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Abst rac t .  This paper presents algorithms and lower bounds for sev- 
eral fundamental problems on the ERCW PRAM and some results for 
unbounded fan-in, bounded fan-out (or 'BFO') circuits. Our results for 
these two models are of importance because of the close relationship of 
the ERCW model to the OCPC model, a model of parallel computing 
based on dynamically reconfigurable optical networks, and of BFO cir- 
cuits to the OCPC model with limited dynamic reconfiguration ability. 

1 Introduct ion 

In this paper we develop algorithms and lower bounds for fundamental  prob- 
lems on the Exclusive Read Concurrent Write (ERCW) Parallel Random Access 
Machine (PRAM) model. The ERCW PRAM model has not received much at- 
tention, due in part to a general belief that  concurrent writing does not add 
much power to a model without concurrent reading. We show that  this is not 
always the case by presenting algorithms that  solve problems on the ERCW 
PRAM much faster than they could be solved on the EREW PRAM. (See [21] 
for more details on the different PRAM models.) We further motivate the ERCW 
by its relation to parallel computers with optical communication networks. Since 
there is no 'queue' delay in optical communication networks, the ERCW PRAM 
is a better  model for parallel machines with such networks than the recently 
proposed QRQW (or ERQW) model [15]. 

Many results for the ERCW PRAM follow directly from results for the 
EREW PRAM or CRCW PRAM. For instance, the global OR of n bits can 
be found in constant time on an n processor ERCW PRAM, as on a CRCW 
PRAM, but broadcasting 1 bit to n processors requires O(log n) steps, as on an 
EREW PRAM. The result for broadcasting implies that  computing the prefix 
sums of n inputs and merging two lists of size n both require O(log n) time also. 
However, some results obtained directly from EREW PRAM and CRCW PRAM 
results do not give tight bounds. For instance, the problem of computing the par- 
ity of n bits on the ERCW PRAM has a lower bound of ~(logn/loglogn) on 
the CRCW PRAM, and an upper bound of O(logn) from the EREW PRAM. 
Tight  bounds are not known for the ERCW PRAM. Furthermore, tight bounds 
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are not known for many other problems, including the problems of compaction 
and finding the maximum. In this paper, however, we make significant progress 
in developing tighter bounds for these and other problems. 

Our results for the ERCW PRAM (here n is the size of the input, and 
all algorithms perform linear work except as noted) include a k-compaction 
algorithm that runs in O(loglogn + logk) time; a randomized algorithm for 
k-compaction that runs in O(log k) expected time; a randomized algorithm for 
approximate k-compaction that runs in O(log log k) time, with failure probability 
1/k; an algorithm for finding the maximum of inputs in the range [1, n] that runs 
in O(log log n) time; an algorithm for chaining that runs in O(log log n) time; an 
algorithm for integer chain-sorting (linear-size integers) that runs in O(log log n) 
time; and an algorithm for integer sorting (polynomial-size integers) that runs 
in O(log n) using almost linear work. 

We present two lower bounds results for the ERCW PRAM: a lower bound 
o f / 2 ( ~ )  time for solving compaction, and a lower bound of 1 2 ( ~  
for finding the maximum of general inputs. (The former was discovered indepen- 
dently by Goldberg and Jerrum, and led to the 1 2 ( ~ )  lower bound on 
h-relation routing in Goldberg, Jerrum and MacKenzie [17].) 

Finally, we consider unbounded fan-in, bounded fan-out (BFO) circuits. The 
computations on such circuits can be mapped optimally onto an ERCW PRAM 
as oblivious algorithms. We show that any BFO circuit for adding two n-bit 
integers, merging a bit into an n bit sorted sequence, sorting n bits, computing 
the prefix sums or parity of n bits requires 12(logn) depth. Let THk,n denote 
the threshold function which outputs 1 if and only if at least k of the inputs are 
equal to 1. We show that THk,n can be computed by a linear size, O(loglogn + 
log k) depth circuit, and that any BFO circuit which computes THj,,n requires 
12(log log n + log k) depth. 

As further motivation for studying the ERCW PRAM model we show that it 
is related to a model of massively parallel computing based on dynamically recon- 
figurable optical networks. Specifically, we show that the ERCW PRAM with n 
global memory cells and unlimited local memory is computationally equivalent to 
the OCPC (Optical Communication Parallel Computer) model [1, 13, 14, 16, 27] 
on n processors (This is in contrast to the statement given in [1] that the OCPC 
model is equivalent to an EREW PRAM with n global memory cells.) Since the 
OCPC model uses full dynamic reconfiguration, which is not yet technically fea- 
sible, we are also interested in developing oblivious ERCW PRAM algorithms, 
which only require partial dynamic reconfiguration. This motivates the study of 
BFO circuits, which provide these oblivious ERCW PRAM algorithms. 

The current interest in the OCPC model, the close relation between the 
OCPC model and the ERCW PRAM model, and the richness of results obtained 
so far on the OCPC, the ERCW PRAM, and the BFO circuit model, all indicate 
that these are important models of parallel computation which should be studied 
further. 

Due to space limitations, we will sketch or omit many of the proofs. Details 
can be found in [24]. 
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2 P r e l i m i n a r i e s  

An Exclusive Read, Concurrent Write (ERCW) PRAM consists of a collection 
of processors, each with infinite local memory, which operate synchronously and 
communicate through a global memory. Each read or write to global memory 
takes one time step. Only one processor can read from any memory cell at any 
time step, but multiple processors may write to a memory cell in a single time 
step. Write conflicts are handled according to one of the following standard 
collision resolution protocols: Priority, Arbitrary, Common, Collision, Tolerant 
and Robust [19]. (Since the standard OCPC model uses the Tolerant protocol, 
we will be most concerned with developing ERCW PRAM algorithms using the 
Tolerant protocol. We define the OCPC model in Section 6.) 

The ERCW(ack) PRAM is an ERCW PRAM with the added feature that 
a processor which successfully writes to a cell receives an acknowledgement. To 
retain the spirit of the Common model, we assume no processor receives an ac- 
knowledgement in the Common model. To retain the spirit of the Robust model, 
we assume that false "successful" writes could cause bogus acknowledgements 
to be sent. 

Often we would like to separate the issues of using the global memory as 
storage for inputs and outputs, and using the global memory for communication. 
In these cases, we will assume that inputs and outputs are spread evenly among 
the local memories of the processors. For instance, given p processors and n 
inputs, we will assume each processor contains n/p  inputs in its local memory. 
With this assumption, we will be free to design algorithms which use less than 
n cells of global memory. 

In our algorithms we do not require that all processors learn the output of 
an algorithm, for this would force a trivial ~(log n) time lower bound on all our 
algorithms. 

L e m m a  1. An n processor ERCW(ack) P R A M  with rn global memory cells can 
be simulated on a max{n, m} processor E R C W  P R A M  with 2m + n global mem- 
ory cells with the same write conflict protocol (except Robust). 

Proof Sketch. On the simulating machine, use the second m memory locations 
to determine the successfully writing processor (if any), and the last n locations 
for acknowledgements. Details omitted. I"1 

3 C o m p a c t i o n  p r o b l e m s  

In this section, we study the problems of k-compaction and approximate k- 
compaction on the ERCW PRAM. The k-compaction problem takes an array 
of size n with k marked elements, and places the marked elements into an ar- 
ray of size k. The approximate k-compaction problem takes an array of size n 
with k marked elements, and places the marked elements into an array of size 
O(k). Compaction and approximate compaction are important subproblems in 
processor real]ocation and load balancing. First we give a lower bound. 
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T h e o r e m  2. Solving 2-compaction on a Robust, Common, Collision, or Toler- 
ant E R C W  P R A M  requires 1 2 ( ~ )  steps, and for k < x/(loglog n)/2-1, 
solving k-compaction on a Priority or Arbitrary E R C W  P R A M  requires at least 
k steps. [] 

Proof Sketch. We sketch the lower bound for 2-compaction on the Tolerant 
ERCW PRAM. Note that  as in [9] we simply need to prove a lower bound 
on the 2-OR problem (the OR problem where at most 2 of the inputs are '1'). 
In our case, either zero or exactly two inputs will be '1'. 

A step will consist of a write followed by a read. At each step, an adversary 
will fix some inputs to either '0' or '1'. Live inputs are inputs that  have not been 
fixed. Let Vt be the set of indices of inputs which have not been fixed after step 
t, where V0 = { 1 , . . . ,  n}. Let Pt be the maximum number of processors which 
could be affected by a given live input. Let ct be the maximum number of cells 
which could be affected by a given live input. Let kt = max{ct ,pt} .  

L e m m a  3. We can construct an adversary such that after step t, (1) kt <_ 4t; 
(2) [Vt[ > [Vt_l[1/k'-' /152k2t_ V and (3) each processor and cell is affected by at 
most one live input. 

Proof Sketch. We prove this by induction. First note that  P0 = 0 < 4 ~ c0 = 1 = 
4 ~ each processor is affected by no inputs, and each cell is affected by at most 
one input. 

Now assume the lemma is true up to step t. Then we show how to make it 
hold for step t + 1. Let k = kt. Say a processor P zero-writes to a cell C at 
step t + 1 if (1) it writes to that cell if the input that  affects P is 0, and (2) 
that  input is still live. Define one-writes analogously. We omit the proof that  
the adversary can fix (to 0) all but m = IVt[/(2k + 1) inputs so that each ceil 
either is unchanged (possibly due to a collision), or has at most one processor 
that  zero-writes to it. 

Next we show that  an adversary can fix (to 0) all but m l / k / k  of the inputs 
such that  if a cell is one-written to then either it is the only cell one-written to, 
or no cell is one-written to by more than one processor. To show this, we find a 
"sunflower" in a group of sets, where each set contains the cells one-written to 
by processors which know a given live input. By the Erdhs-Rado Theorem [6], 
there must be a sunflower of size (m/k!)  1/k > m l / k / k .  Note that  if a cell is the 
only cell one-written to, then there will be a collision at that  cell (because two 
inputs are 1). Let m' = m l / k / k  > IVtlX/k/2k. 

It is easy to see that  at most c I = ct + 2pt cells and at most p~ = c ~ + Pt 
processors are affected by any single live input after the write step. Also, each 
cell could be affected by at most three live inputs and each processor could be 
affected by at most four live inputs. Applying Turan's  Theorem, we show that  
the adversary can fix all but m' / (18p '+  1) > [Vtll/k/152k 2 inputs such that  each 
cell and processor is affected by at most one live input. [] 

Plugging T = ~/(log log n)/2) - 1 into Lemma 3 we find that  for large n, 
[VT[ > 3. Thus there will be 2 live inputs which do not affect the output  cell, 
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but they could affect the result of the OR (e.g., if all the other inputs are fixed 
to 0). n 

We note that there is a simple deterministic algorithm which solves k-compaction 
in O(k) time on an Arbitrary ERCW PRAM. However, this algorithm will not 
work unless some processor can succeed in each write. For the other write conflict 
resolution protocols we need a different approach. 

The algorithm and details of the following upper bound can be found in [24]. 

T h e o r e m 4 .  Let t (n ,k )  = loglogn + logk. The k-compaction problem can be 
solved in O(t(n,  k)) time on an n / t (n ,  k) processor Collision or Tolerant E R C W  
P R A M  with n / t (n ,  k) global memory cells, and on an n / t (n ,  k) processor Robust 
E R C W  P R A M  with O((n / t (n ,  k)) 2) global memory cells. 

We now present two results for randomized algorithms for compaction. Both 
results are obtained by having processors hash into random locations in an array. 
In the first algorithm for the Robust ERCW PRAM we simply hash elements 
into an array of size k 4, compress this array using a prefix operation, and test 
whether all elements have succeeded. In the second algorithm for the Tolerant 
ERCW(ack) PRAM each processor with a marked element writes it to a random 
location in an array of size 8k. If a processor receives an acknowledgement, it 
idles. If not, the processor writes its element into an array of size 4k. This 
procedure continues for a total of log log k steps as the array size reduces by half 
each time. Then we attempt for three steps to write the remaining elements into 
arrays of size k. This leads to the following two theorems. 

Theo rem5 .  An n / l o g k  processor Robust E R C W  P R A M  with no more than 
n~ log k global memory cells can solve k-compaction in O(log k) expected time. 

Theorem 6. A n n/(log log k) processor Tolerant E R C W  P R A M  with n/(log log k) 
global memory cells can solve approximate k-compaction in time O(loglogk), 
with probability 1 - 1/k. 

4 Finding the Maximum, Chaining and Integer Sorting 

In this section we summarize our results for three basic problems. Details and 
proofs of these results can be found in [24]. 

4.1 F ind ing  the  M a x i m u m  

We summarize here our results for the problem of finding the maximum of n 
inputs and for the Global OR problem (i.e., the problem of finding the maximum 
of n bits). Details can be found in [24]. 

Finding the maximum of n inputs requires 69(logn) time on an EREW or 
CREW PRAM, even when the inputs are restricted to be either 0 or 1 [4]. 
Finding the maximum of n inputs on a Priority CRCW with n processors requires 
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O(log log n) time if the inputs come from a large range and O(k) time if the inputs 
are restricted to the range [1, n hI [11]. In contrast we show two lower bounds for 
the ERCW PRAM, followed by upper bounds that improve on results derived 
from the other PRAM models. 

T h e o r e m  7. Finding the maximum of n inputs on a Priority E R C W  P R A M  
requires 12( ~ )  communication steps. 

T h e o r e m  8. Finding the maximum of n inputs drawn from the range [0, s], for 
s < n, requires 1 2 ( ~ )  time on a Robust, Tolerant, Collision, or Common 
E R C W  PRAM.  

Proof. Consider an input array of size n which consists of all zeros except for two 
entries at locations i, j E [1, s], which contain the values i and j ,  respectively. 
Solving 2-compaction in this array can easily be reduced to finding the maximum 
of the n inputs, and thus the 1 2 ( ~ )  lower bound on 2-compaction applies 
to the problem of finding the maximum. [] 

We now state upper bound results for the maximum problem and the global 
OR problem. 

T h e o r e m g .  The maximum of n inputs in the range [0, s] can be found on a 
max{n,s}/ loglogs processor Common, Tolerant, or Collision E R C W  P R A M  
in O(loglog s) time. 

T h e o r e m  10. A n n~ log log n processor Robust E R C W  P R A M  can find the global 
OR of n bits in O(loglogn) time with error probability 1 -ft. 

4.2 Chain ing  and In teger  Sor t ing  

Given an input of n bits, the Chaining problem is the problem of determining 
for each 1 input, the position of the nearest one to its left. Given an input of n 
integers, the Integer Chain-sorting problem is the problem of obtaining a linked 
list of these n integers in sorted in order. The proofs of the following results can 
be found in [24]. 

T h e o r e m  11. The Chaining problem on n bits can be solved on an n / l o g l o g n  
processor Common, Tolerant, or Collision E R C W  P R A M  in O(loglog n) time. 

T h e o r e m  12. Integer chain-sorting can be performed on n integers in the range 
[0..n-1] in O(log log n) time with n processors on a Priority ERCW(ack)  PRAM.  

T h e o r e m  13. Integer sort into an array can be performed on n integers in the 
range [0..n k] in O(logn) time with n l o g l o g n / l o g n  processors and n 1+` space 
on a Priority ERCW(ack)  PRAM. 
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5 U n b o u n d e d  F a n - i n ,  B o u n d e d  F a n - o u t  ( B F O )  C i r c u i t s  

We assume standard definitions for circuits and formulas [2]. A BFO circuit with 
size s and depth d can be simulated in a straightforward way by an s processor, 
d step oblivious OCPC algorithm. Just as unbounded fan-in, unbounded fan-out 
circuits correspond closely to the CRCW PRAM [3], and the study of bounded 
fan-in circuits often sheds light on problems on the CREW and EREW PRAM, 
we believe that the study of BFO circuits should enhance the understanding of 
the ERCW PRAMs. 

We now present results on solving some fundamental problems on BFO cir- 
cuits. Our first result shows how to transform a BFO circuit into something 
resembling a formula, so that we can obtain a lower bound the depth of the 
circuit using known lower bounds on formula size. 

T h e o r e m  14. Let f be a Boolean function over n variables. If a circuit of depth 
d with fan-out at most c (with one input corresponding to each variable) computes 
f ,  then there is a Boolean formula of size at most ned which computes f . 

Proof Sketch. Consider a gate with fan-out c > 1. Create an equivalent circuit 
by duplicating the gate c times, and moving the fan-out to the inputs of the gate. 
Continue until each gate has fan-out 1. Then each input will have a fan-out of 
at most c d, and thus the formula will have size ncd. 1"3 

Corol la ry  15. Any BFO circuit which computes parity requires 12(log n) depth. 

Proof. By Khrapchenko [22], any formula for parity must have size 12(n2). By 
the previous lemma, nc a = I2(n2), and since c is a constant, d = 12(log n). [] 

Let THk,n denote the threshold function which outputs 1 if and only if at least 
k of the inputs are equal to 1. 

Corollary 16. Any BFO circuit which computes T Hk,n requires/'2(log k+log log n) 
depth. 

Proof. By Khrapchenko [22] any formula for THk,n must have size 12(k(n - k + 
1)). By Krichevskii [23] any formula for THk,,~ must have size 12(nlogn). By 
the previous lemma, nc a = max{O(k(n- k + 1)), a(nlogn)},  and since c is a 
constant, d = 12(log k + loglogn). [] 

We next consider the computation of multiple-valued Boolean functions. 

L e m m a 1 7 .  Let f : R n --+ R m be a Boolean function. Consider the jth input 
variable for some j, 1 < j < n. Let 0 be a set of output variables with the 
property that for each o E 0 there is some n-bit input I such that the value of 
o is complemented when the jth bit in I is complemented. Then any bounded 
fan-out circuit that computes f will require depth 12(log IO])- 

Proof. The circuit must contain a path from the j th  input node to each of the 
output nodes in O. Since the circuit has bounded fan-out, the lemmafollows. 1:3 
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Corol la ry  18. Any bounded fan-out circuit for adding two n.bit integers, merg- 
ing a bit into an n bit sorted sequence, sorting n bits, or computing the prefix 
sums of n bits requires 12(log n) depth. 

There are well known bounded fan-in circuits with O(log n) depth and linear 
size for parity, addition, merging, sorting binary inputs, and prefix sums on 
binary inputs. By [20], these circuits can be converted into bounded fan-out 
circuits of the same size and depth. By Corollaries 15 and 18, these are optimal. 

Next, we show that by building on constructions in Muller and Preparata 
[25], Valiant [26], and Friedman [12], we can construct a BFO circuit which 
computes the threshold function THk,,~ in optimal size n, and optimal depth 
O(log k + loglog n). We omit the proof. 

T h e o r e m  19. There is a size O ( n ) , depth O (log k + log log n ) B FO circuit which 
computes THk,n. 

6 O p t i c a l  C o m m u n i c a t i o n  a n d  E R C W  P R A M S  

Here we describe the technology for optical communication, the OCPC model 
which is derived from this technology, and its relation to the ERCW PRAM. 

6.1 Opt ica l  C o m m u n i c a t i o n  Technology 

There are two basic types of optical interconnection networks, fiber optic net- 
works, and free-space optic networks. The type of fiber optic network which 
allows unit time communication between any pairs of processors is the Passive 
optical star coupler network [5]. In this network all processors are connected via 
optical fibers to a passive optical star coupler, which broadcasts messages sent 
from one processor to all other processors. To allow more flexible communication, 
time division multiplexing (TDM) or wavelength division multiplexing (WDM) 
is used. For unit time communication, we must use (WDM). For dynamic recon- 
figuration ability, we must have tunable transmitters and/or receivers. Currently, 
tunable transmitters and receivers are too slow to be practical. 

6.2 O C P C  mode l  

One abstraction of the passive optical star coupler model was first considered by 
Anderson and Miller [1], and has since been studied in [7, 13, 14, 16, 17, 27]. Var- 
ious names for this model have been proposed, including Local Memory PRAM, 
S*PRAM, OMC, OCP, and OCPC. We will use the term OCPC, denoting Op- 
tical Communication Parallel Computer. 

An OCPC consists of a collection of processors, each with infinite local mem- 
ory, which operate synchronously and communicate by transmitting messages to 
each other. At any step, a processor can transmit at most one message to another 
processor. The message will succeed in reaching the processor if it is the only 
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message being sent to tha t  processor at tha t  step. Concurrent transmissions to 
the same processor are handled according to one of the following collision res- 
olution protocols: Priority, Arbitrary, Common,  Collision, Tolerant and Robust  
[19]. (Note that  the s tandard OCPC model uses the Tolerant protocol.) 

The OCPC(ack)  is an OCPC with the added feature tha t  a processor which 
successfully t ransmits  a message to another processor receives an acknowledge- 
ment  as in the E R C W  PRAM (see Section 2). 

The following are some relationships between O C P C  and ERCW PRAM 
models, with and without acknowledgements. Proofs are omit ted due to space 
limitations. 

L a m i n a 2 0 .  An n processor OCPC can be simulated on an n processor E R C W  
P R A M  with n global memory cells with the same write conflict protocol. Also, 
an n processor E R C W  P R A M  (ERCW(ack)  P R A M )  with m global memory cells 
can be simulated on a max{n,  m} processor OCPC with the same write conflict 
protocol (except the Robust ERCW(ack)  PRAM) .  
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