
E R C W P R A M s and Optical Communica t ion

Philip D. MacKenzie* and Vijaya Ramachandran**

Dept. of Computer Sciences, University of Texas, Austin TX 78712-1188, USA

Abst rac t . This paper presents algorithms and lower bounds for sev-
eral fundamental problems on the ERCW PRAM and some results for
unbounded fan-in, bounded fan-out (or 'BFO') circuits. Our results for
these two models are of importance because of the close relationship of
the ERCW model to the OCPC model, a model of parallel computing
based on dynamically reconfigurable optical networks, and of BFO cir-
cuits to the OCPC model with limited dynamic reconfiguration ability.

1 Introduct ion

In this paper we develop algorithms and lower bounds for fundamental prob-
lems on the Exclusive Read Concurrent Write (ERCW) Parallel Random Access
Machine (PRAM) model. The ERCW PRAM model has not received much at-
tention, due in part to a general belief that concurrent writing does not add
much power to a model without concurrent reading. We show that this is not
always the case by presenting algorithms that solve problems on the ERCW
PRAM much faster than they could be solved on the EREW PRAM. (See [21]
for more details on the different PRAM models.) We further motivate the ERCW
by its relation to parallel computers with optical communication networks. Since
there is no 'queue' delay in optical communication networks, the ERCW PRAM
is a better model for parallel machines with such networks than the recently
proposed QRQW (or ERQW) model [15].

Many results for the ERCW PRAM follow directly from results for the
EREW PRAM or CRCW PRAM. For instance, the global OR of n bits can
be found in constant time on an n processor ERCW PRAM, as on a CRCW
PRAM, but broadcasting 1 bit to n processors requires O(log n) steps, as on an
EREW PRAM. The result for broadcasting implies that computing the prefix
sums of n inputs and merging two lists of size n both require O(log n) time also.
However, some results obtained directly from EREW PRAM and CRCW PRAM
results do not give tight bounds. For instance, the problem of computing the par-
ity of n bits on the ERCW PRAM has a lower bound of ~(logn/loglogn) on
the CRCW PRAM, and an upper bound of O(logn) from the EREW PRAM.
Tight bounds are not known for the ERCW PRAM. Furthermore, tight bounds

* This research was supported by Texas Advanced Research Projects Grant 003658480.
Current address: Boise State University, Boise, ID 83725 (philmac@cs.idbsu.edu)

** This research was supported in part by Texas Advanced Research Projects Grants
003658480 and 003658386, and NSF Grant CCR 90-23059. (vlr@cs.utexas.edu)

294

are not known for many other problems, including the problems of compaction
and finding the maximum. In this paper, however, we make significant progress
in developing tighter bounds for these and other problems.

Our results for the ERCW PRAM (here n is the size of the input, and
all algorithms perform linear work except as noted) include a k-compaction
algorithm that runs in O(loglogn + logk) time; a randomized algorithm for
k-compaction that runs in O(log k) expected time; a randomized algorithm for
approximate k-compaction that runs in O(log log k) time, with failure probability
1/k; an algorithm for finding the maximum of inputs in the range [1, n] that runs
in O(log log n) time; an algorithm for chaining that runs in O(log log n) time; an
algorithm for integer chain-sorting (linear-size integers) that runs in O(log log n)
time; and an algorithm for integer sorting (polynomial-size integers) that runs
in O(log n) using almost linear work.

We present two lower bounds results for the ERCW PRAM: a lower bound
o f / 2 (~) time for solving compaction, and a lower bound of 1 2 (~
for finding the maximum of general inputs. (The former was discovered indepen-
dently by Goldberg and Jerrum, and led to the 1 2 (~) lower bound on
h-relation routing in Goldberg, Jerrum and MacKenzie [17].)

Finally, we consider unbounded fan-in, bounded fan-out (BFO) circuits. The
computations on such circuits can be mapped optimally onto an ERCW PRAM
as oblivious algorithms. We show that any BFO circuit for adding two n-bit
integers, merging a bit into an n bit sorted sequence, sorting n bits, computing
the prefix sums or parity of n bits requires 12(logn) depth. Let THk,n denote
the threshold function which outputs 1 if and only if at least k of the inputs are
equal to 1. We show that THk,n can be computed by a linear size, O(loglogn +
log k) depth circuit, and that any BFO circuit which computes THj,,n requires
12(log log n + log k) depth.

As further motivation for studying the ERCW PRAM model we show that it
is related to a model of massively parallel computing based on dynamically recon-
figurable optical networks. Specifically, we show that the ERCW PRAM with n
global memory cells and unlimited local memory is computationally equivalent to
the OCPC (Optical Communication Parallel Computer) model [1, 13, 14, 16, 27]
on n processors (This is in contrast to the statement given in [1] that the OCPC
model is equivalent to an EREW PRAM with n global memory cells.) Since the
OCPC model uses full dynamic reconfiguration, which is not yet technically fea-
sible, we are also interested in developing oblivious ERCW PRAM algorithms,
which only require partial dynamic reconfiguration. This motivates the study of
BFO circuits, which provide these oblivious ERCW PRAM algorithms.

The current interest in the OCPC model, the close relation between the
OCPC model and the ERCW PRAM model, and the richness of results obtained
so far on the OCPC, the ERCW PRAM, and the BFO circuit model, all indicate
that these are important models of parallel computation which should be studied
further.

Due to space limitations, we will sketch or omit many of the proofs. Details
can be found in [24].

295

2 P r e l i m i n a r i e s

An Exclusive Read, Concurrent Write (ERCW) PRAM consists of a collection
of processors, each with infinite local memory, which operate synchronously and
communicate through a global memory. Each read or write to global memory
takes one time step. Only one processor can read from any memory cell at any
time step, but multiple processors may write to a memory cell in a single time
step. Write conflicts are handled according to one of the following standard
collision resolution protocols: Priority, Arbitrary, Common, Collision, Tolerant
and Robust [19]. (Since the standard OCPC model uses the Tolerant protocol,
we will be most concerned with developing ERCW PRAM algorithms using the
Tolerant protocol. We define the OCPC model in Section 6.)

The ERCW(ack) PRAM is an ERCW PRAM with the added feature that
a processor which successfully writes to a cell receives an acknowledgement. To
retain the spirit of the Common model, we assume no processor receives an ac-
knowledgement in the Common model. To retain the spirit of the Robust model,
we assume that false "successful" writes could cause bogus acknowledgements
to be sent.

Often we would like to separate the issues of using the global memory as
storage for inputs and outputs, and using the global memory for communication.
In these cases, we will assume that inputs and outputs are spread evenly among
the local memories of the processors. For instance, given p processors and n
inputs, we will assume each processor contains n/p inputs in its local memory.
With this assumption, we will be free to design algorithms which use less than
n cells of global memory.

In our algorithms we do not require that all processors learn the output of
an algorithm, for this would force a trivial ~(log n) time lower bound on all our
algorithms.

L e m m a 1. An n processor ERCW(ack) P R A M with rn global memory cells can
be simulated on a max{n, m} processor E R C W P R A M with 2m + n global mem-
ory cells with the same write conflict protocol (except Robust).

Proof Sketch. On the simulating machine, use the second m memory locations
to determine the successfully writing processor (if any), and the last n locations
for acknowledgements. Details omitted. I"1

3 C o m p a c t i o n p r o b l e m s

In this section, we study the problems of k-compaction and approximate k-
compaction on the ERCW PRAM. The k-compaction problem takes an array
of size n with k marked elements, and places the marked elements into an ar-
ray of size k. The approximate k-compaction problem takes an array of size n
with k marked elements, and places the marked elements into an array of size
O(k). Compaction and approximate compaction are important subproblems in
processor real]ocation and load balancing. First we give a lower bound.

296

T h e o r e m 2. Solving 2-compaction on a Robust, Common, Collision, or Toler-
ant E R C W P R A M requires 1 2 (~) steps, and for k < x/(loglog n)/2-1,
solving k-compaction on a Priority or Arbitrary E R C W P R A M requires at least
k steps. []

Proof Sketch. We sketch the lower bound for 2-compaction on the Tolerant
ERCW PRAM. Note that as in [9] we simply need to prove a lower bound
on the 2-OR problem (the OR problem where at most 2 of the inputs are '1').
In our case, either zero or exactly two inputs will be '1'.

A step will consist of a write followed by a read. At each step, an adversary
will fix some inputs to either '0' or '1'. Live inputs are inputs that have not been
fixed. Let Vt be the set of indices of inputs which have not been fixed after step
t, where V0 = { 1 , . . . , n}. Let Pt be the maximum number of processors which
could be affected by a given live input. Let ct be the maximum number of cells
which could be affected by a given live input. Let kt = max{ct ,pt} .

L e m m a 3. We can construct an adversary such that after step t, (1) kt <_ 4t;
(2) [Vt[> [Vt_l[1/k'-' /152k2t_ V and (3) each processor and cell is affected by at
most one live input.

Proof Sketch. We prove this by induction. First note that P0 = 0 < 4 ~ c0 = 1 =
4 ~ each processor is affected by no inputs, and each cell is affected by at most
one input.

Now assume the lemma is true up to step t. Then we show how to make it
hold for step t + 1. Let k = kt. Say a processor P zero-writes to a cell C at
step t + 1 if (1) it writes to that cell if the input that affects P is 0, and (2)
that input is still live. Define one-writes analogously. We omit the proof that
the adversary can fix (to 0) all but m = IVt[/(2k + 1) inputs so that each ceil
either is unchanged (possibly due to a collision), or has at most one processor
that zero-writes to it.

Next we show that an adversary can fix (to 0) all but m l / k / k of the inputs
such that if a cell is one-written to then either it is the only cell one-written to,
or no cell is one-written to by more than one processor. To show this, we find a
"sunflower" in a group of sets, where each set contains the cells one-written to
by processors which know a given live input. By the Erdhs-Rado Theorem [6],
there must be a sunflower of size (m/k!) 1/k > m l / k / k . Note that if a cell is the
only cell one-written to, then there will be a collision at that cell (because two
inputs are 1). Let m' = m l / k / k > IVtlX/k/2k.

It is easy to see that at most c I = ct + 2pt cells and at most p~ = c ~ + Pt
processors are affected by any single live input after the write step. Also, each
cell could be affected by at most three live inputs and each processor could be
affected by at most four live inputs. Applying Turan's Theorem, we show that
the adversary can fix all but m' / (18p '+ 1) > [Vtll/k/152k 2 inputs such that each
cell and processor is affected by at most one live input. []

Plugging T = ~/(log log n)/2) - 1 into Lemma 3 we find that for large n,
[VT[> 3. Thus there will be 2 live inputs which do not affect the output cell,

297

but they could affect the result of the OR (e.g., if all the other inputs are fixed
to 0). n

We note that there is a simple deterministic algorithm which solves k-compaction
in O(k) time on an Arbitrary ERCW PRAM. However, this algorithm will not
work unless some processor can succeed in each write. For the other write conflict
resolution protocols we need a different approach.

The algorithm and details of the following upper bound can be found in [24].

T h e o r e m 4 . Let t (n ,k) = loglogn + logk. The k-compaction problem can be
solved in O(t(n, k)) time on an n / t (n , k) processor Collision or Tolerant E R C W
P R A M with n / t (n , k) global memory cells, and on an n / t (n , k) processor Robust
E R C W P R A M with O((n / t (n , k)) 2) global memory cells.

We now present two results for randomized algorithms for compaction. Both
results are obtained by having processors hash into random locations in an array.
In the first algorithm for the Robust ERCW PRAM we simply hash elements
into an array of size k 4, compress this array using a prefix operation, and test
whether all elements have succeeded. In the second algorithm for the Tolerant
ERCW(ack) PRAM each processor with a marked element writes it to a random
location in an array of size 8k. If a processor receives an acknowledgement, it
idles. If not, the processor writes its element into an array of size 4k. This
procedure continues for a total of log log k steps as the array size reduces by half
each time. Then we attempt for three steps to write the remaining elements into
arrays of size k. This leads to the following two theorems.

Theo rem5 . An n / l o g k processor Robust E R C W P R A M with no more than
n~ log k global memory cells can solve k-compaction in O(log k) expected time.

Theorem 6. A n n/(log log k) processor Tolerant E R C W P R A M with n/(log log k)
global memory cells can solve approximate k-compaction in time O(loglogk),
with probability 1 - 1/k.

4 Finding the Maximum, Chaining and Integer Sorting

In this section we summarize our results for three basic problems. Details and
proofs of these results can be found in [24].

4.1 F ind ing the M a x i m u m

We summarize here our results for the problem of finding the maximum of n
inputs and for the Global OR problem (i.e., the problem of finding the maximum
of n bits). Details can be found in [24].

Finding the maximum of n inputs requires 69(logn) time on an EREW or
CREW PRAM, even when the inputs are restricted to be either 0 or 1 [4].
Finding the maximum of n inputs on a Priority CRCW with n processors requires

298

O(log log n) time if the inputs come from a large range and O(k) time if the inputs
are restricted to the range [1, n hI [11]. In contrast we show two lower bounds for
the ERCW PRAM, followed by upper bounds that improve on results derived
from the other PRAM models.

T h e o r e m 7. Finding the maximum of n inputs on a Priority E R C W P R A M
requires 12(~) communication steps.

T h e o r e m 8. Finding the maximum of n inputs drawn from the range [0, s], for
s < n, requires 1 2 (~) time on a Robust, Tolerant, Collision, or Common
E R C W PRAM.

Proof. Consider an input array of size n which consists of all zeros except for two
entries at locations i, j E [1, s], which contain the values i and j , respectively.
Solving 2-compaction in this array can easily be reduced to finding the maximum
of the n inputs, and thus the 1 2 (~) lower bound on 2-compaction applies
to the problem of finding the maximum. []

We now state upper bound results for the maximum problem and the global
OR problem.

T h e o r e m g . The maximum of n inputs in the range [0, s] can be found on a
max{n,s}/ loglogs processor Common, Tolerant, or Collision E R C W P R A M
in O(loglog s) time.

T h e o r e m 10. A n n~ log log n processor Robust E R C W P R A M can find the global
OR of n bits in O(loglogn) time with error probability 1 -ft.

4.2 Chain ing and In teger Sor t ing

Given an input of n bits, the Chaining problem is the problem of determining
for each 1 input, the position of the nearest one to its left. Given an input of n
integers, the Integer Chain-sorting problem is the problem of obtaining a linked
list of these n integers in sorted in order. The proofs of the following results can
be found in [24].

T h e o r e m 11. The Chaining problem on n bits can be solved on an n / l o g l o g n
processor Common, Tolerant, or Collision E R C W P R A M in O(loglog n) time.

T h e o r e m 12. Integer chain-sorting can be performed on n integers in the range
[0..n-1] in O(log log n) time with n processors on a Priority ERCW(ack) PRAM.

T h e o r e m 13. Integer sort into an array can be performed on n integers in the
range [0..n k] in O(logn) time with n l o g l o g n / l o g n processors and n 1+` space
on a Priority ERCW(ack) PRAM.

299

5 U n b o u n d e d F a n - i n , B o u n d e d F a n - o u t (B F O) C i r c u i t s

We assume standard definitions for circuits and formulas [2]. A BFO circuit with
size s and depth d can be simulated in a straightforward way by an s processor,
d step oblivious OCPC algorithm. Just as unbounded fan-in, unbounded fan-out
circuits correspond closely to the CRCW PRAM [3], and the study of bounded
fan-in circuits often sheds light on problems on the CREW and EREW PRAM,
we believe that the study of BFO circuits should enhance the understanding of
the ERCW PRAMs.

We now present results on solving some fundamental problems on BFO cir-
cuits. Our first result shows how to transform a BFO circuit into something
resembling a formula, so that we can obtain a lower bound the depth of the
circuit using known lower bounds on formula size.

T h e o r e m 14. Let f be a Boolean function over n variables. If a circuit of depth
d with fan-out at most c (with one input corresponding to each variable) computes
f , then there is a Boolean formula of size at most ned which computes f .

Proof Sketch. Consider a gate with fan-out c > 1. Create an equivalent circuit
by duplicating the gate c times, and moving the fan-out to the inputs of the gate.
Continue until each gate has fan-out 1. Then each input will have a fan-out of
at most c d, and thus the formula will have size ncd. 1"3

Corol la ry 15. Any BFO circuit which computes parity requires 12(log n) depth.

Proof. By Khrapchenko [22], any formula for parity must have size 12(n2). By
the previous lemma, nc a = I2(n2), and since c is a constant, d = 12(log n). []

Let THk,n denote the threshold function which outputs 1 if and only if at least
k of the inputs are equal to 1.

Corollary 16. Any BFO circuit which computes T Hk,n requires/'2(log k+log log n)
depth.

Proof. By Khrapchenko [22] any formula for THk,n must have size 12(k(n - k +
1)). By Krichevskii [23] any formula for THk,,~ must have size 12(nlogn). By
the previous lemma, nc a = max{O(k(n- k + 1)), a(nlogn)}, and since c is a
constant, d = 12(log k + loglogn). []

We next consider the computation of multiple-valued Boolean functions.

L e m m a 1 7 . Let f : R n --+ R m be a Boolean function. Consider the jth input
variable for some j, 1 < j < n. Let 0 be a set of output variables with the
property that for each o E 0 there is some n-bit input I such that the value of
o is complemented when the jth bit in I is complemented. Then any bounded
fan-out circuit that computes f will require depth 12(log IO])-

Proof. The circuit must contain a path from the j th input node to each of the
output nodes in O. Since the circuit has bounded fan-out, the lemmafollows. 1:3

300

Corol la ry 18. Any bounded fan-out circuit for adding two n.bit integers, merg-
ing a bit into an n bit sorted sequence, sorting n bits, or computing the prefix
sums of n bits requires 12(log n) depth.

There are well known bounded fan-in circuits with O(log n) depth and linear
size for parity, addition, merging, sorting binary inputs, and prefix sums on
binary inputs. By [20], these circuits can be converted into bounded fan-out
circuits of the same size and depth. By Corollaries 15 and 18, these are optimal.

Next, we show that by building on constructions in Muller and Preparata
[25], Valiant [26], and Friedman [12], we can construct a BFO circuit which
computes the threshold function THk,,~ in optimal size n, and optimal depth
O(log k + loglog n). We omit the proof.

T h e o r e m 19. There is a size O (n) , depth O (log k + log log n) B FO circuit which
computes THk,n.

6 O p t i c a l C o m m u n i c a t i o n a n d E R C W P R A M S

Here we describe the technology for optical communication, the OCPC model
which is derived from this technology, and its relation to the ERCW PRAM.

6.1 Opt ica l C o m m u n i c a t i o n Technology

There are two basic types of optical interconnection networks, fiber optic net-
works, and free-space optic networks. The type of fiber optic network which
allows unit time communication between any pairs of processors is the Passive
optical star coupler network [5]. In this network all processors are connected via
optical fibers to a passive optical star coupler, which broadcasts messages sent
from one processor to all other processors. To allow more flexible communication,
time division multiplexing (TDM) or wavelength division multiplexing (WDM)
is used. For unit time communication, we must use (WDM). For dynamic recon-
figuration ability, we must have tunable transmitters and/or receivers. Currently,
tunable transmitters and receivers are too slow to be practical.

6.2 O C P C mode l

One abstraction of the passive optical star coupler model was first considered by
Anderson and Miller [1], and has since been studied in [7, 13, 14, 16, 17, 27]. Var-
ious names for this model have been proposed, including Local Memory PRAM,
S*PRAM, OMC, OCP, and OCPC. We will use the term OCPC, denoting Op-
tical Communication Parallel Computer.

An OCPC consists of a collection of processors, each with infinite local mem-
ory, which operate synchronously and communicate by transmitting messages to
each other. At any step, a processor can transmit at most one message to another
processor. The message will succeed in reaching the processor if it is the only

301

message being sent to tha t processor at tha t step. Concurrent transmissions to
the same processor are handled according to one of the following collision res-
olution protocols: Priority, Arbitrary, Common, Collision, Tolerant and Robust
[19]. (Note that the s tandard OCPC model uses the Tolerant protocol.)

The OCPC(ack) is an OCPC with the added feature tha t a processor which
successfully t ransmits a message to another processor receives an acknowledge-
ment as in the E R C W PRAM (see Section 2).

The following are some relationships between O C P C and ERCW PRAM
models, with and without acknowledgements. Proofs are omit ted due to space
limitations.

L a m i n a 2 0 . An n processor OCPC can be simulated on an n processor E R C W
P R A M with n global memory cells with the same write conflict protocol. Also,
an n processor E R C W P R A M (ERCW(ack) P R A M) with m global memory cells
can be simulated on a max{n, m} processor OCPC with the same write conflict
protocol (except the Robust ERCW(ack) PRAM) .

R e f e r e n c e s

1. R. J. Anderson and G. L. Miller. Optical communication for pointer based algo-
rithms. Technical Report GRI 88-14, University of Southern California, 1988.

2. R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms
and Complexity, chapter 14, pages 757-804. MIT Press/Elsevier, 1990.

3. A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. A complexity theory for un-
bounded fan-in parallelism. In Proc. 23th Syrnp. on Found. o] Cornp. Sci., pages
1-13, 1982.

4. S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM J. Cornput., 15(1):87-
97, February 1986.

5. P. Dowd. High performance interprocessor communication through optical wave-
length division multiple access channels. In Proc. 18th Syrnp. on Cornp. Arch.,
pages 96-105, 1991.

6. P. ErdSs and R. Rado. Intersection Theorems for Systems of Sets. J. London
Math., 35:85-90, 1960.

7. M. M. Eshaghian. Parallel algorithms for image processing on omc. IEEE Trans.
Cornput., 40(7):827-833, 1991.

8. F. Fich, R. Impagliazzo, B. Kapron, V. King, and M. Kutylowsld. Limits on the
power of parallel random access machines with weak forms of write conflict reso-
lution. In Proc. of lOth Syrnp. on Theor. Aspects o] Cornp. Sci., page unknown,
1993.

9. F. Fich, M. Kowaluk, M. Kutylowski, K. Loryw and P. Ragde. Retrieval of scat-
tered information by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scan&
Workshop on Alg. Theory, pages 30-41. Lec. Notes in Comp. Sci., Vol. 621, 1992.

10. F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson. One, two, three
. . . infinity: Lower bounds for parallel computation. In Proc. 17th Syrnp. on Theory
of Computing, pages 48-58, 1985.

302

11. F. E. Fich, P. Ragde, and A. Wigderson. Relations between concurrent-write mod-
els of parallel computation. SIAM J. Comput., 17:606-627, 1988.

12. J. Friedman. Construct O(n log n) size montone formulae for the kth threshold
function of n boolean variables. SIAM J. Comput., 15(3):641--654, 1986.

13. A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms.
In Proc. Scandinavian Workshop on Alto. Theory, 1992.

14. M. Ger~b-Graus and T. Tsantilas. Efficient optical communication in parallel com-
puters. In Proc. AGM Symp. on Para. Alg. and Arch., pages 41-48, 1992.

15. P.B. Gibbons, Y. Matias, V. Ramachandran. The Queue-Read Queue-Write
PRAM model: Accounting for contention in parallel algorithms. In Proc. ACM-
SIAM Syrup. on Discrete Algs. 1994, SIAM J Comput, to appear.

16. L. A. Goldberg, M. Jerrum, T. Leighton, and S. Rao. A doubly logarithmic com-
munication algorithm for the completely connected optical communication parallel
computer. In Proc. ACM Syrup. on Para. Alg. and Arch., pages 300-309, 1993.

17. L. A. Goldberg, M. Jerrum, and P. D. MacKenzie. A lower bound for routing
on a completely connected optical communication parallel computer, accepted to
SPAA, 1994.

18. T. Hagerup. Towards optimal parallel bucket sorting. Inform. and Comp., 75:39-
51, 1987.

19. T. Hagerup and T. Radzik. Every robust CRCW PRAM can efficiently simulate a
Priority PRAM. In Proc. 2nd A CM Syrup. on Para. Alg. and Arch., pages 117-124,
1990.

20. H. J. Hoover, M. M. Klawe, and N..1. Pippenger. Bounding fan-out in logical
networks. J. Assoc. Comput. Mach., 31(1):13-18, 1984.

21. R.M. Karp and V. Ramachandran. Parallel algorithms for shared-memory
machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity, chapter 17, pages 869-941. MIT
Press/Elsevier, 1990.

22. V. M. Khrapchenko. A method for determining lower bounds for the complexity
of H-schemes. Mat. Zametki, 10(1):83-92, 1971. (in Russian); English translation
in: Math. Notes 10(1) (1971) 474-479.

23. R. E. Krichevskii. Complexity of contact circuits realizing a function of logical
algebra. Dokl. Akad. Nauk SSSR, 151(4):803-806, 1963. (in Russian); English
translation in: Soviet Phys. Dokl. 8(8) (1964) 770-772.

24. P. D. MacKenzie and V. Ramachandran. ERCW PRAMs and Optical Communi-
cation. TR96-16, Dept. of Comp. Sci., Univ of Texas at Austin, 1996.

25. D. E. Muller and F. P. Preparata. Bounds to complexities of networks for sorting
and for switching. J. Assoc. Comput. Mach., 22(2):195-201, April 1975.

26. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5:363-366, 1984.

27. L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity,
chapter 18, pages 945-971. MIT Press/Elsevier, 1990.

