
Systematic Efficient Parallelization of Scan
and Other List Homomorphisms

Sergei Gorlatch*

University of Passan, D-94030 Passan, Germany

Abstract . Homomorphisms are functions which can be parallelized by
the divide-and-conquer paradigm. A class of distributable homomorphism8
(DH) is introduced and an efficient parallel implementation schema for all
functions of the class is derived by transformations in the Bird-Meerteus
formalism. The schema can be directly mapped on the hypercube with
an unlimited or an arbitrary fixed number of processors, providing prov-
able correctness and predictable performance. The popular scan-function
(parallel prefix) illustrates the presentation: the systematically derived
implementation for scan coincides with the practically used "folklore"
algorithm for distributed-memory machines.

1 I n t r o d u c t i o n

This paper deals with formal design of parallel programs. We advocate tha t the
issues of correctness and performance should and can be addressed during the
design/derivation process, rather than as an afterthought.

As a derivational calculus we use the Bird-Meertens Formalism (BMF) [1].
Computations are specified using a set of higher-order functions over lists and
other data structures; the specification is refined into an executable form by
semantically sound transformation rules, which guarantees the correctness of
the target program. We structure the derivation process, by exposing the points
where the design decisions are made and estimating the target performance.
Such a structuring naturally leads to extracting the typically used and efficiently
implementable classes (templates, skeletons) of parallelism.

In this paper, we study functions, called homomorphisms, which are paral-
lelizable using the important divide-and-conquer paradigm. We define a class,
called Distributable Homomorphisms (DH), and derive an efficient and provably
correct parallel implementation schema for all functions of the class.

As an illustrating example, we use the scan (parallel prefix) function, which
encapsulates a computational pattern common for many parallel applications
[2]. The specialization of our parallel implementation schema for the case of
scan yields the known parallel algorithms for scan on a hypercube with either
a linear or an arbitrary fixed number of processors. In contrast to the usual ad
hoc presentation of these algorithms, we derive them in a systematic sequence
of design steps, which are methodologically substantiated and formally correct.

* The author was partially supported by the DAAD cooperation programs ARC and
PROCOPE, and by the Project INTAS-93-1702.

402

2 B M F , H o m o m o r p h i s m s a n d S c a n

We use a variant of the Bird-Meertens Formalism (BMF) with non-empty lists
of length 2 k, k = 0, 1, . . - (powerlists [3]). Function length yields the length of
a list. The constructors are: (i) [.] yielding the singleton list and (ii) balanced
concatenation ~ , where x 44- y is defined iff lengthx = lengthy = 2 k.

We use the following functions and functionals, defined informally:

o backward functional composition;

id the identity function;

map.f map of an unary function f , i.e., map/[x l , . . . , x,] = ~ Xl, ' '" , f Xn];
red (| balanced reduce with a binary associative operation | where

red(Q) [a] = a , red(Q) (x ~ y) = (red(Q) x) 5) (red(Q) y);

zip (| component-wise application of | to a pair of lists of equal length:
zip(Q:)) ([Xl , ' ' ' ,Xn] , [YI, ' ' ' ,Yn]) ---- [(Xl (~ y l) , ' ' ' , (Xn (~)Yn)];

< > "zipped tupling': for a tuple of functions]i : [a] --~ [a], i = 1,-. . n,
function < f l , " ' , f , > yields the list of result tuples.

Def in i t ion 1. A list function h is a homomorphism iff there exists a binary
associative combine operator ~, such that for all lists x and y:

h (x ~ y) = h (x) | h(y) (1)

i.e., the value of h on a list depends in a particular way (using | upon the values
of h on the pieces of the list.

The computations of h(x) and h(y) are independent and can be carried out in
parallel, which expresses the well-known divide-and-conquer paradigm.

T h e o r e m 2 (Bi rd [1]). Function h is a homomorphism iff:

h = red(e) o map(f) (2)

where | is from (1) and/ (a) = h([a]).

Theorem 2 provides a common parallelization for all homomorphisms as a com-
position of two stages [4]: the first, map, is totally parallel, the second, red, can
be parallelized on a tree-like structure, with | applied in the nodes.

There are two problems for a given function: first, how to find the combine
operator ~ of (2) and, second, how to implement the red stage efficiently in
parallel. In [5], we described a systematic approach to constructing the combine
operator, starting from two sequential representations of the given function. The
present paper deals with the second problem, the implementation.

For a homomorphism of type [a] -~ a , there are a logarithmic number
of steps in the tree computation, with communications of constant size, which
yields an efficient algorithm. However, when a homomorphism yields a list, i.e.,
its combine operator contains -~, then the tree implementation requires linear
execution time, independently of the number of processors [6].

403

Scan as a H o m o m o r p h i s m . Our illustrating example is the scan-function
which, for associative | and a list, computes "prefix sums", e.g.:

s can (e) [a ,b ,c ,d] = [a, (a e b), (a e b e c), (a e b | c e d)]

Function scan is a homomorphism with combine operator •:

scan(Q) (x - ~ y) = S~ | $2 = $1 -44- (map (last(S]) | $2), (3)

w h e r e & = scan(| $2 = scan(| y.

Here, so-called sectioning (a | is used: (a | b = a | b.
Despite the fact that | contains At-, there exist efficient parallel algorithms

for scan [7, 8], which, rather than producing a monolithic output list, distribute
it between processors. Our goal is to derive such algorithms systematically.

3 D i s t r i b u t a b l e H o m o m o r p h i s m s

We introduce a specific class of homomorphisms by restricting the permitted
form of the combine operator.

De f in i t i on 3. For two binary associative operations @ and | on elements, the
combine operator (~ on lists is defined as follows:

u = zip (e) zip (e) ,) (4)

We write @$| for the following homomorphism with combine operator (] ~ :

e $ | [a] = [a] (5)

e S e (~ § ~) = ((r174 ~) ~ ((eS | ~)

Def in i t ion 4. Function h : [a] -~ [a] is a distributable homomorphism (DH)
iff h = @ $ | 1 7 4

h h h h

@

Fig. 1. A general homomorphism (left) and a distributable homomorphism (right),
computed on a concatenation of two lists

The "distributed reduction": redd (| x = [red (| x, red (| x , . . . , red (| x]
is obviously a homomorphism with the combine operator:

R1 0 R2 = zip (| (R], R2) -tt- zip (| (R], R2) (6)

404

This fits format (4), thus redd is a DH:

redd(| = |174 (7)

Function redd is implemented as ReduceAll in the recent MPI standard [9].

S c a n : A d j u s t i n g to DH. Let us try to express the right-hand side of (3) in
format (4), i.e., with both arguments of ~ in zipped form. This is easy for the
left argument but requires an additional function for the right argument of 4t-:

sl = z ip (~) (& , &) (8)
map (last(S1) | S: = zip (| (R1, $2) (9)

where r l yields the first element of a pair and R1 = redd(| x. We can thus
obtain the desired format if we "tuple" scan together with redd into new function
< scan, redd >, which can be adjusted to (4) by transition to lists of pairs.

The target expression of scan is as follows:

scan(Q) = (mapTr,) o ((95 | o map(pair) (10)

where pair a = (a, a)
(Sl, 7"1) (9 (82, r2) ---- (Sl , rl (9 r2) (11)
(Sl,7"1) | (82,r2) = (rl | rl | P2)

Operations (9 and | work on pairs and are read off from (6), (8) and (9).
The systematic adjustment of scan to the DH format yields exactly the pair

structure, its initialization by function pair and the computations (9 and | in
(11), which are used ad hoc in the known efficient algorithms for scan.

4 T o w a r d s a H y p e r c u b e I m p l e m e n t a t i o n

Our goal is to find a provably correct and efficient parallel implementation for
all DH functions. As a particular parallel topology for lists of length n = 2 k, we
take a k-dimensional hypercube with n nodes. We use the standard encoding:
the position l, 0 < l < n, of the list is stored in the hypercube node, whose
index is the k-bit representation of I. Processor I can communicate with its k
neighbours; the neighbour in dimension d is xor(l, 2d-1), where xor is the bit-
wise exclusive OR.. So, the only difference between a list of length n = 2 k and
the k-dimensional hypercube is that in the latter we have random element access
and communication primitives. To make this analogy more visible, we abuse the
typing by using [~] for both types.

We introduce a pattern of the hypercube behaviour, skeleton swap, which
describes a pair-wise communication in dimension d, followed by a computation
with (9 and | such that for an index l of a list x:

swap d ((9,| x I = x(l) (gx (l+d) , i f / < xor(l, 2 d-l)
x (l - d) | z(l) , otherwise

where length(x) = 2 k, l < d < k , 0 _ < 1 < 2 k.

Let us define swap k = (swap k) o . . . (s w a p 2) o (swap 1).

405

P r o p o s i t i o n 5. Every D H function is implementable as follows:

e $ | = swap k (e,| (12)

S c a n : t h e H y p e r c u b e I m p l e m e n t a t i o n . Implementation (12) is of a general
nature; for a particular function, it suffices to substitute concrete operations for
@ and | From (10) and (12) we obtain the following program for scan:

scan(@) = map(r1) o swapk(e,| o map(pair) (13)

where pair, ~ and | are defined by (11).

This is the well-known "folklore" implementation [7]. In Figure 2, it is illus-
trated on the 2-dimensional hypercube which is computing scan (+) [1, 2, 3, 4].

Q:|
I I I I

I ~ I ',

e,;--| e - @
map (pair) swap 1

O Q
swap 2 map (~i)

Fig. 2. Computing scan on a hypercube

The time complexity of computing scan for a list of length n, on n proces-
sors, is 0 (log n). The cost (time-processor product [7]) is O (n log n), whereas
the cost of the sequential computation is O (n). So the implementation is t ime
optimal but not cost optimal.

5 B o u n d e d N u m b e r o f P r o c e s s o r s

Let us now consider the more practical situation, where the processor number p
is arbitrary but fixed: p < n, where p divides n.

We introduce the type [a]p of lists of length p and use the notation mapp,
etc. for functions defined on such lists. We take the approach from [6]: the input
list is distributed over p sublists, which are called blocks. This is done by the
distribution function, dist(p) : [~] --+ [[c~]]p.

The following equality relates distribution with its reverse, flattening:

red(-H-) o dist(p) = id (14)

Homomorphisms have the following important property.

T h e o r e m 6 (P r o m o t i o n [1]). For homomorphism h with combine operator |

h o r e d (~) = red(e) o (maph) (15)

Now, we can start to transform @$|

406

e$|
---- { equality (14), two times }

(red(-H-) o dist(p)) o @$| o (red(~) o dist(p))
= { associativity of o, promotion law (15) }

red(-H-) o dist(p) o red(~=~) o mapp (05 | o dist(p)

We separate the first, distributing and the last, collecting stage of the result
expression, and assume that these stages are implemented by the environment.
The remaining, middle part both accepts and yields distributed data of type
[[a]] n. For an arbitrary function h, we call such expression the p-distributed
version of h and use notation (h)p for it. For a DH, we have:

(@$| = dist(p) o r e d (~) o mapn (@$| (16)

Program (16) is not optimal: it concatenates and then redistributes the list.

Propos i t ion 7. Redistribution El imination Rule:

dist(p) o red(G):~) = ((z/p@)$(z/p| (17)

The redistribution elimination (17) applied to (16), together with (12) yields:

(e$| = swap; (z/p(@),z/p(| o mapp (@$| (18)

This is a common p-processor implementation of a DH function. It consists of
two stages: a sequential computation of the function in all p processors simul-
taneously on their blocks, and then a sequence of swaps on the hypercube. This
implementation has been derived formally and, thus, is provably correct. For an
input list of length n, the swap-stage requires log p steps, with blocks of size nip
to be sent and received and sequential component-wise computations on them;
this yields a total time O ((n /p) . logp).

Scan: Efficient I m p l e m e n t a t i o n . Since there are scan algorithms with better
performance than the general case of DH, we should use some special properties
ofscan. The direct specialization of the general program (16) for scan is as follows:

(s~n)p (| = dist(p) o red(| o mapp (scan(Q)) (19)

Here, | is from (3). Our goal is to specialize the Redistribution Elimination Rule
(17) for the case of such combine operator.

The idea of the transformation is that, instead of performing computations
in the blocks at each step of the reduction, we accumulate step-by-step one value
for each block and then perform (in one go) the necessary computation across
the blocks. For element a and block u, the latter computation can be defined as
an operation | such that a (~ u = map (a | u.

For | of the form (3), the Redistribution Elimination Rule becomes then:

(dist(p) o red(| x = zipp (q)~) (y, x), (20)

where y = (prescanp (| o mapp (last)) x

Here, zipp is applied to lists of length p and is directly parallelizable like mapp.

407

The list y of accumulating values is computed by the prescan function, which
yields the result of scan, "shifted to the right":

prescan (e) [~1, ~ , ' " , ~.] = [00, ~1, ~1 e ~ , . . . , xl | ~ e . . . o =,-1]

where 0| is the neutral element of |
Despite its simplicity and analogy to scan, function prcscan is not a homomor-

phism, but it can be adjusted to the DH format exactly like scan, with the only
difference in the pairing function, which now is of the form prepair a = (0| a).
A parallel implementation of the prescan function is then of the same three-stage
form as the scan implementation (13). After substituting it into (20) and fusing
two maps, we obtain from (19) the following target algorithm for (s~Sh)p:

(~) p (| �9 = ~ipp (~) (~, z) , (21)

where z -- mapp (scan(Q)) x

y = (mapp (~rl) o swapkp(@,| o mapp (prepair o las t)) z

with @,| from (11) and k = l o g p .

Implementation (21) has three stages:

- Compute z: each processor applies the scan function to its block of x.
- Compute y: after picking the last elements of their blocks of z and ini-

tializing pairs by prepair, the processors work together in log p swaps; the
computations @ and | .are defined by (11).

- Compute the result: each processor adds (in the sense of | its element of y
to each element of its block of z.

This is exactly the known algorithm for scan on a hypercube with an arbitrary
fixed number of processors [7]. Its complexity is O (n / p + logp), which is a clear
improvement over the implementation (18) in the general case of DH.

6 C o n c l u s i o n

This paper makes a contribution to parallel programming methodology by giving
a definition of the DH class of functions on lists, and a formal derivation of
an efficient parallel implementation schema for all functions of the class on a
hypercube with either a linear or an arbitrary fixed number of processors. The
derivation is based on the semantically sound transformation rules of the BMF,
which guarantees its correctness. The performance of the target implementations
is easily predictable and conforms with the known estimates.

An argument for the practicality of our approach is that the DH class in-
dudes the important scan function and that the specialization of the common
implementation yields the parallel algorithm for scan, which is nowadays consid-
ered to be the best in practice [8]. The structure of the parallel implementation
for DH is similar to the ascending algorithms of [10], which provides confidence
that other important application algorithms can be derived in a similar way.

408

Because of the lack of of space, we only mention the related work on divide-
and-conquer [11], formal derivation of scan algorithms [12, 13, 14], parallelizing
transformations in BMF [6] and transition from functional to parallel imperative
representations [15]. An extended version of the paper with the full compari-
son to the related work and other technical details is available in W W W from
h t t p ://www. brahms, fmi. uni-passau, d e / c l / ~ n d e x - g o r l a t c h .

R e f e r e n c e s

1. R. S. Bird. Lectures on constructive functional programming. In M. Broy, editor,
Constructive Methods in Computing Science, NATO ASO Series F: Computer and
Systems Sciences. Vol. 55, pages 151-216. Springer Verlag, 1988.

2. G. Blelloch. Scans as primitive parallel operations. IERE Trans. on Computers,
38(11):1526-1538, November 1989.

3. J. Misra. Powerlist: a structure for parallel recursion. A CM TOPLAS, 16(6):1737-
1767, 1994.

4. S. Gorlatch. Stages and transformations in parallel programming. In M. Kara
et el., editors, Abstract Machine Models for Parallel and Distributed Computing,
pages 147-162. IOS Press, 1996.

5. S. Gorlatch. Constructing list homomorphisms. Technical Report MIP-9512, Uni-
versit~it Passau, 1995.

6. D. Skillicorn and W. Cai. A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing, 28:65-83, 1995.

7. M. J. Quinn. Parallel Computing. McGraw-Hill, Inc., 1994.
8. M. Reid-Miller. List ranking and list scan on the Cray C-90. In Proceedings

SPAA '94, pages 104-113, 1994.
9. D. Walker. The design of a standard message passing interface for distributed

memory concurrent computers. Parallel Computing, 20:657-673, 1994.
10. F. Preparata and J. Vuillemin. The cube-connected cycles: A versatile network for

parallel computation. Communications of the ACM, 24(5):300-309, 1981.
11. Z. G. Mou. Divacon: A parallel language for scientific computing based on di-

vide and conquer. In Proc. 3rd Symposium on the b't'ontiers of Massively Parallel
Computation, pages 451-461, October 1990.

12. J. O'Donnell. A correctness proof of parallel scan. Parallel Processing Letters,
4(3):329-338, 1994.

13. J. Gibbous. Upwards and downwards accumulations on trees. In R. Bird,
C. Morgan, and J. Woodcock, editors, Mathematics of Program Construction, Lec-
ture Notes in Computer Science 669, pages 122-138, 1992.

14. J. Kornerup. Mapping a functional notation for parallel programs onto hyper-
cubes. Information Processing Letters, 53:153-158, 1995.

15. K. Achatz and W. Schulte. Architecture independent massive parallelization of
divide-and-conquer algorithms. In B. Moeller, editor, Mathematics of Program
Construction, Lecture Notes in Computer Science 947, pages 97-127, 1995.

