
Workshop 11

High Performance
Computing and Application

Parallel Implementation of RBF Neural Networks

V. Demian 1 and F. Desprez ~ and H. Paugam-Moisy 2 and M. Pourzandi 3

1 LaBRI, Universit~ Bordeaux 1, F-33405 Talence cedex, France
2 LIP, Ecole Normale Sup~rieure de Lyon, F-69364 Lyon cedex 07, France

3 LIFL, Universit~ Lille 1, F-59655 Villeneuve d'Ascq cedex, France

Abs t rac t . This report presents several parallel implementations, on a MIMD
machine, of a learning algorithm called OLS (Orthogonal Least Squares) for
RBF (Radial Basis Function) neural networks. The sequential version is first
described, and a straightforward parallel version is proposed. Two variants
are developed, one of them reducing the complexity of the algorithm, and
the other one improving the load balancing. An alternative is proposed for
the storage of initial or intermediate data on local memory and discussed,
according to the size of the application.

1 I n t r o d u c t i o n

A method based on using Radial Basis Functions (RBF) has been first introduced in
1988 by Broomhead and Lowe for resolving applications by neural networks [1]. Now
RBF neural networks can be considered as an alternative to multi-layer perceptrons
(MLP). They principally differ from MLP by the local representations processed by
their internal units. RBF neural networks are a powerful tool for computing complex
functions since it has been proved that they are universal approximators [9, 10], just
as multi-layer perceptrons be [3, 6]. RBF neural networks achieve good performance
with rather fast learning algorithms which make them particularly interesting to
be used in a wide range of computational resource consuming applications, .such as
pattern recognition, signal processing, function approximation, classification, etc [11,
12].

In 1989, Moody and Darken proposed the first learning algorithms for this con-
nectionist model [8]. Beside a completely supervised method based on gradient de-
scent, they proposed a two-phases algorithm based on self-organization for the hidden
layer and then on supervised learning for the output layer. In order to overcome the
difficulty of choosing the number and value of hidden units, a priori, in 1991 Chen
and al. [2] proposed a new learning rule for RBF neural networks which they called
the OLS learning algorithm. An arbitrary choice of the initial positions of centers
often yields a bad performance (local minima) or a too large size for the network.
Contrary to classical algorithms, the OLS learning algorithm does not modify the
positions of initial centers but selects them among the initial set of examples.

The sequential version of the OLS algorithm is first summarized, and a straight-
forward parallel version is proposed. Afterwards, two variants are developed for the
parallel version and their convenience is discussed.

244

2 Description of the OLS learning algorithm

2.1 RBF neural network: architecture and computation

An RBF neural network is composed of n input units and one hidden layer of radial
basis function units. Its scalar output computes the following function

h

f (z) ---- 0o + ~ 0,~ (]] m - ci[I), (1)
i = l

where ~ E 7~ ~ is an input vector, 0i,0<i<h are the weights, ~(.) is a function T~ + -~
T~, H" [I is the Euclidean norm, ci,l<i<h are the RBF centers and h is the number
of centers. The function �9 can be for instance a Gaussian or a thin_plate_spline
function. The architecture described above, with only one scalar output, can be
easily extended to networks with a vector for output, by replicating the last layer
(with new weights) towards multiple scalar outputs [2]. Learning is usually divided in
two phases: first determining the first layer and the centers ci, and second adjusting
the output weights 0i by a Least Square (LS) algorithm.

2.2 O r t h o g o n a l Leas t Squares (OLS) l e a rn ing algorithm

P r i n c i p l e In usual learning algorithms for RBF networks, the number h of ini-
tial centers is fixed arbitrarily and these centers are randomly chosen among the
database. In their learning algorithm, Chen et aJ. randomly choose a set of M po-
tential centers among the example database and construct the hidden layer by an
iterative procedure, adding one new center at each step. The RBF network is seen as
a special case of the linear regression model and rewritten as follows (see [2] and [4]
for details)

M

= + (2)
i----1

where d(t) is the desired output for example z(t), Oi are the parameters and the
outputs of hidden units pi(t) = 4~([[~ (t) - ci [[) are the regressors. Since d(t) =
f (z (t))+ e(t), the term e(t) represents the error signal. Now consider every example
re(t) of a database of size N. Then equation (2) yields to the following matrix form

d = P • + E (3)

where P is a N • M matrix. The OLS algorithm involves a transformation of P into
a set of orthogonal basis vectors, in order to evaluate the individual contribution to
the desired output from each basis vector. Matrix P is decomposed into P = W A
where A is a M • M triangular matrix and W is a N • M matrix with orthogonal
columns.

A new center imaz is selected in order to maximize the explained variance of
the desired output. Each selected center is suppressed from the set ,~ of potential
centers, the size of which is reduced to M - k after k iterations. The stop criterion
can be Mstop = M or governed by a threshold on the error.

245

Sequen t i a l a l g o r i t h m and data s t r u c t u r e The initial step of the iteration series
is reduced to the selection of w~ "~a= = Pima= for which the error reduction ratio is
maximum, without orthogonalization process. Further steps are described by the
following algorithm

repeat
for every po ten t i a l center in S

compute p" (center) ~ column vector of P, for th is center
orthogonalize: w'(center) <--Gram-Schmidt (p,w_l w_(k-1))
compute the error reduction for this center

determine the center which induces the maximum error reduction

select this center: w_k <-- .'(imax)

suppress this center from S

k <-- k+l
until stop_criterion or S = empty_set

3 Parallel implementations

In order to construct RBF networks with the best learning performance, the OLS
algorithm should be executed with M = N, i.e. the set of potential centers being
the whole database. However, such a version of the algorithm cannot be run on a
sequential machine due to its high cost in CPU time and memory capacity. Indeed,
under this assumption, the time complexity of the algorithm is O(N 4) and the re-
quired memory is O(N2), which would not be realistic for a real-world application
with several thousands of examples. Then parallel computing is useful for solving a
larger class of problems with RBF networks.

In this section, first we describe a straightforward parallel version of the OLS
learning algorithm, second we propose an improvement based on algorithmic con-
siderations. In both cases, we discuss the opportunity of storing different data struc-
tures, according to the size of the problem. Finally, we propose a last improvement
based on a dynamic load balancing algorithm.

3.1 S t r a i g h t f o r w a r d pa ra l l e l a l g o r i t h m

From the description of the sequential algorithm, it comes that the simplest way
to allocate the computation and data to several processors consists in splitting the
computation of matrix P into blocks composed of identical numbers of columns. Such
a data allocation involves communications for determining the global maximum of
the error reduction and for updating the copies of matrix W . Let nb_proc be the
number of processors. The local portion of P is reduced to size N x M/nb_proc.
Hence the computational time on each processor is reduced, especially when the
number of processors is large.

3.2 I m p r o v e m e n t o f t h e pa ra l l e l i m p l e m e n t a t i o n

In this section, we explain how to decrease the computational complexity by an
order of magnitude, by storing a part of intermediate results in local memory, on

246

every processor. Therefore, we must detail the Gram-Schmidt procedure: w center +-

Gram-Schmidt (p, wl . . -wk-1) . For iteration k, this procedure can be developed as
follows, where a~ n are the components of matrix A

~ T ~
for j = 1 to k-1 do a; enter---=

x"~k--I center_ . .
w ~ " t ~ = P - L j = I aj w 3

Hence, in the next iteration, only the new values aek enter,

for c e n t e r = 1 to n b _ r e m a i n i n g _ e x a m p l e s , have to be computed and the last

computation line can be rewritten

W k + lCenter ~ lllCk e n t e r - - a c e n t e r k

,___ :U'_'_'-'_" :U :'_"_'_" :U :U :-_" -'_'-U-'- -'-'_'_'-'_'-': \]

. 'Ji

i !

op Step lies" Step llet'~l
i . .

Fig. i. Storing intermediate results in matrix X.

Thus the computational complexity can be reduced if the value z center of the
orthogonal image w~r enter of every pCenter is stored in memory. This remark holds
for both the sequential algorithm and the parallel0ne. Matrix X is composed of the
zcen te~ vectors as columns. At the k th iteration, the size of matrix X is (M - k) x N.
In the previous version of the parallel algorithm, one copy of matrix W had to be
stored on each processor, which is no longer necessary if matrix X is stored. It
is sufficient to store the last wk-1 column of matrix W, as shown on Figure 1.
Furthermore, only the part of matrix X corresponding to the local block of P has
to be stored on each processor, which is smaller than the matrix W , since the number
k of iterations is sufficiently large.

In this version of the parallel algorithm, the code of the inner loop implemented
on each processor is modified as follows

Xcente~_Vroc +-- Gram-Schmidt (Xeenter_proe, Wk-1)
Since the processor owning the winner broadcasts 2girnax_global, the other processors
receive it as wk.

The computational complexity of the original sequential algorithm is O(N4), due
to the inner loop of the Gram-Schmidt procedure. In the new version, the complexity
of this loop is reduced to O(N 3) which is also the complexity of the computation
of the p vectors. Hence the complexity of the whole algorithm has been reduced to
O(N3). Furthermore, the required memory size on each processor has been reduced
too.

247

3.3 S t o r a g e o f in i t ia l data

The first idea consists in storing the whole example database on each processor,
which allows to compute all the pr vectors without communication. The total
size of this database is N x dim, where dim is the dimension of the input space.
However the computation of the p vectors is the same at each iteration. This repeti-
tive computation can be avoided if the memory space is sufficiently large to store the
matrix P , the size of which is N x M in the sequential algorithm and N x M/nb_proc
on each processor in parallel algorithms.

UsuMly M is much larger than dim and the storage of the database is the good
solution for the sequential algorithm. Nevertheless, the opportunity of storing the
matrix P (by blocks) rather than the database is worth being discussed for parallel
algorithms. The following condition determines which version to use.

If N • ~ < N x dim i.e. M < dim x nb_proc
O..~O r o c

then the version with a block of the matrix P in local memory, which will be called
version I, has to be preferred to the version without storage of matrix P , further
denoted by version II. This situation occurs either for a large value of dim or for a
small number of potential centers. Figure 2 presents the variations of the memory
size, for the improved parallel algorithm, according to the values of N and dim,
under the assumption M = N. For sufficiently large dim and small M, the curve of
version I is below the curve of version II, which means that the storage of P is the
best solution in these conditions.

- - ~ v ~ o a I

v e r n o n , :

�9 - I008 2000 3OO0 4000 ~0~0 6000 7O00 8000
Size N

Fig. 2. Memory size of local data for versions I and II of the improved parallel algorithm,
for nb_proc = 30 processors. For version II, we give the curves for dim = 10 and dim = 100.

3.4 Dynamic load balancing

D y n a m i c l oad b a l a n c i n g p r o b l e m As presented in the previous sections, selected
centers are suppressed from the set of potential centers according to the maximiza-
tion of the variance of the desired output. After k iterations, k examples have been
suppressed from the initial set S. This suppression can occur anywhere on the pro-
cessors and thus it is impossible to predict the number of remaining examples on
one processor. In the best case, centers are chosen alternatively on each processor
and the amount of work stays the same. In the worst case, at iteration k, all the
k - 1 previous centers have been chosen on the first processors and a load inbalance
appears in the amount of work for all the processors. Since the all-to-all commu-
nication (for determining the global maximum) introduces a synchronization point

248

at each iteration, the execution time is limited by the one of the slowest processor.
The goal of the load balancing is to keep the number of examples nearly identical
on the processors at every iteration. Therefore, examples are moved between proces-
sors during the execution of the algorithm if an inbalance occurs. This kind of load
balancing is also used in image processing (for example, see [7]).

I m p l e m e n t a t i o n w i t h i n t h e a l g o r i t h m At each iteration, the logical number of
the processor holding the chosen center Wirer is sent during the broadcast. Thus, each
processor knows the number of remaining examples on every processor by keeping
a table up-to-date. Then, each processor computes the optimal number of examples
in each processor (nb_opt = nbJotaZ_~ernpZes). Processors owning too many examples nb_proc
can send some of them to other processors. Because of the communication cost of
this load balancing, a tradeoff has to be found. The load balancing procedure is
called when nb_opt - nbi > threshold, where thresho ld is given by the user.

The communication cost of this algorithm is at most equal to the communication
time for sending t h resho ld examples from one processor to an other.

E x p e r i m e n t a l r e s u l t s O u r target machine is an Intel Paragon with 30 nodes.
Briefly, it is a distributed memory machine in which i860 processors are connected on
a grid. A complete description of its architecture can be found in [5]. To obtain good
performances and a good scalability, libraries are used for communications (BLACS)
and for computations (level 1 BLAS).

Figure 3 presents the different execution times for both versions I and II. The
execution time is lower for version I than for version II. However, as this last version
needs less memory, it allows to run the algorithms on twice the number of examples.
There is again a tradeoff between the size of the base and the execution time.

Figure 4 shows the speed-ups with and without load balancing as a function of
the number of processors for a base of 1000 examples. Using load-balancing, we
obtain a quasi-linear speed-up.

.-o. w~th P

~ - v,'kalout P

" 0 S00 1000 15m 2000 2500 3 ~ 0 ~ o 0 4000 4500 S000

N

x . x - x wdhout load ~tanOng. o,-o,-o mm toad b~snono

Fig. 3. Execution times for versions I and Fig. 4. Speedup with and without load
II as a function of the number of examples balancing (1000 examples, dim = 10,
(30 processors, dim = 10). threshold = 1).

Figure 5 show the speed-up curves for the versions with and without load bal-
ancing for the random and worst cases. By "random", we mean the case where the
example selected as a new center lies randomly on each processor. The "worst case"

249

means that, at the k th iteration, the first k - 1 pi have already been chosen (this
is clearly an instance of the most unbalanced case). We obtain a 20% gain for the
random case and about 44% in the worst case.

x~x .x wilhoul Iced mlanono, o - o - o ml~ load b~anong
30 . '

i i i i i
S 10 15 20 ~ :~

Number ~ ~oo~s~rs
G 10 I~ 20 2~ 30

NunC4x 01 ~,'ooe,,.,so~

Fig. 5. SpeedUps with and without the dynamic load balancing for the random and worst
cases as a function of the number of processors (500 examples, d i m = 10, threshold - 1).

. . . . : : : : : . : . - : : - : . : : : : . : : : : . . : . . : : : :

e T I ~ O ~ 1 $) ~ 1 2

EOSY O ~ IILE/FLt~ I/0

t W I L I E R T I O H { ~ H r r CHF~T

3

Q T I ~ I $) ~512

m ~ ~ mm
E"JSY O'JERHEFID I ~ t . E x F L t t ~ 1/10

. i

Fig. 6. Paragraph Gantt charts of the solution with or without dynamic load balancing for
the worst case (500 examples, dim = 10, 4 processors).

Figures 6 show the Paragraph Gantt charts of the execution of the algorithm for
500 examples with d i m = 10 on 4 processors with or without load balancing (in light
gray when processors are busy and in dark when they are idle). The improvements
of the execution time is evident. Execution time is almost divided by two and the
processors are never idle when load balancing is implemented.

250

4 Conclusion

In this paper, we proposed several parallel algorithms for learning RBF neural net-
works with the OLS algorithm starting from the sequential algorithm of Chen et
al. We presented and compared the performances of several implementations on an
MIMD machine, the Intel Paragon.

We proposed an improvement of the original algorithm, which reduces the com-
plexity from O(N 4) to O(NS). This variant is specially attractive for the parallel
algorithm, since the local memory required by the local blocks of matrix X is gen-
erally smaller than the memory size necessary for storing the whole matrix W.

We showed that storing intermediate results (matrix P) instead of the initial
database can reduce the computation time without increasing the local memory
size, under assumptions. We compared the different versions and pointed out the
advantages and drawbacks of each one, according to the size of the application.

Althought all the parallel versions show good performances we enhance the sub-
stantial gains observed in implementing a dynamic load balancing algorithm. Nev-
ertheless, our load balancing algorithm is not yet optimal and it could be improved
in further works.

References

1. D. S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adaptive
Networks. Complex Systems, 2:321-355, 1988.

2. S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal Least Squares Learning Alg.
for Radial Basis Function Networks. IEEE Trans. on NN, 2(2):302-309, March 1991.

3. G. Cybenko. Approximation by Superposition of a Sigmoidal Function. Mathematics
of Control, Signals, and Systems, 2(4):303-314, 1989.

4. V. Demian, F. Desprez, H. Paugam-Moisy, and M. Pourzandi. Parallel Implementa-
tion of RBF Neural Networks. Technical Report 96-11, LIP ENS Lyon, 1996.

5. R. Esser and R. Knecht. Intel Paragon XP/S - Architecture and Software Environ-
ment. Technical Report KFA-ZAM-IB-9305, Central Institute for Applied Mathemat-
ics, Research Center Julich (KFA), April 1993.

6. K. Hornik, M. Stinchcombe, and H. White. Universal Approximation of an Unknown
Mapping and its Derivatives Using Multilayer Feedforward Networks. Neural Networks,
3(5):551-560, 1990.

7. Serge Miguet and Yves Robert. Elastic Load Balancing for Image Processing Plgo-
rithms. In H. P. Zima, editor, Parallel Computation, Lect. Notes in Comp. Sci., pages
438-451, Salzburg, Austria, September 1991. 1st Int. ACPC Conf., Springer Verlag.

8. J. Moody and C. J. Darken. Fast Learning in Networks of Locally Tuned Processing
Units. Neural Computation, 1(2):281-294, 1989.

9. J. Park and I. W. Sandberg. Universal Approximation Using Radial-Basis-Function
Networks. Neural Computation, 3(2):246-257, 1991.

10. J. Park and I. W. Sandberg. Approximation and Radial Basis Function Networks.
Neural Computation, 5(2):305-316, 1993.

11. S. Renals and R. Rohwer. Phoneme Classification Experiments Using Radial Basis
Function. Proc. o] Int. Joint Con]. on Neural Net., 1:461-467, 1989.

12. G. Verckovnik, C. R. Carter, and S. Haykin. Radial Basis Function Classification of
Impulse Radar Waveforms. Proc. o/Int. Joint Con]. on Neural Net., 1:45-50, 1990.

