
A High Performance Image Database Sys tem
for Remote ly Sensed Imagery *

Carter T. Shock 1, Chialin Chang 12, Larry Davis 12,
Samuel Goward 3, Joel Saltz 12, Alan Sussman 12

University of Maryland at College Park

1 University of Maryland Institute for Advanced Computer Studies
2 University of Maryland Department of Computer Science

" 3 University of Maryland Department of Geography

Abst rac t . We present the design of and performance results for an im-
age database system for remotely sensed imagery. The system stores and
serves level 1B remotely sensed data, providing users with a flexible and
efficient means for specifying and obtaining image-like products on either
a global or a local scale. We have developed both parallel and sequential
versions of the system; the parallel version uses the CHAOS++ library,
developed at the University of Maryland as part of an NSF Grand Chal-
lenge project, to support parallel object oriented programming.

1 I n t r o d u c t i o n

Earth scientists have been thwarted by the staggering volume of remotely sensed
data in their a t tempts to study the earth. Currently, they are forced to use the
smaller post-processed products known as level 2 data. These level 2 products
are often projected composite images derived from many level 1, or "raw" data
sets. As a result, not only is the original sensor radiometry unrecoverable, but
different level 2 images must be re-projected into a common frame of reference
for direct comparison. Our goal is to provide a database of level 1 data capable
of producing unprojected remotely sensed images that conform to the require-
ments of individual users[5]. Systems like Sequoia2000[10, 11] and Client-Server
Paradise[3] index level 2 products and therefore do not address this goal.

In this paper, we present a database design for indexing Level 1B remotely
sensed data on a global scale using parallel methods. Then, we present the results
of several test suites using this database to generate remotely sensed image
products.

2 System Description

We have implemented a high performance global database for storing Advanced
Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) Level

* This research was supported by the National Science Foundation under Grant #ASC
9318183. The Maryland IBM SP2 used for the experiments was provided by NSF
CISE Institutional Infrastructure Award #CDA9401151 and a grant from IBM.

110

1B data. The following sections describe AVHRR GAC data, the class of queries
that the system is designed to answer, and our data structures and retrieval
algorithms for indexing this data.

2.1 A V H R R G A C D a t a

AVHRR is a thermal sensor mounted on the NOAA series of satellites. As it
scans the surface of the earth in a polar orbit, the AVHRR sensor measures
and records data for five thermal bands Each measurement is referred to as an
instantaneous field of view (IFOV) and represents the thermal reflectance for
a region on the surface of the earth. GAC IFOV's directly beneath the orbital
path of the sensor (or "on nadir") are approximately a circle with a diameter of
four kilometers. Off nadir GAC IFOV's are ellipsoids whose major axis increases
with the distance from nadir.

The AVHRR sensor sweeps perpendicular to its orbital track. Each sweep
of the detector yields 409 IFOV's and is referred to as a scan line. AVHRR
GAC Level 1B data sets are an accumulation of 110 minutes of scanning, or
approximately 12,000 scan lines. Each scan line record in a GAC Level 1B data
set includes five bands of thermal data for each of the 409 IFOV's, 51 lati-
tude/longitude pairs for navigating (geo-locating) the IFOV's, 51 solar zenith
angles, and various other data quality indicators for the scan line. Each GAC
Level 1B data file represents just over a single orbit of the sensor and includes
meta-data for the collection of scan lines such as temporal bounds, sensor char-
acteristics, etc.

2.2 Q u e r i e s

A query is defined as an an object that minimally specifies:

t e m p o r a l b o u n d s A start and stop time specified in Greenwich Mean Time.
Only data recorded between the start and stop times will be used to answer
the query.

spa t i a l b o u n d s The user's area of interest specified, currently, as a polygon on
the surface of the globe. Only IFOV's incident on this region will be included
in the query's result.

s e n s o r t y p e s A list of sensors whose data is to be used to answer the query.
g r i d p a r a m e t e r s Grid parameters specify the grid that will be used for the

resultant image. This includes spatial extent of a "pixer' (they need not be
square) and an origin for the grid.

r e s u l t t y p e The type of image returned as described below.

The result of a query is one of two types of image. For simplicity we label
the two types as multi-attribute images, and list images. For all image types,
the database generates pixel values in the resultant images by finding all of the
IFOV's incident on that pixel that satisfy the spatio-temporal bounds of the
query.

111

M u l t i - a t t r i b u t e I m a g e s are images in which each pixel may have several val-
ues associated with it. For example, AVHRR data consists of five separate
channels. A multi-valued image for this sensor type might include a value
for each of the five channels for each pixel. Attr ibute values are determined
from the set of IFOV's contained in a pixel with a function supplied by the
user as par t of the query.

L is t I m a g e s are the simplest, and potentially the largest, image type. Each
pixel contains the entire set of IFOV's incident on that pixel.

We use a variety of image types to give users greater flexibility and control
over image creation.

- In all cases, the images conform to a user specified grid. Two images with
the same grid parameters are co-registered 4 , greatly simplifying multi-sensor
analysis.

- Traceability is preserved. Queries are repeatable given identical grid param-
eters. A user could specify a grid tha t contained exactly one pixel, and, using
a list image, retrieve the list of IFOV's incident on that pixel.

- Mapping errors can be controlled. The grid used for a query is not necessarily
linked to any projection. Thus, a user can choose to display the da ta using
any projection desired.

2.3 I n d e x i n g S c h e m e

AVHRR GAC Level 1B data is, in effect, a 6x409x12000 matrix.

- 5 bands and a geographic location for each IFOV.
- 409 IFOV's for each scan line.
- Approximately 12,000 scan lines per da ta set.

Unfortunately, a simple matr ix is not sufficient to capture the spatial a t t r ibutes
of the data. The distance between IFOV's is not uniform. The distance between
scan lines varies due to eccentricities in the sensor's orbit. The distance between
IFOV's in a single scan line varies with respect to the IFOV's distance f rom
nadir and eccentricities in the sensor's orbit.

We considered spatial structures such as R-trees[6] and quadtrees[7]. Good-
child et. al.[4] suggest a hierarchical tessellation of triangles over the globe as a
global spatial index. We found that , in general, the use of a global index for all
IFOV's would require replication of large amounts of meta -da ta for each IFOV.
Furthermore, a global index whose a toms are IFOV's tends to be prohibitively
large. Obviously some bucket method is called for. In order to minimize da ta
growth from replication of meta -da ta and to provide the greatest flexibility, we
use a hierarchical indexing scheme based on global and local indices.

4 This co-registration is accurate only to within the spatial accuracy of the level 1B
data

112

T h e G l o b a l I n d e x . The global index is a coarse spatio-temporM index of local
indices. Each entry in the global index consists of:

- spatial bounds for a local index.
- temporal bounds for a local index.
- coarse meta-data such as sensor type and number.

From the global index perspective, a local index is an encapsulated object.
The global index only needs to determine if a given query intersects the local
index and pass the query to the local index for resolution. By implementing
local indices as objects, and by keeping the global index general we can avoid
the problems associated with global spherical approaches. Furthermore, imple-
menting local indices as objects allows us to include remotely sensed data from
other sensors in the future without re-engineering the global index. Finally, a
coarse index allows a very fast way to reject large portions of the data base when
presented with localized queries.

The global index is currently implemented as a packed R-Tree, however any
general spatio-temporal index would be satisfactory. The root node of the global
index is a bounding solid for all local indices in the global index. The packed
structure is built from a list of local indices that has been sorted spatially. This
allows us to use the global index as a range tree for faster query processing.

T h e Loca l I n d e x . Local indices provide fine grained spatio-temporal indexing
into AVHRR GAC Level 1B data. Recall that AVHRR GAC data is essentially
a matrix. While the distance between IFOV's is not uniform, adjacency in the
matr ix does correspond to adjacency on the sphere. Therefore, a good solution
would preserve the innate matr ix qualities of the data while providing spatial
indexing into that matrix. If we preserve the matrix, data selection using tem-
poral criteria is trivial. We know the temporal bounds for the entire file and
can calculate a time for each scan line. Spatial indexing is significantly more
complicated.

Before we discuss our spatial indexing scheme for local indices, some prepro-
cessing issues must be mentioned. Our first step is to divide the raw Level 1B
file into seven files: one file for meta-data, one file for geographic locations of
IFOV's and five files for the individual band data. This approach reduces I /O
overhead for queries where only one or two sensor bands must be retrieved. The
file containing geographic data is an implicit key to the band data files. One
lati tude/longitude pair is stored for each IFOV, so that the file offset to the
geographic location of an IFOV can be used to find the offset to the IFOV's
sensor values in the band files.

The minimum granularity in our index is a 16x16 block of 256 adjacent
IFOV's. This approach yields 25 adjacent blocks of IFOV's for every 16 scan
lines. We found that far off-nadir IFOV's are rarely, if ever, used in real analysis.
For ease of implementation we do not index the nine IFOV's at the far ends of
each scan line. We chose to index blocks of IFOV's to reduce the overall size of
the index.

113

Our index is a hierarchy of binary trees whose keys are quadrilaterals (see
Figure 1). For convenience we will refer to these as block trees. As with R-trees,
the key for each interior node must be a quadrilateral that wholly contains
the keys of all its children. To construct the index, a bounding quadrilateral
is derived from the four corner IFOV's for each 16x16 block. Each "row" of
25 blocks (comprising 16 scan lines) gives us the leaves of a block tree. These
are horizontal trees. The interior nodes of the tree are generated by finding the
minimum bounding quadrilateral for both of the node's children. The root of
each block tree is a minimum bounding quadrilateral for the entire tree. This
allows us to build a single vertical tree for the file whose leaves are the root
nodes of the horizontal trees. The root node of the vertical tree is a bounding
quadrilateral for the entire local index and is used to determine spatial extent
in the global index. While this local indexing scheme is satisfactory, there are
several things we can do to significantly improve spatial performance.

Horizontal Tree

~ Ver:ical

Fig. 1. Hierarchy of block trees.

L o c a l I n d e x O p t i m i z a t i o n s . Spatial indexing efficiency is determined by how
well the bounding quadrilaterals approximate the spatial extent of the underlying
data. We refer to this quality as f i t The chance of a null query in a local index
is inversely proportional to the fit of that index's bounding quadrilateral. In
other words, given a poor fit, it is more likely that a query will intersect the
bounding quadrilateral, but not intersect any of the IFOV's within that bounding
quadrilateral. Our optimizations strive to achieve good fit at low computational
cost.

Local indices can be generated for entire Level 1B files, or for any portion of
a Level 1B file. By dividing single AVHRR GAC Level 1B data files into several
local indices we achieve a much better fit. Figure 2 shows a plot of left-most,
right-most and center IFOV's for every sixteenth scan line in an entire AVHRR
GAC Level 1B data file. Generating a bounding quadrilateral for this data is

114

difficult due to the extreme curvature of the data near the poles and the range
of the data extending over one orbit. By dividing the whole file into eight separate
files, each approximately 1/8 of an orbit, bounding quadrilaterals are easier to
generate and yield a much closer fit to the data. Simple division of the file does
not, however, address the severe curvature in the data encountered at the earth's
poles.

'10

lOO

80

60

40

2 0

o

-20

-40

-60 -

-80 -

- lOO
- 2 0 0

I

. J

I
- 150

I I I

. i

I I I I
- 1 O0 -50 0 5 0

longitude

/

Fig. 2. IFOV's in a level 1B file.

I I

1 O0 150 2 0 0

Figure 3 is a plot of the bounding quadrilaterals for 16x16 IFOV blocks from
a segment of an AVHRR GAC Level 1B file. To achieve a better fit we need to
"square up" our view of the data. The problem is that we are plotting spheri-
cal angular data (latitudes and longitudes) in a planar frame of reference. Our
solution is to project these bounding quadrilaterals using a Lambert Conformal
Conic Projection[9]. Figure 4 shows the same blocks from Figure 3 projected
using a Lambert projection. Projecting the index yields a much better fit. Pro-
jecting the index does, however, require us to project the query for use with
the index, but we have found the computational cost of projecting queries to be
significantly less than the cost of unnecessary disk accesses from null queries. It
is important to note that only the index is projected, not the underlying sensor
data. The original latitude and longitude of each IFOV is preserved.

R e s o l v i n g a Que ry . When a query (as defined in w is received, a blank
output image is created based on the spatial extent and grid parameters of the
query. This output image and the query are then passed to the global index. The
global index determines which, if any, of the local indices intersect the query,
and passes the query and that portion of the output image that intersects each
qualifying local index to the local indices.

Each local index first projects the query and output image into its local
frame of reference and then searches its block trees for 16x16 blocks of IFOV's

115

65

60

55

50

45

~= 40

35

30

25

20

15 I
50 60 70 80 90 100 110

longitude

F i g . 3. Unprojec ted 16x16 I F O V blocks.

3000 I I i !

I
2000

1000

o

-1000

-2000

-3000
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000

km

F i g . 4. Lamber t project ion of 16x16 I F O V blocks.

116

that intersect the query space. As the query descends the trees, the output
image is pruned to just those pixels that intersect the tree node's bounding
quadrilateral. When the query reaches a leaf node in a horizontal tree, the 16x16
block of IFOV's referenced by the leaf node is retrieved from disk. Finally, we
iterate through the 256 IFOV's in the retrieved block to determine which, if any,
IFOV's to include in the output image.

High Pe r fo rmance Imp lemen ta t ion . The prototype for our system was de-
veloped using C++ in a sequential environment. However, AVHRR GAC Level
1B data volume is so large that efficient indexing methods are not enough to
ensure timely processing of queries. The obvious solution is to parallelize the sys-
tem. Unfortunately, parMlelization is notoriously difficult and tends to change
application codes in fundamental ways. Our solution is based on the use of ob-
jects and high-performance tools specifically designed to facilitate parallelization
of sequential codes. In particular, we use the CHAOS++ [1, 2] runtime library.

CHAOS++ is a runtime library targeted at parallelizing object-oriented ap-
plications with dynamic communication patterns. CHAOS++ provides support
for both array and pointer-based data structures, and allows flexible and effi-
cient data exchange of complex data objects among processors. CHAOS++ is
implemented as a C++ class library, and can be used directly by application
programmers to parMlelize applications with adaptive and/or irregular data ac-
cess patterns. The design of the library is architecture independent and assumes
no special support from C++ compilers. Currently, CHAOS++ uses message
passing as its transport layer and is implemented on severM distributed memory
machines, including the Intel iPSC/860 and Paragon, the Thinking Machines
CM-5, and the IBM SP-1 and SP-2.

Parallelization of the system is achieved by first replicating the global in-
dex across all available processors, then dividing any incoming queries equally
amongst available processors using the following scheme:

- The result of any given query is an image, as defined in w The extent of
the image is defined in the query's grid parameter.

- A sub-query is generated for each available processor. The union of all of
the sub-query grid parameters is the grid specified in the original query. All
other query parameters are identical.

- Each sub-query is submitted to a processor for resolution. Each processor
returns its results independently to the querying process.

In short, the original query is broken down into several smaller queries, each of
which is handled by one processor.

3 D a t a b a s e P e r f o r m a n c e

After implementing our indexing scheme we ran test suites to examine:

Genera l Pe r fo rmance Given a query, how long does it take to get an answer?
How much work is done by the system to achieve that answer?

117

Scalability How does the system perform given different numbers of processors
and different queries.

Partit ioning Schemes What is the best way to divide a query among proces-
sors to achieve a balanced workload?

I / O Pe r fo rmance The sheer size of remotely sensed data sets suggests an I/O
bound problem. We have attempted to quantify I/O load for the system to
both prove this hypothesis and suggest possible solutions.

3.1 System Configuration

All testing was performed using parallel codes on the University of Maryland's
IBM SP-2. This system contains sixteen RS6000/390 processing nodes running
AIX. The nodes are interconnected via a proprietary interprocessor communica-
tions switch providing each node with up to 40 Mbytes per second bandwidth.
Each node of the SP-2 has 12 Gbytes of online disk storage, making the 16 node
machine capable of an aggregate I/O bandwidth exceeding 500 Mbytes/sec. The
parallel implementation used IBM's MPL for message passing between proces-
sors.

3.2 Test Parameters

Each test suite was conducted on our prototype server loaded with 15 local
indices covering the west coast of North America. Normally, the database dy-
namically loads and caches a number of local indices using a least recently used
replacement scheme. We wished to exclude statistics for work done loading lo-
cal indices. Therefore, all 15 indices were pre-loaded into the cache for each
experiment on the database.

Figure 5 shows the image bounds for our three test queries and the bounds for
the local indices these images intersect. The database normally receives queries
interactively from users. For the purposes of testing, each query was hard coded
into the database.

The three static queries were, with the exception of image bounds, identical.
Query parameters (see w were:

- Temporal Bounds: unbounded.
- Sensor Type: AVHRR GAC, bands 1 and 2
- Grid Parameters: 5x5 (explained below)
- Result Type: multi-attribute image

Minimum spatial resolution in AVHRR GAC data is 1/128 degrees of latitude or
longitude. Grid parameters are therefore specified in increments of 1/128 of a de-
gree. For these queries, each pixel in the output image was 5/128 degrees square,
or approximately 4 kilometers (the same size as a single on-nadir AVHRR GAC
IFOV). The spatial extent of the three queries was adjusted to yield 100x100,
200x200 and 400x400 pixel images. Queries were intentionally placed at the in-
tersection of three local indices to demonstrate load balance characteristics of
the system.

118

Fig. 5. Query bounds.

80

70

60

50

40

30

20

10

I I I I I I I

100xl O0 pixel ~qe~y i
- 20Qx20O piX~l 'query - - - i -

................. :~1~0x400 p ixe l q u e r y - - - ~
"-: Loca l Index B o u n d s i

" ' ' ' , . ,. /

.... ' " ".. �9 - 4 - - ' " " i r ,- i - "---1.-. r, -
" ; '..'~ J . I : : ~ _ ,

; t, ',, ; i
",. ,.'~.=::.4..='t

.

0 I I I I I I I
-170 -160 -150 -140 -130 -120 -110 -100 -90

longitude

Our database uses an output partitioning technique to distribute the workload
over multiple processors. We a t t empt to evenly divide the output image along
pixel boundaries based on the number of processors available for the task. Both
the parti t ioning scheme and queries were held constant for all tests.

For each test suite we collected data on the following:

- Time to complete a query (includes t ime spent in I / O tasks).
- Number of polygon-polygon intersection tests performed.
- Number of line-line intersection tests performed.
- Number of point-in-polygon intersection tests performed.
- Number of read() system calls.
- Number of bytes read in read() system calls.

For jobs run on multiple processors, separate statistics were collected for each
processor in the task. Statistics from all processors in a task were used to generate
total processor time, total number of intersection operations, earliest finish and
latest finish. We collect da ta on intersection routines because this is the critical
code that performs computat ional geometry within our spatial index. Counts of
intersection routine calls are our measure of work done and therefore an indicator
of load balance. Finally, intersection calls are not independent. For example, our
polygon-polygon intersection test can call both the line-line and point-in-polygon
routines.

3 . 3 T e s t S u i t e R e s u l t s

Our first test suite was an a t t empt to determine the performance of the spa-
tial indexing scheme in the absence of I /O. When the query process reached

119

a leaf node in a local index's horizontal tree, read() and seek() system calls to
retrieve real data were replaced with null spatial object (points and quadrilat-
erals) constructors. The use of null or random spatial objects skews the results.
Optimizations in our computational geometry codes allow for early exits from
intersection tests. However, we offer these results as only a rough indicator of
the time required to find the appropriate data in our spatial index. By com-
paring statistics for calls to intersection routines with I /O enabled, we can get
an estimate of how much work was avoided by using null spatial objects. We
ran 200x200 pixel queries on from 1 to 16 processors. Next we ran 100x100 and
400x400 pixel queries on enough combinations of processors to plot representa-
tive curves for these queries. We then enabled I /O and ran identical tests.

Table 1 compares times and work load for the 200x200 pixel query on 16
processors with and without I /O enabled. In this first comparison, enabling I /O
did not significantly increase run times or work loads. Needless to say, we were
stunned to find similar timings for the two tests. Recall that once a 16x16 block
of IFOV's is retrieved from disk, a pixel's bounds are iterated through each of
the 256 IFOV's to determine which IFOV's in the block fall within the pixel.
Our first prototype treated each IFOV as a simple point and used a point-
in-polygon routine to test for intersection with a pixel. Unfortunately, queries
could be posed such that an individual pixel in the output image was smaller
than the distance between adjacent IFOV's, occasionally yielding blank pixels in
the middle of the image. Our solution was to construct a bounding quadrilateral
using the midpoint distances between an IFOV and it's neighbors for each IFOV.
This quadrilateral was then tested against the pixel using a polygon-polygon
intersection routine. We disabled this routine, again treating IFOV's as points,
and re-ran the test suites. Table 1 shows our results with IFOV's as points for
a 200x200 pixel query on 16 processors as well. When IFOV's are treated as
points, I /O becomes a significant contributor to overall run time.

Table 1. Statistics for 200x200 Pixel Image on 16 processors.

IFOV's treated as
I/O status
sum of all processor times (min:sec)
longest individual processor time (min:sec)
polygon-polygon tests (in milfions)
line-line tests (in millions)
point-in-polygon tests (in millions)

Points Boxes
enabled disabled enabled disabled

18:11 15 :01 77:53 77:34
1:42 1:35 6:34 6:34
6.38 6.38 31.04 31.04

64.57 64.57 454.8 438.6
47.30 47.30 145.6 145.9

Figure 6 compares work loads (expressed as number of spatial intersections
performed) for the different query sizes and job completion times for different
queries on different numbers of processors. Spatial intersection counts were iden-
tical between similar tests with and without I /O enabled. We found that total
work load (the sum of all spatial intersections performed by all processors) varied

120

slightly as more processors were devoted to a given query�9 Individual processor
work loads varied greatly depending on how the query was partitioned. We also
found it interesting that as pixel counts in output images quadrupled, work
load and time to complete a query approximately tripled, suggesting that our
indexing scheme becomes more efficient as output image pixel counts grow.

-I-
LU
C ,

x
m t -

o

t -

200

180

1 6 0

140

120

100

80

6 0

40

20

0
0

I I I I I I I

100x100 - -
�9 - . , 200x200

4 0 0 x 4 0 0

m•••••••••••••• ••

, , I , I q I

2 4 6 8 10 12 14 16
Processors

"5 ._r
E
t ' -

r

E

50

45

40

35

30

25

20

15

10

5

0

I I I I I I I

1 0 0 x l O0 I / 0 - -
- ~, 1 0 0 x 1 0 0 no I /0

~l 200x200 I /0

~i\ 200x200 no I /0
4 0 0 x 4 0 0 I /0

~:t 400x400 no I /0

- ~ '~.

~..%

0 2 4 6 8 10 12 14 16
processors

Fig. 6. Line-line intersection vs. query size (left) and query completion time (right).

Figure 7 shows processing times for a 200x200 pixel query with and without
I /O enabled. I /O appears to add, on average, approximately 8% to the total
processing time for a given query�9 We note with alarm that in some cases I /O
accounted for over one quarter of the time spent on a query.

4 Conclusions and Future Work

4.1 I n d e x P e r f o r m a n c e

Our initial approach to the problem assumed that any database of this size would
be I /O bound. Our experiments demonstrate that, using this indexing scheme,
the computational cost of searching local indices can easily match the cost of I/O.
Given an image (a collection of pixels) and a local index (a collection of IFOV's),
forward mapping asks "for each pixel, which IFOV's are in this pixel?" Inverse
mapping asks "for each IFOV, which pixels contain this IFOV?" The indexing
scheme described in this paper uses forward mapping and non-uniformity of
spatial characteristics within a matr ix of IFOV's forces us to search for IFOV's.

121

.c
E

0
E

30

25

20

15

10

5

0
0

I I I I I I I

i job time I /0 - - �9 job time no I /0
."" ~'-.. total time I /0
................ ". total time.no I / 0

.=.

I I i , ~ , i

2 4 6 8 10 12 14 16
processors

Fig. 7. Processing times for 200x200 pixel query.

However, the result of any query is an image as described in w with a
grid that indicates the spatial extent of any pixel in the image. The pixels of
the image are spatially uniform. We are developing a new indexing scheme that
takes advantage of this uniformity by using inverse mapping.

Inverse mapping should yield two significant advantages. First, searching
in local indices is eliminated as is the requirement to build hierarchical data
structures for local indices. In short, a local index becomes a simple matrix
of IFOV's. Second, image resolution should no longer affect system run time.
Higher image resolution produces more pixels in a given image. Forward mapping
requires a local index search for each pixel. Inverse mapping requires an operation
for each IFOV incident on the image and is unaffected by the number of pixels.

4.2 L o a d B a l a n c i n g a n d I / O P e r f o r m a n c e

Significant work must be done to improve load balancing and I/O performance
for the system. As much as a quarter of the time to resolve a query is being
spent on I /0 . As we attempt queries with larger output images, we expect the
problem to get worse.

We have started work on another output partitioning scheme for distributing
queries. Our hope is that the new output partitioning will improve both load
balance and I/O performance. The first step is to intelligently distribute data
sets across all available processors' disks (de-clustering). Data sets local to a
processing node will be arranged on disk for efficient spatial searching (cluster-
ing). Queries will be partitioned such that each processor will mostly resolve
those pixels in an output image for which it has local data. We are investigating
partitioning schemes that both provide good load balance and minimize inter-
processor communication. This plan should result in more efficient I/O because
most disk accesses will be for data to be processed on the local processor, rather
than requiring communication across the network.

122

References

1. Chialin Chang, Alan Sussman, and Joel Saltz. Support for distributed dynamic
data structures in C++. Technical Report CS-TR-3416 and UMIACS-TR-95-19,
University of Maryland, Department of Computer Science and UMIACS, January
1995.

2. Chialin Chang, Alan Sussman, and Joel Saltz. CHAOS++: A runtime library for
supporting distributed dynamic data structures. In Gregory V. Wilson and Paul
Lu, editors, Parallel Programming Using C+§ MIT Press, 1996. To appear.

3. David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing Yu.
Client-server Paradise. In Proceedings of the 20th VLDB Conference, 1994.

4. Michael F. Goodchild, Yang Shiren, and Geoffrey Dutton. Spatial data represen-
tation and basic operations for a triangular heirarchical data structure. Technical
Report 91-8, National Center for Geographic Information and Analysis, University
of California at Santa Barbara, April 1991.

5. S. N. Goward and J. Townsend et. al. Toward rational global-scale remote sensing
databases, March 1994. Presented at Second Inter-Pathfinder Conference, Wash-
ington, D.C.

6. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the SIGMOD Conference, pages 47-57, Boston, June 1984.

7. Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison -
Wesley, Reading, Massachusetts, 1990.

8. Carter T. Shock, Larry Davis, Samuel Goward, and Alan Sussman. A high perfor-
mance image database system for remote sensing. In Proceedings of the Advanced
Imagery Pattern Recognition Conference, Washington, D.C., October 1995.

9. John P. Snyder. Map Projections - A Working Manual. U. S. Geological Survey,
1987. U. S. Geological Survey Professional Paper 1395.

10. Michael Stonebraker. Sequoia 2000: A reflection on the first three years. Technical
Report $2K-94-58, EECS Dept., University of California, Berkeley, 1994.

11. Michael Stonebraker, Jim Frew, Kenn Gardels, and Jeff Meredith. The Sequoia
2000 storage benchmark. In Proceedings of the 1993 ACM SIGMOD Conference,
May 1993.

