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Abstract. It has been shown that, when used for pattern recognition with 

supervised learning, a network with one hidden layer tends to the optimal 

Bayesian classifier provided that three parameters simultaneously tend to 

certain limiting values: the sample size and the number of cells in the hidden 

layer must both tend to infinity and some mean error function over the learning 

sample must tend to its absolute minimum. When at least one of the parameters 

is constant (in practice the size of the learning sample), then it is no longer 

justified mathematically to have the other two parameters tend to the values 

specified above in order to improve the solution. A lot of research has gone into 

determining the optimal value of the number of cells in the hidden layer. In this 

paper, we examine, in a more global manner, the joint determination of optimal 

values of the two free parameters: the number of hidden cells and the mean 

error. We exhibit an objective factor of problem complexity: the amount of 

overlap between classes in the representation space. Contrary to what is 

generally accepted, we show that networks usually regarded as oversized 

despite a learning phase of limited duration regularly yield better results than 

smaller networks designed to reach the absolute minimum of the square error 

during the learning phase. This phenomenon is all the more noticeable that class 

overlap is high. To control this latter factor, our experiments used an original 

pattern recognition problem generator, also described in this paper. 

1. Theoretical introduction 

We consider pattern recognition problems defined in probabilistic terms, i.e. where 

patterns are coded as vectors in Rn. Classes are defined by their prior probabilities 

and their class-conditional probability densities. In such a framework, the optimal 

classifier classifies any observation in the class having highest posterior probability. 

Let us sum up the conditions under which a multilayer network with one hidden layer 

tends to this optimal classifier. 

1.1. Definitions 
 Let A be a learning sample taken in a population of patterns according to some 

probability distribution. Each vector Xi is a realization of one of the classes 

defined by the problem's distributions. 

 Let F be a set of functions mapping R
n
 to values in the interval [0, 1] in R and f 

be any function in this set. 

 By convention, the value 1 is associated to the vectors in the learning sample that 



   

are a realization of class Ck and the value 0 to all other vectors. 

  V(Xi) = 1  if   Xi   Ck   and  V(Xi) = 0   if  Xi   Ck 

 DA(f) denotes the sum, for all vectors in the learning sample, of the squared 

differences between the values associated to these vectors and the values given by 

function f. 

DA(f) =    ((V(Xi)  - f(Xi))
2) 

1.2. Known results 
If foptimal denotes the function belonging to F that minimizes in an absolute sense 

DA(f), then it has been shown that foptimal can be interpreted as an estimate of the 

posterior probability of the class that it codes by convention. In addition, foptimal is 

the best estimate in set F of po7sterior probabilities when the size of the learning 

sample tends to infinity [HAMPSHIRE and PEARLMUTTER, 1991]. 

We then consider the sequence of sets Gk of functions gk realized by a neural network 

having k hidden cells with a sigmoid transfer function and one output cell that codes 

gk . It has been shown that, under such conditions, any continuous function can be 

approximated by a function gk from Gk  such that the approximation error tends to 

zero as k tends to infinity [WHITE  1990]. 

It immediately follows that the outputs of a multi-layer network tend to the posterior 

probabilities of the classes they code provided that both the size of the learning set 

and the number of hidden cells tend to infinity and that the error function tends to its 

absolute minimum. Then the multi-layer network tends to the optimal classifier. 

1.3. The problem of overlearning 
When the size of the learning set is finite, minimizing DA(f)  no longer ensures the 

optimality of the Bayesian classifier, as Figure 1 illustrates. Figure 1 gathers results 

from a number of artificially constructed problems [VERLEY, 1994].  The various 

plots represent observations made during the learning phase of a 20 hidden cell 

network trained by the backpropagation algorithm. The y axis gives the mean error 

due to estimating posterior probabilities on a test sample; this quantity may be seen as 

a distance from the optimal classifier. The x axis represents the mean square error 

over the learning sample; as this quantity monotonically decreases during the learning 

phase, it may be seen as a qualitative measure of the duration of the learning phase or 

of the number of iterations of the learning algorithm. Thus Figure 1 shows that, 

during the learning phase, the network tends to get closer to the optimal classifier, up 

to a certain threshold after which the learning phase has the opposite effect, hence the 

expression overlearning. The overlearning threshold is all the more quickly reached 

that the sample size is small, which is remarkably consistent with theoretical results. 



   

 
Fig 1. Posterior probability estimation error with the MLP for several sample sizes. 

1.4. Solutions to a problem 
To avoid the overlearning phenomenon, the usual solution is to give an upper bound 

to the number of hidden cells with respect to the sample size. That limits the solution 

space. It is estimated that the sample size should be at least ten times the number of 

weights in the network [BAUM et HAUSSLER, 1989]. 

It should be noted that the option of limiting the network size with a systematically 

maximum learning, i.e. such that it tends to the absolute minimum of the error, bears a 

symmetric option: that of limiting the duration of the learning phase for a network 

whose size is systematically maximum (as far as the available computing resources 

permit).  

Theoretically this latter option qualifies as much as the first as a way of solving the 

overlearning problem. Our hypothesis is that this other option gives at least as good 

results as the first one for a relevant set of problems. It opens up interesting angles for 

the use of dedicated, highly parallel neural machines with a unique network of 

maximum size for which the duration of the learning phase would be adjusted to the 

size of the sample and to information on the intrinsic complexity of the problem to be 

solved. 

2. A generator of samples 

In order to investigate our hypothesis in a scientifically sound way, we propose a 

model, both mathematical and computer-based, that allows us, in theory, to construct 

any pattern recognition problem given in probabilistic terms with an accuracy as high 

as desired. The computer implementation of this model provides a generator that can 

produce all data necessary to the systematic study of the behavior of pattern 

recognition systems on sets of artificially constructed problems. Such sets of 

problems are approximations to the set of  all mathematically specified pattern 

recognition problems. 

Let f be a probability density function that is continuous on a bounded representation 

space. Consider also a finite sample having such density function. It has been 

demonstrated that it is possible to produce an estimate of f that is convergent and 

asymptotically unbiased from this sample by using Parzen's estimator [PARZEN, 

1962]. 

Consider now the observations in the representation space. Formally they can be seen 



   

at the center of adjacent, identical hypercubes. We call such a point a prototype. If we 

associate each prototype to a Parzen kernel, we naturally obtain the same estimator of 

f as above. Symmetrically, given a partition of R
n
 by adjacent hypercubes, a certain 

number of distinct prototypes can be arbitrarily assigned to a class. Each  prototype is 

associated to a Parzen kernel. We then consider the function mapping any point in the 

representation space to the weighed sum of the contributions of the various prototypes 

assigned to a given class. It can be shown that this function is a probability density 

function. Thereby we obtain a generator capable of constructing diverse probability 

density functions by changing the combination of prototypes assigned to a class. 

Samples of any size can then be generated directly from these functions. 

In the case of a pattern recognition system whose outputs can be seen as the estimates 

of density functions, one can compute a mean error over a testing sample, i.e. the 

square difference between the estimation and the real probability density function. 

This feature has been used to produce Figure 1, which exhibits the phenomenon of 

overlearning with a finite sample. Elsewhere, we demonstrated that any probability 

density function can be approximated as closely as desired by a function constructed 

by our generator. From a practical viewpoint, we have a generator for probability 

density functions that can be used to validate pattern recognition systems by 

experimentation. Each generated problem is thus explicitly defined by the probability 

density functions of the different classes constructed by the generator, as well as by 

the classes' prior probabilities. Given these specifications, it is possible to design an 

algorithm that generates samples of any size for the learning and testing phases of the 

problem at hand. Given a set of parameters, the generator can produce as many 

problems as desired together with the corresponding samples. Experimenting with a 

large number of such problems will increase the reliability of the average 

experimental results as well as their statistical soundness. 

3. Problem construction and sample generation 

In this section, we show how a problem can be constructed in a simple language and 

how samples of any size can be generated for this problem. Since the problem is fully 

defined in probabilistic terms, it is possible: 

 to generate the Bayesian boundaries for any kind of system, 

 to know the posterior probability of the different classes in any point. 

We are therefore capable of comparing the hit rate of any classifier, in both the 

learning and testing phases, with the optimal rate of the Bayesian classifier. 

When the classifier under scrutiny realizes a partition in a representation space of 

dimension less than 3, the boundaries generated by the classifier and the Bayesian 

boundaries can be visualized together. 

We now show how the specification of the problem in a simple language can be used 

first to derive the analytical form of the problem in probabilistic terms and then to 

generate labelled samples. 

 parameters of the representation space: 

number of dimensions: d 

bounds of the representation space for each dimension: {[mini, maxi]} i d1,..,  

 parameters of the generator: 

number of hypercubes for each dimension di    i d1,..,  



   

variance of the Gaussian distribution associated with each prototype of the 

different classes:  (we consider here the case of a diagonal matrix of variances-

covariances). 

The latter two parameters determine classes of problems, both from a mathematical 

and a computing viewpoints, and in fact characterize their complexity. For a given 

class of problems, the larger the number of hypercubes is, the more problems in this 

class have non-linear, thus complex, Bayesian boundaries. As the variance increases, 

so does the overlap between classes, i.e. the imperfection of the discrimination. This 

is why we vary this latter parameter in order to test the hypothesis stated above. 

 problem structure: 

number of classes: C 

definition of the prototypes assigned to each class: lists Sc   c C1,..,  in 

increasing order of the classes assigned to the different hypercubes. 

The ratio of the number of hypercubes assigned to some class to the total number of 

hypercubes can be interpreted as a kind of measure of the homogeneity of the mixing 

distribution of the different classes. 

The lists Sc may be either user-defined when the user wants to test a specific problem, 

or defined by a random sampling according to an experimentation plan when a more 

general hypothesis is tested on a set of random problems. We relied on this latter 

feature to produce some of our experimental results. 

 parameters of the samples to be generated: 

sample cardinality: n 

number of samples to be generated: e 

All these parameters are given in a text file in any order. A parser reads the file and 

extracts the parameters. Furthermore it is possible to give several values for any 

parameter to facilitate the generation of samples in an experimentation plan. When the 

problem constructed is two-dimensional, it is also possible to assign the hypercubes to 

the different classes via a graphical interface.  

3.1. Analytical formulation of the problem 
A problem specified along the lines described above can easily be reworded in 

probabilistic terms: 

Let    E d dmin ,max ... min ,max1 1    be a representation space. 

Np points x(j)  are defined as follows: 
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 where d  is the number of hypercubes in dimension i  

These points x(j)  are the centers of the hypercubes. A number of them are assigned to 

classes in lists Sc. 

Let mk denote these centers drawn from the x(j). So k belongs to a subset of the 



   

values taken by j. The points mk are the class prototypes. 

A prototype is then characterized by its center mk and a distribution L of center mk : 
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where I is the identity matrix of order d. 

Therefore the density function for a class wc  is: 
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where kc is the set of prototype numbers assigned to class c classes by list Sc 

In order to define the problem in probabilistic terms, we also need to know the prior 

probabilities of the classes. Let Pc be the prior probability of class wc: 
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Because we have a complete, probabilistic analytical form for problems that can be as 

general as desired, we can determine the theoretical Bayesian boundaries as well as 

the posterior probabilities of the different classes for any point of the representation 

space. The last step involves generating the samples for these problems. 

3.2. Generation sample  
Let T be the union of the lists Sc containing all the prototypes assigned to the various 

classes. Each element in T is a pair (C, M) where C is the class assigned to the 

prototype and M is the coordinates of the prototype. For each element X in the 

sample, an element of T is drawn at random (uniform distribution) Call this element 

(c, m) . The coordinates x of X are drawn according to a Gaussian distribution  N(m, 

I) .Consequently x determines an element conforming to the analytical model 

described in the previous section. 

We illustrate the features of our generator by giving below two examples of two-

dimensional problems (Figures 2 and 3). In the first example (Figure 2), we have a 

three class problem, a small variance for the Gaussian distributions and prototypes 

that define sharply separated, connected sets. We visualize the corresponding 1000 

point sample and the optimal boundaries as computed in theory. These boundaries are 

piecewise linear and the sample is almost piecewise linearly separable given the small 

overlap. Therefore this is an objectively simple problem. In the second example 

(Figure 3), on the contrary, we have a two-class difficult problem such that the 

optimal boundaries are highly non-linear and such that the overlap is rather large. 

Note that, in order to obtain a complex problem of this kind, the generator must be set 

up with a higher number of hypercubes than in the previous problem. Furthermore, all 

hypercubes have been assigned to the two classes, which implies that the overall 

distribution of points is more homogenous than it previously was. Lastly it must be 

pointed out that the generator is not confined to two-dimensional problems. We are 

presently working toward visualization of three-dimensional problems. For higher 

dimensions, the results are necessarily in numerical forms.1 

 

 

Commentaire [U1]: Il s’agit donc de 
définir une procédure qui, à chaque 

exécution, renvoie la valeur d’une classe et 

les coordonnées d’un point tel que l’on 
puisse affirmer que ce point classé a été tiré 

selon les lois de probabilité définies 

préalablement. 
Soit T la liste qui est l’union des listes Sc de 

tous les prototypes affectés aux différentes 

classes. Chaque élément de cette liste est un 
doublet (classe affectée au prototype, 

coordonnées du prototype). On tire un 

élément de T selon une loi uniforme. Soit 
(c,m) cet élément. On tire alors les 

coordonnées d’un point selon une loi 

normale multivariée L(m, I). Soit x le 

point ainsi déterminé. x et c déterminent 
complétement un élément conforme au 

modéle analytique décrit au paragraphe 
précédent. 

 



   

Class 1 - 313 s.

Class 2 - 337 s.

Class 3 - 290 s. Theoretical Bayesian

classifier

         
 Fig.2 A three class, easy problem 

 

Class 1 - 378 s.

Class 2 - 622 s.

Theoretical Bayesian

classifier

 
 Fig.3 A two class, complex problem. 

4. Experimental results 

With the generator described above, it is possible to create classes of problems that 

have a variable complexity (in the sense of overlap between the classes) together with 

the corresponding learning and testing samples. 40 learning samples were thus 

generated from 4 problems, each problem having a distinct overlap value. These 

samples were systematically tested on networks with one hidden layer and a varying 

number of hidden cells (4 possible values). The maximum size we tested was 50 

hidden cells. This value was deliberately  very large with respect to the maximum size 



   

of the learning samples, which is 500, and to the values usually found in the literature. 

The ratio of the size of the sample to the number of weighs in the network is here no 

higher than 2.5 whereas 10 is usually recommended. At regular intervals (5) during 

the learning phase of each network, the performance of the trained network was tested 

on the corresponding test sample. The systematic combination of the various factors 

yielded an experimentation plan with 3200 performance measures. 

For each sample the network was trained with, a size was selected that had best 

generalization performance for a learning phase of maximum duration and, for 

each overlap value, the average was computed over all the samples of optimal size 

and of corresponding performance. In a similar way, for each problem, a learning 

duration was selected that provided the best generalization performance for a 

network of maximum size. For each overlap value, the average was computed on all 

problems having optimal duration and corresponding performance. 

Our experimental results are summarized in three figures, each point in these figures 

merging several hundred experiments. The first figure (Figure 4) illustrates the effect 

of class overlap on the optimal number of hidden cells in a network with maximum 

learning duration. The average performance of these optimal networks is also 

represented. It is to be noted that the overlap value is inversely proportional to the 

optimal size. This is quite consistent with theory since overlearning is especially 

probable when both class overlap and the space of solutions learnable by a large-size 

network are large. In such a case, the network will comprise many weights that enable 

it to learn by rote the ambiguous examples ; the generalization performance will 

degrade above a certain threshold. If the classes are not ambiguous at all, the over-

sizing of the network does not matter since there will exist no example to "trick" the 

network.  

The second figure (Figure 5) illustrates the dual phenomenon for a deliberately too 

large network whose learning duration is constant. We see that the larger the overlap, 

the shorter the optimal duration of the learning phase. Again this is consistent with 

theory in the sense that overlearning is all the more probable when both class overlap 

and the space of effectively considered solutions during learning are large. In this 

case, the network will have enough time to learn by rote the ambiguous examples and 

the generalization performance will degrade. 

The third figure (Figure 6) illustrates an unexpected  phenomenon : the usual 

approach relying on network size regularly gives slightly worse performance than our 

new approach that relies on learning duration. And this is all the more noticeable that 

overlap is large, i.e. the risk of overlearning is high. We propose the following 

tentative theoretical explanation : it is easier to construct a network of very large size 

than it is to minimize the absolute mean square error by controlling the network size. 

As is well known in the community, it cannot be guaranteed that, even after a lengthy 

learning phase, the minimum of the mean square error has been correctly 

approximated. 
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Fig. 4 Consequence of class overlap on the optimal number of hidden cells 
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Fig.5 Consequence of class overlap on the optimal number of learning cycles 
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fig. 6  Compared performances in function of overlap 

5. Conclusion 

It is generally acknowledged that the optimal architecture of a multi-layer network is 

"context dependent". The experiments described in this paper reveal an objective 

factor of the context that determines the optimal size: the amount of overlap between 

classes. Even more interestingly, we note that, for a given network, the optimal 

duration of the learning phase depends, in the same way, on class overlap. In other 

words, optimizing the learning duration yields results that are at least as good as those 

due to optimizing the network architecture. We therefore reach the somewhat 

paradoxical conclusion that the most ambiguous problems are better solved by large, 



   

poorly trained networks. 
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