
Basic Linear Algebra Operations in SLI 
Arithmetic  

Michael A. Anuta 1, Daniel W. Lozier 2, 
Nicolas Schabanel 3 and Peter R. Turner 4 

1 Cray Research Inc., Calverton, MD 20705, USA 
2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 

3 ]~cole Normale Sup~rieure de Lyon, Lyon, France 
4 United States Naval Academy, Annapolis, MD 21402, USA 

Abst rac t .  Symmetric level-index arithmetic was introduced to over- 
come recognized limitations of floating-point systems, most notably over- 
flow and underflow. The original recursive algorithms for arithmetic op- 
erations are parallelizable to some extent, particularly when applied to 
extended sums or products. The main purpose of this paper is to present 
parallel SLI algorithms for arithmetic and basic linear algebra operations. 

1 I n t r o d u c t i o n  

This paper reports on a continuing project to develop, implement and apply 
parallel algorithms for SLI (symmetric level-index) arithmetic; for a more de- 
tailed progress report, see [1]. The algorithms are being developed with a view 
toward a possible future implementation in hardware but at this stage they are 
being coded for a particular SIMD (single instruction, multiple data) computer 
system. The algorithms cover individual arithmetic operations and extensions 
to the BLAs (basic linear algebra operations) such as the product of a scalar 
times a vector, the scalar product of two vectors, and the 'saxpy'  operation [8] 
consisting of a scalar times a vector plus a vector. All these operations, especially 
the BLAs, can benefit from the parallel execution of appropriate algorithms. 

Extending [13], a parallel software implementation of individual SLI arith- 
metic operations was developed in 1995 by Schabanel and Turner [12]. This is 
part  of an envisioned 'computer arithmetic laboratory '  which will implement 
different kinds of computer arithmetic and compare them on representative nu- 
merical problems; see Anuta, Lozier and Turner [2]. 

The LI (level-index) representation of real numbers, its application to com- 
puter arithmetic, and recursive algorithms for arithmetic operations, were intro- 
duced in 1984 and 1987 by Clenshaw and Olver [4, 5]. The s~/mmegric form of 
the LI system was developed in 1988 by Clenshaw and Turner [7]. See also the 
survey [6]. 

An account of ger~ere~lized logarithmic and exponential functions is given in 
[3]. The LI and SLI computer arithmetic systems are based on a generalized 
exponential function ~b and its inverse function, a generalized logarithm ~b. These 



194 

functions are defined by r  = r  = z when 0 < z < 1 and by the relations 

r  = e r 1) r  = 1 + r  z) (1) 

when z > 1. Repeated application of the relation for r is possible up to s times, 
where l > 1 is determined by the condition that  the l-fold repeated logarithm 
of z lies in the interval [0, 1). By definition, l is the level of z, and the l-fold 
repeated logarithm is the indez of z. When 0 < z < 1, the level of z is zero and 
the index of z is z itself. 

For computer arithmetic with w bits per word, LI representations are stored 
in two fields: (sign bit, generalized logarithm). That  is, an arbi t rary real number 
X is written as 

x = (2) 

where z = r then z is rounded and stored in ordinary (w - 1)-bit fixed- 
point format.  As a consequence of the exceedingly rapid growth of r Lozier 
and Olver proved in [9] that  the finite set of w-bit LI representations with level 
not more than 6 is closed under individual arithmetic operations (excluding, of 
course, division by zero), provided that  w does not exceed 5.5 million or so. 
Therefore, 3 bits in the integer and w - 4 bits in the fractional part  of z always 
suffices in practice. 

The LI representation has, in effect, an 'accumulation point '  at infinity, but 
not at zero. The SLI representation of X r 0 is 

X : s x r  "x (3) 

where r x  -- +1 if IX[ >_ 1, r x  = - 1  if IX[ < 1, and z - r  "x)  >_ 1. This 
allows for an 'accumulation point '  at both infinity and zero. As a consequence of 
the closure property cited above, the SLI  system is free of both overflow and un- 
derflow. Comparisons of SLI to typical floating-point systems for w - 32, 64, 128 
are given in [9] and [11]. 

The interest in SLI ari thmetic stems from its potential for simplifying com- 
puter programming. Because of its ability to represent extremely large numbers 
and their reciprocals in a small number of bits, the vexing problems of overflow 
and underflow are avoided completely. Software engineering experience shows 
that  defensive coding artifices which have been developed to guard against over- 
flow and underflow, such as the ones described in [10], add significantly to the 
cost of creating and maintaining robust software. 

2 O r i g i n a l  S L I  A r i t h m e t i c  A l g o r i t h m s  

In this section, to fix notation, we review the original recursive algorithms given 
in [7]. If o is an arithmetic operation, the problem is to solve the equation 

z = s z r  = "x o = x o Y ( 4 )  

for sz,  rz ,  z given sx ,  sy,  r x , r y ,  $, y. It suffices to restrict 

s z = s x = s y  = 1 ,  X > Y > 0 .  (5) 



195 

The  more  difficult opera t ions  are the addi t ive  ones, for which three cases exist: 

large r  = r  + r  
mixed  r = r  _4_ r  (6) 
smal l  r  = 0 ( z ) - 1  + r  

In all cases r z  = r x  ezcept possibly in large subtraction, mized  subtraction, or 
smal l  addition. These except ional  cases have been called f l ipover cases. 

Let s  = level(X) -- [x], f x  = index(X) = x - [x], and  s imi lar ly  for s  s  
f y ,  f z .  T h e  a lgo r i thm generates  the sequences 

aj = 1 / r  - j ) ,  c~ = r  - j ) / r  - j ) ,  (~) 
the app rop r i a t e  fo rm of the sequence 

large bj = r  - j ) / r  - j ) ,  
mixed  bj = 1 / r  - j ) ,  (8) 
s m a l l  bj = r  - j ) / r  - j ) ,  

and in some s i tuat ions  the h-sequence hj -- r  First  the  a- and  b-sequences 
are genera ted  by backward  recurrence f rom 

aLx_ 1 = e - I X  e--1/a~ , a ~ _ l  = (9)  

and 
large b ly -1  : a L r - l e  ]•, b j -1  = e (bj-1)/ai,  
mixed  b ly -1  : e - ] Y ,  b j -1  : e - l l b l ,  (10) 
smal l  bLx-1 = e - # ( ~ - l X ) e l X ,  b j -1  = e ( b j - 1 ) / a j b j .  

~x ( the s ta r t ing  value for the c-sequence) is given by Then  c -- c o 

large and smal l  c = 1 4- bo, mixed  c = 1 -4- hobo. (11) 

Since 
r  = c r  = c / 4  ~ ,  (12)  

flipover occurs when r x  -- +1  and  c < a0, or when r x  = - 1  and  aoc _) 1. In 
the la t ter  case, z = 1 + In aoc. In the o ther  two cases we genera te  the h-sequence 
f rom 

hi  = - l n c / a o ,  hj -- l n h j - i  ( j  = 2 , 3 , . . . )  (13) 

until  hj �9 [0, 1), then z = j + hi .  
Now suppose  flipover does not occur.  I f  i x  = 1 we genera te  the h-sequence 

s ta r t ing  f rom hi  = f x  + r x  Inc.  I f  i x  > 1 we genera te  the c-sequence f rom 

el = l + r x a l l n c ,  cj = 1 +  aj  l n c j _ l  ( j  = 2 , 3 , . . . )  (14) 

until  ei ther  

1. cj < aj  and  j < i x  1, in which case z = j + c j / a j ,  or 
2. j = s  - 1 and  cj ~ a j ,  which requires the  genera t ion  of  the h-sequence and  

z as above,  but  wi th  the s ta r t ing  value hlx  = f x  + l n c l x - 1 .  

A l inearized error analysis  in [7] considers the 'working  precis ions '  needed 
to l imit  the  rounding errors in the  a lgor i thms  presented above  to the  size of  
the inherent  errors; see also [5] and  [14]. The  analysis  shows, for a word length 
w -- 32 bits,  t h a t  it suffices to compu te  and  store all sequences to 6 bits  before 
and  36 bits  af ter  the b inary  point .  



196 

3 M o d i f i e d  S L I  A r i t h m e t i c  A l g o r i t h m s  

In this section we describe modifications of the previous algorithms which are 
well-suited to SIMD parallel implementation. The modified algorithms for SLI 
addition and subtraction were first presented in [2]. They are reviewed briefly 
here and then extended to multiplication, division and basic linear algebra op- 
erations. 

3.1 T h e  A d d i t i o n  a n d  S u b t r a c t i o n  A l g o r i t h m s  

Again we consider the problem (4) under the restrictions (5), and we take into 
account all of the cases in (6). The new algorithm begins in the same way for 
all cases. In addition to the a-sequence (7), which we now denote as a j (z) ,  we 
define aj(y) = 1/r  - j ) ;  this is generated by a recurrence analogous to (9). 
Then the starting value for computing the c-sequence can be expressed as 

c = 1 + ~o(~)" /ao(y )  "~" (15) 

This is equivalent in all mathematical,  but not numerical, respects to (11). 
Some implementation details are omitted here. For example, the division in 

the large case of (15) could, for fixed finite precision arithmetic, take the form 
of 0/0. However, under our assumptions do(z) <_ do(y) so that  if do(z) = 0 then 
one of c = 0, 1 or 2 is appropriate. Such considerations were dealt with in [5] 
and [7] and can be similarly treated here. The remainder of the addition and 
subtraction algorithm is performed as before. The complete modified algorithm 
for SLI addition and subtraction is summarized as Algorithm 1: 

Algorithm 1. Modified SLI Addition and Subtraction of Positive Arguments 
Input (rx ,  z), (rr ,  y), Sop = +1 (for addition) or - 1  (for subtraction) 
Initialize r z  = r x  
Compute a-sequences ~j -- a j (z )  and aj(y)  in parallel 

j = l  
If rx  = +1 then c = 1 + Sop~oao(y) -rY 

if c < ~o then rz  = - r x ,  h = - l n c / ~ o ,  go to h-step 
else c = 1 + sopao(y)/~o 

ifc~o > 1 then rz  = - r x , z  = 1 + lnc~o, go to Output 
If s = 1 then h = f x  + r x  In c, go to h-step 

else c = 1 + rxE.1 In c 
While j < l x  - 1 and c _> ~j 

j = j +  1 , e =  l + ~ j  lne 
If c < ~j then z = j + c/~j, go to Output  
j = s  f x  + lnc 

h-step While h > 1 
j = j +  l , h = l n h  

z = j + h  
Output  ( rz ,  z) 



197 

The stopping conditions for the c-sequence are simpler than they appear. For 
r x  = +1, for example, the first condition governs addition; the second governs 
subtraction. At most one step of the h-sequence is needed for addition. 

Algorithm 1 is simpler than the original SLI algorithm in that  only the mixed- 
case b-sequence in (8) is used. The error analysis of the algorithm is different 
but that  is not the subject of the present work. The complexity of the algorithm 
in terms of its use of special exponential and logarithmic functions is not signif- 
icantly different but there is a more natural parallelism in the computat ion of 
the two a-sequences that  facilitates SIMD computation.  

The following algorithm extends Algorithm 1 to the computat ion of 

N hr 

z = s:+ ( , ; :  = E s,+(:,):, = E 
i = 0  i = 0  

where we assume that  r ~~ _> r ~' for all i and that  so = +1. 

Algorithm 
Input 
Initialize 
Compute 

2. Modified SLI Summation of N Arguments 
~'~)i=o with so = +1 and [X0l ~ [Xil for i > 1 81, r i ,  N 

r z ---- r 0 

~sequences  ~ = a~(~o) and a j ( ~ )  for i > 1 in parallel 
j = l  
If ~o = + t  then c = 1 + ~ ~ o a o ( = ~ ) - " ,  ~z  = sgnr  = Icl 

if c < ~0 then r z  = - r 0 ,  h ~ - l n c / ~ o ,  go to h-step 
else c = 1 + E S ~ o l a 0 ( ~ ) ,  s z  ---- sgnc, c = Icl 

if c~o >_ 1 then rz  = - t o ,  h = lnc~o, go to h-step 
If lxo = 1 then h = fxo + ro In c, go to h-step 

else c = 1 + r0~t In c 
Complete the algorithm exactly as in Algorithm 1 

For serial computation, Algorithm 2 represents a saving of approximately 
66%: repeated application of Algorithm 1 requires 2N a-sequences and N c- 
sequences, whereas Algorithm 2 needs just  (N + 1) a-sequences and a single c- 
sequence. In a parallel environment, the two algorithms have essentially the same 
complexity: all the a-sequences are computed simultaneously and the completion 
of the algorithm is unchanged. The extra work to obtain c can use an efficient 
fized-poing reduction algorithm for summation. No special arrangement of the 
work is necessary because all the internal arithmetic is fixed-point. 

3.2 Multiplication and D i v i s i o n  

Again we adopt the restrictions (5), using Y / X  = ( X / Y )  -1 where necessary. 
Let o denote either multiplication or division, and consider (6) with o in place 
of -4-. The following table shows that  it suffices to consider only computations of 
the form 

r  = r  o r  (16) 



198 

w h e r e u > v > l :  

Original operands Multiplication Division 
large "z = +1, r = r * r "z = +1, r = r162 

mixed r  > r r s  -- + l ,  r  -- r162 r z  -- + l ,  r -- r * ~b(y) 
mixed r < r r z  = - 1 ,  r = r162  rg = +1, r = r * r  

small r z  = - 1 ,  r = r * r r z  = + l ,  r -- r162  

In all four cases we have z > 1 and either u --- z , v  = y or u = y ,v  = z. By 
analogy with (7), (11) and (12) we can write 

c = ~o(~) (17) 

where co -- e -1 for multiplication and co = c +1 for division. Then Algorithm 3 
proceeds as the large case of Algori thm 1 with simplifications because flipover 
is impossible. The initialization (17) has the merit  of being universally appli- 
cable. For a SIMD or potential  hardware design, this may  be preferable to the 
initialization that  was used in the original serial algorithm. 

Algori thm 3. Modified SLI Multiplication and Division of Positive Arguments 
Input  u, v, and r -- - 1  (for multiplication) or r = +1 (for division) 
Compute  a-sequences ~j = aj (u) and aj (v) in parallel 

j = 1, c = a0(v), l x  = ev, f x  = fv ,  r x  = r 
Complete the algori thm exactly as in Algori thm 1 

4 S L I  A l g o r i t h m s  f o r  B a s i c  L i n e a r  A l g e b r a  O p e r a t i o n s  

Two of the more impor tant  low level BLAs (basic linear algebra operations) 
are the scalar product and saxpy. It is possible to design an SLI dot-product 
operation which does not complete all the elementwise products but instead 
uses the information from the a-sequences to obtain those for the summands.  
The complete scalar product  operation is then just one extended SLI operation. 
The saxpy operation is treated similarly in Section 4.2. 

4.1 D o t  P r o d u c t  

Our objective here is to obtain szqb(z)  "z = X T Y  where the components of the 
N-vectors X, Y are stored in SLI form: 

X T X N = ( , ) ,=1 = ( s x , r  and  y T  = (~ )~=~  = ( s y , r  

The first step is to rearrange the da ta  so that  each elementwise product is of the 
form (16). 



1 9 9  

Simultaneously for each i we set 

8S ~ 8X.,; �9 8y~. ,  ,Os ~ '/'X'~. " 'r'y.,; 

ui = max(ms, Yi), vi = min(zi,  Yi) (18) 
~ rx~ if us = ms 

r i _-- 
I. ry~ otherwise 

Then the required dot product given by 

N 

~r = ~ , s  (r r ' (19) 
S = l  

where each of the internal operations is in the desired form. 
Although we do not compute these component products explicitly, it will be 

useful to denote them by wi. That  is, for each i = 1, 2 , . . . ,  N 

r = r  r (201 

For Algorithm 2, the a-sequence of each component was required. The full se- 
quence is required only for the largest component of the sum; for the others just 
ao(wi) suffices. Using (20), we have 

-0(~s) = ao(,,) .-0(~s)"'.  (21) 

To generate the initial value of c for the summation without completing these 
products, it remains to identify the largest component of the sum. In order to 
complete the summation, we also need the complete a-sequence for this term. 

For the first of these, the function a0(m) is monotone decreasing. The largest 
term corresponds to min{ao(wi) : ri = +i} assuming this set is nonempty and 
to max{a0(ws)} otherwise. This can be obtained by the usual reduction process. 
Let ~ denote this largest term: 

~r = ~(r162 ~ 

and let Aj -- aj (~) and a j  = aj (~). Also, we shall denote by Cj the c-sequence of 
the summation and by cj that  for r162 The sequence a j  is already known. 
Also A0 is given by (21) for the appropriate i. From (17), we have c = ao(Y) and 
modifying the definition in the summation algorithm to this situation 

N 

= ~. A-~-~ ~ .  ~0(~, ) -" (22) C 
4 = 1  

with the various terms given by (21). 
It remains to obtain the rest of the sequence Aj. The algorithm is completed 

as in the regular summation using the recurrence Cz = 1 + FAz In C, Cj = 
1 + Aj In Cj_ z and any terms of the h-sequence which may be needed. 

By definition, Aj = aj (~) = 1 / r  and cj = r162 As usual, 
cj = 1 + aj  lncj_z.  Multiplying the first two of these, Ajcj = 1/ r  - j )  = exj 



200 

and hence .43. = a j / ( 1  + a j  lnc~'_l) which can be computed in parallel with cj. 
It  follows that  the required sequences can be computed in (staggered) parallel 
so that  (cj, Aj, C j_I )  are all obtained simultaneously which effectively adds just 
one step to the c-sequence. 

The SLI dot product is thus equivalent to an extended summat ion  (Algo- 
r i thm 2) which has essentially the same complexity as a single SLI operation. 
A greater fixed-point wordlength is needed for the reduction summat ion  in (22) 
since each summand  is obtained from its factors (21). 

4.2 S a x p y  

In this section we turn to the vector operation Z = a X + Y  where X, Y, Z are N-  
vectors and a is a scalar all given by their SLI representations. The parallelism of 
the operations for the individual components  of Z is apparent.  We concentrate 
on the single mult iply-accumulate operation 

8 z r  = ~ r  ~ x r  "x + ~ y r  (2~) 

Although we concentrate on just  one such operation, we cannot insist on any 
particular (magnitude) ordering among the operands or the part ial  results since 
all possible combinations may be encountered within a SLI saxpy operation. 

The signs sa and 8x  can be immediate ly  combined to yield the sign s~ of 
the product te rm which we denote temporar i ly  by 

The two factors of the product can also be arranged in the form (16)), i.e. 
r  = r o r with u > v > 1: 

Original operands z > a ::~ u = z, v = a z < a ::~ u = a, v = 
large, r x  = r a = + l  r w = + l ,  o - - *  r w = + l ,  o = ,  

mixed, r x  = + l , r ~  = - 1  r w  - +1, o = /  r w  = - 1 ,  o = /  
mixed, r x = - l , r ~ = + l r w = - l ,  o = /  r w = + l ,  o = /  
small, r x = r ~ = - i  r w  = - l ,  o = * r w  = - l ,  o = ,  

Now, in a similar manner  to tha t  used for the dot product, we have 

ao(w) = ao(u) . ao(v) r (24) 

where, as in Algori thm 3, r = T1 for multiplication and division respectively. 
To define c for this combined operation we must  identify the larger operand for 
the addition. The decreasing function a0(e) helps decide this as follows: 

Operands s z  ~j c definition 
large ao(~,) < ~o(U) ~w a~(w) c = 1 + ao(~,)/ao(U) 
, w  = , y  = + t  ~ o ( ~ )  > ~o(y)  s y  ~jCu) c = 1 + ~oCu)/~o(~)  
mixed rw  = +1, r~. = - 1  s w  a j ( w )  c = 1 + a o ( w ) ,  ao(y) 

r w  = - l , r y  = + l  s r  a j (y )  c =  l + a o ( w ) . a o ( y )  
small ao(w) < ao(y) s y  a j (y )  c = 1 + ao(w) /ao(y )  
, w  = ,Y = - 1  ~ o ( ~ )  > ~o(u) 8w ~.(~o) c = 1 + ~ o ( y ) / ~ o ( ~ )  



201 

If ~j = aj (y) the algorithm can be completed exactly as in Algorithm 1. For 
the other cases, the quantities ~j = aj (w) are not readily available and must be 
computed from the sequences aj (u), aj (v). The details of these cases are similar 
to those of the dot product in that  an a-sequence is needed and this entails the 
simultaneous computat ion of two related c-sequences. 

At the beginning of this phase of the algorithm, for the cases where ~j -- 
aj(w), we have, summarizing the above table, c = 1 + ao(w) ~W. ao(y) -~Y where 
~o = ao(w) is given by (24). The a-sequence aj(u) and the initial value of the 
c-sequence for the multiplication given by b = ao(v) are available. The first step 
consists of computing bt = 1 + r a t ( u ) - l n b  and ~t = at(u)~(1 + rat(u) ,  lnb). 
Subsequent steps require three very similar computations: 

a~+t(u) 
c~ = 1 + ~ ; l n c ~ _ t ,  bj+t = 1+  a~+ t (u ) . l n%,  ~ + t  = 1 +a~+t (u ) . lnb~  

except ct = 1 + rw~t lnc. These steps can be completed as far as obtaining 
bL- t ,~L- t  and CL-t where L = [u] is the level of u, and they can be computed 
in parallel with minimal delays. Any further steps that  are needed may be com- 
pleted much as in Algorithm 1. By definition, cL- t  = r - L + 1) / r  - L + 1) 
from which it follows that  

AL ---- r -- L) = lnr - L + i) = ln~(w -- L + i) + IncL-t 

Now, since lnr  - L + 1) = l n r  L + 1) + In bL-1, this yields 

hL = f,, + lnbL- t  + l n cL- t  (25) 

where f~ = u - L is the index of u. 
Finally, if hL _> 1, the algorithm is completed by computing additional terms 

of the h-sequence as necessary. Since each underlying operation can increase the 
level by at most one, no more than two such steps are required. When (j  = as(y), 
at most one step of the corresponding h-sequence is needed. 

In a serial computing environment, each component of the resulting vector 
is computed using three a-sequences and two c-sequences which represents ap- 
proximately a 17% saving relative to SLI multiplication and then addition (each 
requiring two a-sequences and a c-sequence). In a SIMD parallel environment 
(with sufficient processors) all the o-sequences are computable simultaneously as 
are all the c-sequences so that  the complete parallel saxpy operation has similar 
parallel complexity to Algorithm 1 for scalar SLI addition. 

5 Conc lus ions  

In this paper we have demonstrated that  fundamental vector and scalar processes 
in SLI arithmetic have essentially the same computational  complexity through 
effective use of parallel recursive algorithms. The main source of this parallelism 
is in the simultaneous computat ion of sequences which are independent of one 
another, essentially one for each component of the vector operands. This kind 



202 

of parallelism may  make SLI at t ract ive for numerical linear algebra. A SIMD 
parallel computer  system is ideal for demonstrat ing the parallel advantages of 
SLI algorithms. 

All SLI algori thms can be executed in fixed-point ari thmetic.  A suitable num- 
ber of guard digits is needed, as determined by appropriate  error analysis. Results 
have been obtained by a priori error analysis for individual ar i thmetic  operations 
in earlier papers, and these were incorporated into our software implementat ion.  
Further work in error analysis will be the subject of future papers. 

R e f e r e n c e s  

1. M. A. Anuta, D. W. Lozier, N. Schabanel, and P. R. Turner, Basic linear algebra 
operations in SLI  arithmetic, Nat. Inst. Stand. and Tech. Report NISTIIt 5811, 
March 1996, 15 pages. 

2. M. A. Anuta, D. W. Lozier, and P. R. Turner, The MasPar MP-1 as a computer 
arithmetic laboratory, J. Ires. Nat. Inst. Stand. and Tech. 101 (1996), 165-174. 

3. C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. It. Turner, Generalized ex- 
ponential and logarithmic functions, Comput. Math. Appl. 12B (1986), 1091-1101. 

4. C.W. Clenshaw and F. W. J. Olver, Beyond floating point, J. Assoc. Comput. 
Mach. 31 (1984), 319-328. 

5. _ _ ,  Level-index arithmetic operations, SIAM J. Numer. Anal. 24 (1987), 470- 
485. 

6. C. W. Clenshaw, F. W. J. Olver, and P. it. Turner, Level-index arithmetic: An 
introductory survey, Numerical Analysis and Parallel Processing (P. It. Turner, 
ed.), Springer-Verlag, 1989, pp. 95-168. 

7. C. W. Clenshaw and P. It. Turner, The symmetric level-index system, IMA J. Nu- 
mer. Anal. 8 (1988), 517-528. 

8. G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed., Johns Hopkins 
University Press, Baltimore, MD, 1989. 

9. D. W. Lozier and F. W. J. Olver, Closure and precision in level-index arithmetic, 
SIAM J. Numer. Anal. 27 (1990), 1295-1304. 
D. W. Lozier and P. R. Turner, Robust parallel computation in floating-point and 
8LI arithmetic, Computing 48 (1992), 239-257. 
_ _ ,  Error-bounding in level-index computer arithmetic, Numerical Methods 
and Error Bounds (G. Alefeld and J. Herzberger, eds.), Akademie Verlag, Berlin, 
1996, pp. 138-145. 
N. Schabanel and P. It. Turner, Parallelization and parallel implementation on the 
MasPar of SLI  arithmetic, Mathematics Department, U. S. Naval Academy, An- 
napolis, MD 21402, September 13, 1995. 
P. It. Turner, A software implementation of SLI  arithmetic, Proc. ARITH9, IEEE 
Computer Society Press, Washington, DC, 1989, pp. 18-24. 
_ _ ,  Implementation and analysis of extended SLI  operations, Proc. ARITH10, 
IEEE Computer Society Press, Washington, DC, 1991, pp. 118-126. 

10. 

11. 

12. 

13. 

14. 


