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Abstract. We give parallel and on-line algorithms for addition in num-
ber systems where the base is a negative integer, or some complex number
of the form iv/b or —1 + i.

1 Introduction

Addition of two numbers in the classical b-ary number system, where b is an
integer > 2, has a linear time complexity. In order to save time, several solutions
have been proposed. A celebrated one is the Avizienis signed-digit representation
[Av], which consists in changing the digit set. Instead of taking digits from the
canonical set {0,---,b — 1}, they are taken from a balanced set of the form
{a,---,a}, where @ denotes the digit —a, a being an integer such that a +1 <
b < 2a—1 (b must be > 3). Such a number system is redundant, that is to say,
a number may have several representations. This property allows to perform
addition in constant time in parallel, because there is no carry propagation. A
similar algorithm for base 2 has been devised by Chow and Robertson [CR] using
digit set {1,0,1}. Here addition is realized in parallel with a window of size 2.
These signed-digit representations are really implemented; for instance in the
Pentium processor, numbers are represented in base 4 with digit set {2,---,2}
to perform fast division.

On-line arithmetic consists in performing arithmetic operations in Most Sig-
nificant Digit First (MSDF) mode [Er], digit serially after a certain delay of
latency. This mode of doing allows pipelining different operations such as addi-
tion, multiplication and division. It is also appropriate for the processing of real
numbers having infinite expansions. It is well known that when multiplying two
real numbers, only the left part of the result is significant. To be able to per-
form on-line addition, it is necessary to use a redundant number system ([Maz]).
From a parallel algorithm for addition, it is straighforward to derive an on-line
algorithm for the same operation.

In this paper we use a model of computability which is the one of finite state
automata. A function is computable by a finite state automaton if it needs only
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a finite auxiliary storage memory, independently of the size of the data. In that
setting, one knows that addition of two integers in the classical b-ary system is
computable by a finite state automaton, but that multiplication is not ([Ei]).
Actually, the natural f.s.a. one designs to perform addition is a sequential one,
processing numbers in the Least Significant Digit First (LSDF) mode. On-line
f.s.a. have been introduced by Muller [M]. They are sequential f.s.a. processing
data in MSDF mode. The Avizienis and the Chow-Robertson algorithms for
parallel addition lead to the construction of on-line f.s.a. for addition ([M], [FS]).

We study here number systems where the base is a negative integer, or a
quadratic complex number of the form 8 = iv/b or § = ~1 + ¢. With a negative
base, any real number can be expressed without a sign. Representing complex
numbers with a complex base implies that those numbers can be manipulated
without separating the real and the imaginary part. The bases we are considering
are strongly related to negative bases: (ivb)? = —b and (=1 + i)* = —4. We
consider balanced signed-digit sets such that the number systems we obtain
are minimally redundant (with respect to the cardinality of the digit set). We
give parallel algorithms for addition in these systems, from which we derive the
design of on-line finite state automata. We also give some constructions for digit
set and/or base conversion.

Complete proofs will appear in a forthcoming paper.!

2 Preliminaries

Number representations
Let 8 be a real or complex number such that |3| > 1, and let A be a finite
set of real or complex digits. A B-representation of & with digits in A is a finite
or aright infinite sequence (zy)r<k, with zx € A such that z =3 ;3 2 3% It
is denoted by
(Thg -+ To - T_1T 3 )

Automata

Let A be a finite set. The set of finite sequences of elements of A, called
words, is denoted by A*. The empty word is €. Let A and B be two finite sets.
An on-line finite state automaton A = (Q,A x (B Ue), F,ig,w) with delay é
is a directed labelled graph with a finite number of vertices called states: Q is
the finite set of states, 7o is the initial state, F' is the set of edges, labelled by
elements of A x (BU¢), and w : Q — B* is the terminal function. The following
properties must be satisfied. First, the automaton is sequential, that is to say, if

b b’ .
p o8, qand p ol ¢’ are two edges, then necessarily ¢ = ¢’ and b = &'. Secondly,
every path of length é starting in i is of the form
. aife . agzfe asfe .
fo —= iy — - — i,
! We were completing the writing of this paper when we learnt that parallel algorithms

for addition in base —2, iv/2, 2i and —1+1 have been independently given by Nielsen
and Muller in [NM].
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the only edge arriving in a state 4, ..., 15— is as above, and all the other edges
of A are labelled by elements of A x B. This means that the automaton starts
reading words of length < é outputting nothing, and after that delay, outputs
serially one digit for each input digit.

A function f : A* — B* is computable by an on-line finite state automaton
if there exists such an automaton .4 such that the graph of f is equal to the set
{(z,y) € A* x B* | y = ¥y, (z,y') is the label of a path in A starting in iy,
ending in state ¢, and w(g) = y"}. ‘

The same definition works for functions of infinite words, considering infinite
paths in A, but there is no terminal function w in that case.

An on-line function treats numbers in most significant digit first (MSDF)
mode, an on-line finite state automaton processes words sequentially from left
to right. We need also the reverse definition: a least significant digit first (LSDF)
sequential finite state automaton is the same thing than an on-line finite state
automaton, but words are processed from right to left, and the terminal function
w comes as a prefix of the output.

Addition

To perform addition in a given number system with base 7 and digit set A,
the procedure will always be the same: take two numbers z = ¢,_; ---zg and
Y = Yn—1- Yo such that z = Z;é e fF Yy = Z:;é y 3%, with z; and yx in A.
If the expansions are infinite, the process is identical. In parallel, compute z; =
zk+yx. Then zj is an element of B = {¢+d | c,d € A}, and z+y = Z;é 2Bk
Addition consists in transforming the representation z,_, - - - zg of z+y on B into
an equivalent one s,_147-- 80, With sy € A, such that z +y = Z;é“ s 3",
This is a special case of what is called normalization, which consists in the
conversion of any representation of a number in base 5 on a given digit set into
an equivalent one on a “canonical” digit set ([F1}).

3 Negative base number systems

Let 3 = —b, where b is an integer > 2. It is well known (see [K1, K2], [Ma]) that
any real number can be uniquely represented in base —b with digits from the
canonical digit set A = {0,---,6~1}.

Proposition1. Addition in base 3 = —b, b > 2, with digits in A = {0,---,b—
1}, is computable by a LSDF sequential finite state automaton (with delay 0).

Proof. As explained above, we have to convert representations over B =
{0,---,2b — 2} into equivalent representations over A. Number representations
are processed in LSDF mode, that is to say from right to left. The set of states
of the automaton is @ = {0,1,1}. The name of a state indicates what is kept in
memory. The initial state is 0. Let z € B = {0,---,2b — 2}. Edges are defined
by If0<z<b-11et 02 0. 1fb<z<2—21et 023 1.1t 2 = 0, let

17 1 <z<blet T3 0 tfb41<2<2-21et 17725 1 1
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z/z+1 z/z —b+1

0<2<b—2,let 1 — 0.Ifb-1<2<2b—-2,let 1 1.
The terminal function w is defined by w(0) = ¢, w(1) = Land w(1) = 1(b—1). m

Remark. Addition in base —b with digits in 4 is not computable by an on-line
finite state automaton: let us take b = 2 and A = {0,1}. Then (01)?02 has to
be transformed into 1(10)”*+!, but (01)"*! is transformed into itself, so we have
to know the least significant digit to be able to output the most significant digit
of the result.

We introduce an other set of digits in order to obtain a redundant number
system, analoguous to the Avizienis signed-digit representation [Av]. Let a such
that a+1 < b < 2a and let D = {a,---,a}. Then every real number has
a representation in base —b with digits in D. The system is redundant. From
now on, we consider redundant digit sets which are the smallest ones for which
addition can be realized purely in parallel (Proposition 2) or in parallel with a
window of length 2 (Proposition 3).

Proposition2. Let 3 = —b, where b is an integer > 3, and let D = {a,---,a}
where a = |b/2| + 1. Then addition base —b can be realized purely in parallel
in constant time. Moreover, addition is computable by an on-line finite state
automaton with delay 1 and 2a — 1 states.

Proof. 1) Let ¢ = #p_1-- %0 and ¥ = Ynp—1---yYo be two numbers written
in base B, with «; and yx in D for 0 < k < n -1, and let zx = zx + y,
2z € E={(2a),--,(2a)}.

If a <z < 2a, let cgq1 = land ry = 2 — b. If —2a < z;, < —a, let ¢pyq = 1
and 7y = b+ 2. If |zp| <a—1, let cgy1 =0 and rp = 2.

Then in any case, zx = fBcgy1 +7%. Let usput sp = rp+cpfor 0<k<n-1
and s, = ¢,. Thus z +y = Y ;_, sk3%. Since [cx| < 1and |rg] <b—a<a-1,
we get s € Dfor 0 <k <n.

2) From that algorithm we define an on-line finite state automaton with delay
1 realizing addition. To avoid overflow, we assume that words begin with a 0.
Let z = zx € F and let 7(z) = (¢,7) = (ck+1,7%) as determined by the above
algorithm. The set of states of the automatonis @ = {io}U{—a+1,--- a—1}.

The initial state is iq. Edges are defined this way: g o, 0, and, for any ¢ €

Q\ {70} and for any z € E, we have an edge ¢ ghax) r, with (¢, r) = 7(z). Since

el <1and |¢g)<a—1,¢+¢& D and r € Q. The terminal function associated
to any state ¢ # i 1s w(g) = ¢. [
Example

Let 3 = —3 and let D = {2,---,2}. Below is the on-line finite automaton

with delay 1 realizing addition in this system.? Take z = 0202 and y = 0212.

Then z + y = 0414. We have in the automaton 2o —> 0— 4/1 1/1 15 4/0 1 and

w(1) =1, thus  + y = 1101.

2 1 thank Paul Gastin for his set of macros Autograph.
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0/0,3/1,3/1 1/1,2/2,4/0

1/0,2/1,4/1

0/1,3/2,3/0

1/1,4/2,3/0

In the case that 3 = —2, the previous algorithm does not apply. We give a
special algorithm for that case, which can be extended to any even b together
with a minimally redundant digit set, and which is analoguous to the Chow and
Robertson algorithm for base 2 [CR].

Proposition3. Let § = —b, where b = 2a, a being an integer > 1, and let
D = {a, --,a}. Then addition base —b can be realized in parallel in constant
time with a window of length 2. Addition is computable by an on-line finite state
automaton with delay 2, and 4a® + 2a + 3 states.

Proof. For 0 < k <n-—1,let z = 2, +y € E = {b,---,b} as above. If
a+1<z;<bletepyr=landry =2 —b. If b <2 <—a—1,let cpp1 =1
and 7y = b+ 2. If z; = a, and if 25,1 < 0 then let cx4; = 1 and 7 = a else let
cgyr =0and rp =a. Mz = —a,andif zp; >0 thenlet ¢y =land rp =a
else let cpy1 = 0 and rp = —a. If |z;) < a— 1, let cgy1 = 0 and vy = 2.

Then we have z, = Bcxq1 + 7. Let sy =rp + e for 0 <k <n—1ands, =e¢,.
Clearly x4y = 31 _, s 8%. We have to show that s;, € D. When a+1 < |z| < b,
whatever the value of z;_1 is, we get |rx| < a—1 and |cx| < 1, thus [sx| < a.

If 2z =a,and if z;,_; <0 then ry =aand ¢y =0 or 1, thus sy = —aor —a+1
and thus belongs to D. If 2, = a and z;-; > 0, then v, = ¢ and ¢; = —1 or 0,
and so s; = a — 1 or a. The case zp = —a is symmetric. If |z;| < a—1, ry = 2z

and |ex| < 1, thus sy € D.
The construction of the on-line automaton will be given in the full paper. m
In [Ko] it is shown that digit set conversion can be very useful in Computer
Arithmetic. Here we have the following.

Corollary 4. The digit set conversion in base —b between numbers written with
digits in the canonical digil set A into their representation with digits in D
is computable in parallel in constant time, and computable by an on-line finite
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automaton. The inverse conversion, from D 1o A, cannot be computed on-line,
but in LSDF mode only (with a sequential finite stale automaton).

In the same spirit, in [Al], it is shown that conversion between numbers written
in base b, b integer > 2, with digit set A = {0,---,b—1} into their representation
in base —b with the same digit set is computable by a LSDF sequential finite
state automaton. We show the following.

Proposition5. Let b be an integer > 2. The conversion from base b and digit
set A=10,---,b— 1} into base —b and digit set D = {a,---,a}, whitha+1 <
b < 2a, is computable by a LSDF sequential finite state automaton. The inverse
conversion is also computable by a LSDF sequential finite state automaton.

4 Complex number systems

Base 8 = ivb

Let 8 = iv/b, where b is an integer > 2. Any complex number is uniquely
representable in base § with digits in the canonical digit set A = {0,---,b— 1}
(see [K1], [KS], [Gi]). Note that when b is a perfect square, b = ¢?, ¢ integer > 2,
cases 3 = ci as well as 3 = —ci are included in the general case. Most studied
cases are 3 = 2i and A = {0, - -, 3}, strongly related to base —4, and 8 = iv/2
and A = {0,1} ([K1, K2]).

Let j be an integer > 0, possibly infinite, and let £ > 0. Since 32 = —b, we
have

(ask -+ @0 a1 -a_s;)p =

(azka2k-2 R T IR 7 B I 'a—zj)—b + i\/E(azk'—IGZk—S R S S B 'a~2j+1)—b~

Thus, if z = 2+ iy € C,  and y in R, the @-representation of z can be obtained
by interleaving the —b-representation of z and the —b-representation of y/v/b.

Proposition6. Addition in base 8 = iv/b, b > 2, with digits in A = {0,---,b—
1} is computable by a LSDF sequential finite state automaton. It cannot be com-
puted on-line.

Proposition7. Let § = iv/b, where b is an integer > 2, let a = |b/2) +1 and let
D ={a, --,a}. Then addition in base 8 = iv/b can be realized purely in parallel
in constant time. Addition is computable by an on-line finite state automaton
with delay 2 and (2a — 1)? + 2 states.

Proof. We define z; € E = {(2a),---,(2a)} as above. If a < z; < 2a, let
cep2 = land rp = 2z — b. If —2a < z;, < —a, let chyo =1 and v = b+ 2. If
|zx] < a—1,let ¢ 42 = 0 and rg = z;. In any case, |cx| < 1 and |rg| < b—a < a—1.
Thus, z;, = B2ckp2+7r. Let usput sy = rp+cp for 0 < k<n—1, s, = cn,
and s,41 = Cpy1. We have z +y = Z?:()l sk 3% with Isk] < a.
The construction of the on-line automaton will be given in the full paper. m
We now consider the minimally redundant digit set associated to 8 = iv/b
when b is even.
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Proposition8. Let 8 = ivb, where b > 2 is even, let a = b/2 and let D =
{@,---,a}. Then addition base § = iV'b can be realized in parallel in constant
time with a window of length 3. Addition is computable by an on-line finite state
automaton with delay 3 and about b* states.

Proof. Define z; € E = {—b,---,b} as above. If a + 1 < 2z < 2a, let cgq2 =1
and 7, = 2 — b, If =20 < z;; < —a—1, let cg42 = 1 and 7 = b+ 2. If
zr =a and if zp_3 < 0, let cp4o = 1 and ry = @ else let cy42 = 0 and ry = a. If
zg = @ and if zx_2 > 0, let cgyo = 1 and ry = a else let cgy2 = 0 and rp = a.
If |2x]| < a—1,let cgp2 = 0 and ry = 2. In any case, |cx| < 1 and |rg| < a.
We have z; = B2cpi2+ k. Let sy = rp +cp for 0 < k< n-—1,s, = ¢y, and

Sp41=Cns1. Then z +y = ?;01 sp .

Ifa+1 < |z| < 2a, then |rg| < a—1. Since |ep| < 1, |sp| < a. If |2z <a-—-1,
we get |si| < a. Let zx = a and 2zz—2 < 0. Thus 1y = —a and ¢y = 1 or 0, so
sp €ED.If 2z = aand z;_9 > 0, then 7, = a, cx = 1 or 0, thus s; € D. The case
zr = a 1s similar. [ |

Corollary 9. The digit set conversion in base § = ivb between numbers written
with digits in A into their representation with digits in D is computable in parallel
in constant time, and computable by an on-line finite automaton. The inverse
conversion, from D to A cannot be computed on-line, but in LSDF mode only
(with a sequential finite automaton).

Base 8 =~b+1¢

We now consider base 3 = —b + ¢, where b is an integer > 1. It is known
([KS], [Pe]) that any complex number is uniquely representable in base § = —b41
with A = {0,---,b?} for canonical digit set. The case 8 = —b — i is the same.
Every following property is satisfied by both bases. Recall that addition in base
B = —b+i, b > 1, with digits in A = {0,---,5?} is computable by a LSDF
sequential finite state automaton [Sa].

Remark that (—1+14)* = —4, but that for any b > 2, there is no integer k # 0
such that (—b + ©)* is an integer. Thus, from now on, we treat only of the case
8 =-1+417and A ={0,1}. The minimally redundant digit set for base —1 + ¢
is {1,0,1}, but it is an open problem to give a practical algorithm performing
addition in parallel for this digit set (see [NM]). Since (=1 +4)? = —2i, it is
natural to take D = {2,---,2} as a digit set leading to a redundant number
system.

Proposition10. Addition in base 8 = —1 + i and digit set D = {2,..- 2}
can be realized in parallel in constant time with o window of length 5. Addition
is computable by an on-line finite state automalon with delay 5, and about 5°
states.

Proof. Let 21 € E={4,---,4},0<k<n—-1.Iz; =4, let ckya=1, 7 = 0.
Ifzp =4, let crya=1,7r, =0 If 2 =3, let crya =1, 7y = 1. If 25 = 3, let
ckra=1,rp =112z, =2andif z;_4 <0, let cryq = land ry = 2else cpya =0
and 7 = 2. If 2z = 2 and if 254 > 0, let cx1q = 1 and r; = 2 else cx14 = 0 and
re = 2. If |21 < 1, let cpyqa = 0 and 7 = 2. We have z;, = Bcpyq + ri. Let
Sk = Ck + Tk
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If 3 < |zk| <4, or |zx| < 1, then in any case |rg| < 1 and |eg| < 1. thus |sz]| < 2.
If z;, = 2 and 254 < 0, we have 7, =2 and ¢;, = L or 0, thus |s;| < 1. If 2z, = 2
and zg_q > 0, then 7y = 2 and ¢;, = 1 or 0, thus |sz| < 2. The case z, = 2 is
symmetric. n

Remark. Conversion in base —1 + i between digit set A = {0,1} and D =
{2,---,2} is not on-line computable, but is computable by a LSDF sequential
finite state automaton.
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