividing any incoming queries equally 
amongst available processors using the following scheme: 

- The result of any given query is an image, as defined in w The extent of 
the image is defined in the query's grid parameter. 

- A sub-query is generated for each available processor. The union of all of 
the sub-query grid parameters is the grid specified in the original query. All 
other query parameters are identical. 

- Each sub-query is submitted to a processor for resolution. Each processor 
returns its results independently to the querying process. 

In short, the original query is broken down into several smaller queries, each of 
which is handled by one processor. 

3 D a t a b a s e  P e r f o r m a n c e  

After implementing our indexing scheme we ran test suites to examine: 

Genera l  Pe r fo rmance  Given a query, how long does it take to get an answer? 
How much work is done by the system to achieve that answer? 
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Scalability How does the system perform given different numbers of processors 
and different queries. 

Partit ioning Schemes What is the best way to divide a query among proces- 
sors to achieve a balanced workload? 

I / O  Pe r fo rmance  The sheer size of remotely sensed data sets suggests an I/O 
bound problem. We have attempted to quantify I/O load for the system to 
both prove this hypothesis and suggest possible solutions. 

3.1 System Configuration 

All testing was performed using parallel codes on the University of Maryland's 
IBM SP-2. This system contains sixteen RS6000/390 processing nodes running 
AIX. The nodes are interconnected via a proprietary interprocessor communica- 
tions switch providing each node with up to 40 Mbytes per second bandwidth. 
Each node of the SP-2 has 12 Gbytes of online disk storage, making the 16 node 
machine capable of an aggregate I/O bandwidth exceeding 500 Mbytes/sec. The 
parallel implementation used IBM's MPL for message passing between proces- 
sors. 

3.2 Test Parameters 

Each test suite was conducted on our prototype server loaded with 15 local 
indices covering the west coast of North America. Normally, the database dy- 
namically loads and caches a number of local indices using a least recently used 
replacement scheme. We wished to exclude statistics for work done loading lo- 
cal indices. Therefore, all 15 indices were pre-loaded into the cache for each 
experiment on the database. 

Figure 5 shows the image bounds for our three test queries and the bounds for 
the local indices these images intersect. The database normally receives queries 
interactively from users. For the purposes of testing, each query was hard coded 
into the database. 

The three static queries were, with the exception of image bounds, identical. 
Query parameters (see w were: 

- Temporal Bounds: unbounded. 
- Sensor Type: AVHRR GAC, bands 1 and 2 
- Grid Parameters: 5x5 (explained below) 
- Result Type: multi-attribute image 

Minimum spatial resolution in AVHRR GAC data is 1/128 degrees of latitude or 
longitude. Grid parameters are therefore specified in increments of 1/128 of a de- 
gree. For these queries, each pixel in the output image was 5/128 degrees square, 
or approximately 4 kilometers (the same size as a single on-nadir AVHRR GAC 
IFOV). The spatial extent of the three queries was adjusted to yield 100x100, 
200x200 and 400x400 pixel images. Queries were intentionally placed at the in- 
tersection of three local indices to demonstrate load balance characteristics of 
the system. 
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Fig. 5. Query bounds. 
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Our database uses an output partitioning technique to distribute the workload 
over multiple processors. We a t t empt  to evenly divide the output  image along 
pixel boundaries based on the number of processors available for the task. Both 
the parti t ioning scheme and queries were held constant for all tests. 

For each test suite we collected data  on the following: 

- Time to complete a query (includes t ime spent in I / O  tasks). 
- Number of polygon-polygon intersection tests performed. 
- Number of line-line intersection tests performed. 
- Number of point-in-polygon intersection tests performed. 
- Number of read() system calls. 
- Number of bytes read in read() system calls. 

For jobs run on multiple processors, separate statistics were collected for each 
processor in the task. Statistics from all processors in a task were used to generate 
total  processor time, total  number  of intersection operations, earliest finish and 
latest finish. We collect da ta  on intersection routines because this is the critical 
code that  performs computat ional  geometry within our spatial index. Counts of 
intersection routine calls are our measure of work done and therefore an indicator 
of load balance. Finally, intersection calls are not independent. For example, our 
polygon-polygon intersection test can call both the line-line and point-in-polygon 
routines. 

3 . 3  T e s t  S u i t e  R e s u l t s  

Our first test suite was an a t t empt  to determine the performance of the spa- 
tial indexing scheme in the absence of I /O.  When the query process reached 
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a leaf node in a local index's horizontal tree, read() and seek() system calls to 
retrieve real data were replaced with null spatial object (points and quadrilat- 
erals) constructors. The use of null or random spatial objects skews the results. 
Optimizations in our computational geometry codes allow for early exits from 
intersection tests. However, we offer these results as only a rough indicator of 
the time required to find the appropriate data  in our spatial index. By com- 
paring statistics for calls to intersection routines with I /O  enabled, we can get 
an estimate of how much work was avoided by using null spatial objects. We 
ran 200x200 pixel queries on from 1 to 16 processors. Next we ran 100x100 and 
400x400 pixel queries on enough combinations of processors to plot representa- 
tive curves for these queries. We then enabled I /O and ran identical tests. 

Table 1 compares times and work load for the 200x200 pixel query on 16 
processors with and without I /O enabled. In this first comparison, enabling I /O  
did not significantly increase run times or work loads. Needless to say, we were 
stunned to find similar timings for the two tests. Recall that  once a 16x16 block 
of IFOV's is retrieved from disk, a pixel's bounds are iterated through each of 
the 256 IFOV's to determine which IFOV's in the block fall within the pixel. 
Our first prototype treated each IFOV as a simple point and used a point- 
in-polygon routine to test for intersection with a pixel. Unfortunately, queries 
could be posed such that  an individual pixel in the output  image was smaller 
than the distance between adjacent IFOV's, occasionally yielding blank pixels in 
the middle of the image. Our solution was to construct a bounding quadrilateral 
using the midpoint distances between an IFOV and it's neighbors for each IFOV. 
This quadrilateral was then tested against the pixel using a polygon-polygon 
intersection routine. We disabled this routine, again treating IFOV's as points, 
and re-ran the test suites. Table 1 shows our results with IFOV's as points for 
a 200x200 pixel query on 16 processors as well. When IFOV's are treated as 
points, I /O becomes a significant contributor to overall run time. 

Table 1. Statistics for 200x200 Pixel Image on 16 processors. 

IFOV's treated as 
I/O status 
sum of all processor times (min:sec) 
longest individual processor time (min:sec) 
polygon-polygon tests (in milfions) 
line-line tests (in millions) 
point-in-polygon tests (in millions) 

Points Boxes 
enabled disabled enabled disabled 

18:11 15 :01  77:53 77:34 
1:42 1:35 6:34 6:34 
6.38 6.38 31.04 31.04 

64.57 64.57 454.8 438.6 
47.30 47.30 145.6 145.9 

Figure 6 compares work loads (expressed as number of spatial intersections 
performed) for the different query sizes and job completion times for different 
queries on different numbers of processors. Spatial intersection counts were iden- 
tical between similar tests with and without I /O  enabled. We found that  total  
work load (the sum of all spatial intersections performed by all processors) varied 
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slightly as more processors were devoted to a given query�9 Individual processor 
work loads varied greatly depending on how the query was partitioned. We also 
found it interesting that  as pixel counts in output  images quadrupled, work 
load and time to complete a query approximately tripled, suggesting that  our 
indexing scheme becomes more efficient as output  image pixel counts grow. 
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Fig. 6. Line-line intersection vs. query size (left) and query completion time (right). 

Figure 7 shows processing times for a 200x200 pixel query with and without 
I /O enabled. I /O appears to add, on average, approximately 8% to the total 
processing time for a given query�9 We note with alarm that  in some cases I /O 
accounted for over one quarter of the time spent on a query. 

4 Conclusions and Future Work 

4.1 I n d e x  P e r f o r m a n c e  

Our initial approach to the problem assumed that  any database of this size would 
be I /O bound. Our experiments demonstrate that,  using this indexing scheme, 
the computational cost of searching local indices can easily match the cost of I/O. 
Given an image (a collection of pixels) and a local index (a collection of IFOV's), 
forward mapping asks "for each pixel, which IFOV's are in this pixel?" Inverse 
mapping asks "for each IFOV, which pixels contain this IFOV?" The indexing 
scheme described in this paper uses forward mapping and non-uniformity of 
spatial characteristics within a matr ix of IFOV's forces us to search for IFOV's. 
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However, the result of any query is an image as described in w with a 
grid that indicates the spatial extent of any pixel in the image. The pixels of 
the image are spatially uniform. We are developing a new indexing scheme that 
takes advantage of this uniformity by using inverse mapping. 

Inverse mapping should yield two significant advantages. First, searching 
in local indices is eliminated as is the requirement to build hierarchical data 
structures for local indices. In short, a local index becomes a simple matrix 
of IFOV's. Second, image resolution should no longer affect system run time. 
Higher image resolution produces more pixels in a given image. Forward mapping 
requires a local index search for each pixel. Inverse mapping requires an operation 
for each IFOV incident on the image and is unaffected by the number of pixels. 

4.2  L o a d  B a l a n c i n g  a n d  I / O  P e r f o r m a n c e  

Significant work must be done to improve load balancing and I/O performance 
for the system. As much as a quarter of the time to resolve a query is being 
spent on I /0 .  As we attempt queries with larger output images, we expect the 
problem to get worse. 

We have started work on another output partitioning scheme for distributing 
queries. Our hope is that the new output partitioning will improve both load 
balance and I/O performance. The first step is to intelligently distribute data 
sets across all available processors' disks (de-clustering). Data sets local to a 
processing node will be arranged on disk for efficient spatial searching (cluster- 
ing). Queries will be partitioned such that each processor will mostly resolve 
those pixels in an output image for which it has local data. We are investigating 
partitioning schemes that both provide good load balance and minimize inter- 
processor communication. This plan should result in more efficient I/O because 
most disk accesses will be for data to be processed on the local processor, rather 
than requiring communication across the network. 
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