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Abstract .  Homomorphisms are functions which can be parallelized by 
the divide-and-conquer paradigm. A class of distributable homomorphism8 
(DH) is introduced and an efficient parallel implementation schema for all 
functions of the class is derived by transformations in the Bird-Meerteus 
formalism. The schema can be directly mapped on the hypercube with 
an unlimited or an arbitrary fixed number of processors, providing prov- 
able correctness and predictable performance. The popular scan-function 
(parallel prefix) illustrates the presentation: the systematically derived 
implementation for scan coincides with the practically used "folklore" 
algorithm for distributed-memory machines. 

1 I n t r o d u c t i o n  

This paper deals with formal design of parallel programs. We advocate tha t  the 
issues of correctness and performance should and can be addressed during the 
design/derivation process, rather than as an afterthought. 

As a derivational calculus we use the Bird-Meertens Formalism (BMF) [1]. 
Computations are specified using a set of higher-order functions over lists and 
other data  structures; the specification is refined into an executable form by 
semantically sound transformation rules, which guarantees the correctness of 
the target  program. We structure the derivation process, by exposing the points 
where the design decisions are made and estimating the target  performance. 
Such a structuring naturally leads to extracting the typically used and efficiently 
implementable classes (templates, skeletons) of parallelism. 

In this paper, we study functions, called homomorphisms, which are paral- 
lelizable using the important  divide-and-conquer paradigm. We define a class, 
called Distributable Homomorphisms (DH), and derive an efficient and provably 
correct parallel implementation schema for all functions of the class. 

As an illustrating example, we use the scan (parallel prefix) function, which 
encapsulates a computational pattern common for many parallel applications 
[2]. The specialization of our parallel implementation schema for the case of 
scan yields the known parallel algorithms for scan on a hypercube with either 
a linear or an arbitrary fixed number of processors. In contrast to the usual ad 
hoc presentation of these algorithms, we derive them in a systematic sequence 
of design steps, which are methodologically substantiated and formally correct. 

* The author was partially supported by the DAAD cooperation programs ARC and 
PROCOPE, and by the Project INTAS-93-1702. 
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2 B M F ,  H o m o m o r p h i s m s  a n d  S c a n  

We use a variant of the Bird-Meertens Formalism (BMF) with non-empty lists 
of length 2 k, k = 0, 1, . . -  (powerlists [3]). Function length yields the length of 
a list. The constructors are: (i) [.] yielding the singleton list and (ii) balanced 
concatenation ~ ,  where x 44- y is defined iff lengthx = lengthy = 2 k. 

We use the following functions and functionals, defined informally: 

o backward functional composition; 

id the identity function; 

map.f map of an unary function f ,  i.e., map/[x l , . . . ,  x,] = ~ Xl, ' '" , f  Xn]; 
red (| balanced reduce with a binary associative operation |  where 

red(Q) [a] = a ,  red(Q) (x ~ y) = (red(Q) x) 5) (red(Q) y); 

zip (| component-wise application of | to a pair of lists of equal length: 
zip(Q:)) ( [Xl , ' ' ' ,Xn] ,  [YI, ' ' ' ,Yn]) ---- [(Xl (~ y l ) , ' ' ' , (Xn (~)Yn)]; 

< > "zipped tupling':  for a tuple of functions ]i : [a] --~ [a], i = 1,-. .  n, 
function < f l , " ' ,  f ,  > yields the list of result tuples. 

Def in i t ion  1. A list function h is a homomorphism iff there exists a binary 
associative combine operator ~, such that  for all lists x and y: 

h ( x ~ y ) = h ( x )  | h(y)  (1) 

i.e., the value of h on a list depends in a particular way (using | upon the values 
of h on the pieces of the list. 

The computations of h(x) and h(y) are independent and can be carried out in 
parallel, which expresses the well-known divide-and-conquer paradigm. 

T h e o r e m 2  (Bi rd  [1]). Function h is a homomorphism iff: 

h = red(e)  o map(f)  (2) 

where | is from (1) and/ (a)  = h([a]). 

Theorem 2 provides a common parallelization for all homomorphisms as a com- 
position of two stages [4]: the first, map, is totally parallel, the second, red, can 
be parallelized on a tree-like structure, with | applied in the nodes. 

There are two problems for a given function: first, how to find the combine 
operator ~ of (2) and, second, how to implement the red stage efficiently in 
parallel. In [5], we described a systematic approach to constructing the combine 
operator, starting from two sequential representations of the given function. The 
present paper deals with the second problem, the implementation. 

For a homomorphism of type [a] -~ a ,  there are a logarithmic number 
of steps in the tree computation, with communications of constant size, which 
yields an efficient algorithm. However, when a homomorphism yields a list, i.e., 
its combine operator contains -~, then the tree implementation requires linear 
execution time, independently of the number of processors [6]. 
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Scan  as a H o m o m o r p h i s m .  Our illustrating example is the scan-function 
which, for associative | and a list, computes "prefix sums", e.g.: 

s can (e )  [a ,b ,c ,d]  = [a, (a e b), (a e b e c), (a e b | c e d)] 

Function scan is a homomorphism with combine operator •: 

scan(Q) ( x - ~  y) = S~ | $2 = $1 -44- (map (last(S]) | $2), (3) 

w h e r e &  = scan( |  $2 = scan(| y. 

Here, so-called sectioning (a | is used: (a | b = a | b. 
Despite the fact that  | contains At-, there exist efficient parallel algorithms 

for scan [7, 8], which, rather than producing a monolithic output  list, distribute 
it between processors. Our goal is to derive such algorithms systematically. 

3 D i s t r i b u t a b l e  H o m o m o r p h i s m s  

We introduce a specific class of homomorphisms by restricting the permitted 
form of the combine operator. 

De f in i t i on  3. For two binary associative operations @ and | on elements, the 
combine operator ( ~  on lists is defined as follows: 

u = zip (e )  zip (e)  ,) (4) 

We write @$| for the following homomorphism with combine operator ( ] ~ :  

e $ |  [a] = [a] (5) 

e S e  (~ § ~) = ( ( r174  ~) ~ ( ( eS |  ~) 

Def in i t ion  4. Function h : [a] -~ [a] is a distributable homomorphism (DH) 
iff h = @ $ | 1 7 4  

h h h h 

@ 

Fig. 1. A general homomorphism (left) and a distributable homomorphism (right), 
computed on a concatenation of two lists 

The "distributed reduction": redd (| x = [red (| x, red (| x , . . . , red (| x ] 
is obviously a homomorphism with the combine operator: 

R1 0 R2 = zip (| (R], R2) -tt- zip (| (R], R2) (6) 
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This fits format (4), thus redd is a DH: 

redd(| = |174 (7) 

Function redd is implemented as ReduceAll in the recent MPI standard [9]. 

S c a n :  A d j u s t i n g  to  DH.  Let us try to express the right-hand side of (3) in 
format (4), i.e., with both arguments of ~ in zipped form. This is easy for the 
left argument but requires an additional function for the right argument of 4t-: 

sl = z ip (~)  ( & , & )  (8) 
map (last(S1) | S: = zip (| (R1, $2) (9) 

where r l  yields the first element of a pair and R1 = redd(| x. We can thus 
obtain the desired format if we "tuple" scan together with redd into new function 
< scan, redd >, which can be adjusted to (4) by transition to lists of pairs. 

The target expression of scan is as follows: 

scan(Q) = (mapTr,) o ( (95 |  o map(pair) (10) 

where pair a = ( a, a) 
(Sl, 7"1) (9 (82, r2) ---- (Sl ,  rl (9 r2) (11) 
(Sl,7"1) | (82,r2) = (rl | rl | P2) 

Operations (9 and | work on pairs and are read off from (6), (8) and (9). 
The systematic adjustment of scan to the DH format yields exactly the pair 

structure, its initialization by function pair and the computations (9 and | in 
(11), which are used ad hoc in the known efficient algorithms for scan. 

4 T o w a r d s  a H y p e r c u b e  I m p l e m e n t a t i o n  

Our goal is to find a provably correct and efficient parallel implementation for 
all DH functions. As a particular parallel topology for lists of length n = 2 k, we 
take a k-dimensional hypercube with n nodes. We use the standard encoding: 
the position l, 0 < l < n, of the list is stored in the hypercube node, whose 
index is the k-bit representation of I. Processor  I can communicate with its k 
neighbours; the neighbour in dimension d is xor(l,  2d-1), where xor is the bit- 
wise exclusive OR.. So, the only difference between a list of length n = 2 k and 
the k-dimensional hypercube is that  in the latter we have random element access 
and communication primitives. To make this analogy more visible, we abuse the 
typing by using [~] for both types. 

We introduce a pattern of the hypercube behaviour, skeleton swap, which 
describes a pair-wise communication in dimension d, followed by a computation 
with (9 and | such that  for an index l of a list x: 

swap d ((9,| x I = x(l) (gx ( l+d)  , i f / <  xor(l, 2 d-l) 
x ( l -  d) | z(l)  , otherwise 

where length(x) = 2 k, l < d < k ,  0 _ < 1 < 2  k. 

Let us define swap k = (swap k) o . . . ( s w a p 2 )  o (swap 1). 
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P r o p o s i t i o n  5. Every D H  function is implementable as follows: 

e $ |  = swap k (e,| (12) 

S c a n :  t h e  H y p e r c u b e  I m p l e m e n t a t i o n .  Implementation (12) is of a general 
nature; for a particular function, it suffices to substitute concrete operations for 
@ and | From (10) and (12) we obtain the following program for scan: 

scan(@) = map(r1)  o swapk(e,| o map(pair) (13) 

where pair, ~ and | are defined by (11). 

This is the well-known "folklore" implementation [7]. In Figure 2, it is illus- 
trated on the 2-dimensional hypercube which is computing scan (+) [1, 2, 3, 4]. 

Q:| 
I I I I 

I ~ I ', 

e,;--| e - @  
map (pair) swap 1 

O Q 
swap 2 map ( ~i ) 

Fig. 2. Computing scan on a hypercube 

The time complexity of computing scan for a list of length n, on n proces- 
sors, is 0 (log n). The cost (time-processor product [7]) is O (n log n), whereas 
the cost of the sequential computation is O (n). So the implementation is t ime 
optimal but not cost optimal. 

5 B o u n d e d  N u m b e r  o f  P r o c e s s o r s  

Let us now consider the more practical situation, where the processor number p 
is arbitrary but  fixed: p < n, where p divides n. 

We introduce the type [a]p of lists of length p and use the notation mapp, 
etc. for functions defined on such lists. We take the approach from [6]: the input 
list is distributed over p sublists, which are called blocks. This is done by the 
distribution function, dist(p) : [~] --+ [[c~]]p. 

The following equality relates distribution with its reverse, flattening: 

red(-H-) o dist(p) = id (14) 

Homomorphisms have the following important property. 

T h e o r e m  6 ( P r o m o t i o n  [1]). For homomorphism h with combine operator | 

h o r e d ( ~ )  = red(e )  o (maph)  (15) 

Now, we can start to transform @$| 
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e$| 
---- { equality (14), two times } 

(red(-H-) o dist(p)) o @$| o (red(~)  o dist(p)) 
= { associativity of o, promotion law (15) } 

red(-H-) o dist(p) o red(~=~) o mapp (05 |  o dist(p) 

We separate the first, distributing and the last, collecting stage of the result 
expression, and assume that  these stages are implemented by the environment. 
The remaining, middle part both accepts and yields distributed data  of type 
[[a]] n. For an arbitrary function h, we call such expression the p-distributed 
version of h and use notation ( h )p for it. For a DH, we have: 

(@$| = dist(p) o r e d ( ~ )  o mapn (@$| (16) 

Program (16) is not optimal: it concatenates and then redistributes the list. 

Propos i t ion  7. Redistribution El imination Rule: 

dist(p) o red(G):~) = ((z/p@)$(z/p| (17) 

The redistribution elimination (17) applied to (16), together with (12) yields: 

(e$|  = swap; (z/p(@),z/p(| o mapp (@$| (18) 

This is a common p-processor implementation of a DH function. It consists of 
two stages: a sequential computation of the function in all p processors simul- 
taneously on their blocks, and then a sequence of swaps on the hypercube. This 
implementation has been derived formally and, thus, is provably correct. For an 
input list of length n, the swap-stage requires log p steps, with blocks of size nip  
to be sent and received and sequential component-wise computations on them; 
this yields a total time O ( (n /p) .  logp). 

Scan: Efficient I m p l e m e n t a t i o n .  Since there are scan algorithms with better 
performance than the general case of DH, we should use some special properties 
ofscan. The direct specialization of the general program (16) for scan is as follows: 

(s~n)p (| = dist(p) o red(| o mapp (scan(Q)) (19) 

Here, | is from (3). Our goal is to specialize the Redistribution Elimination Rule 
(17) for the case of such combine operator. 

The idea of the transformation is that,  instead of performing computations 
in the blocks at each step of the reduction, we accumulate step-by-step one value 
for each block and then perform (in one go) the necessary computation across 
the blocks. For element a and block u, the latter computation can be defined as 
an operation | such that  a ( ~  u = map (a | u. 

For | of the form (3), the Redistribution Elimination Rule becomes then: 

(dist(p) o red(| x = zipp (q)~) (y, x), (20) 

where y = (prescanp (| o mapp (last)) x 

Here, zipp is applied to lists of length p and is directly parallelizable like mapp. 
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The list y of accumulating values is computed by the prescan function, which 
yields the result of scan, "shifted to the right": 

prescan ( e )  [~1, ~ , ' " ,  ~.] = [00, ~1, ~1 e ~ ,  . . . ,  xl | ~ e . . .  o =,-1] 

where 0| is the neutral element of | 
Despite its simplicity and analogy to scan, function prcscan is not a homomor- 

phism, but it can be adjusted to the DH format exactly like scan, with the only 
difference in the pairing function, which now is of the form prepair a = (0| a). 
A parallel implementation of the prescan function is then of the same three-stage 
form as the scan implementation (13). After substituting it into (20) and fusing 
two maps, we obtain from (19) the following target algorithm for (s~Sh)p: 

( ~ ) p  (| �9 = ~ipp ( ~ )  (~, z ) ,  (21) 

where z -- mapp (scan(Q))  x 

y = (mapp (~rl) o swapkp(@,| o mapp (prepair o las t ) ) z  

with @,| from (11) and k = l o g p .  

Implementation (21) has three stages: 

- Compute z: each processor applies the scan function to its block of x. 
- Compute y: after picking the last elements of their blocks of z and ini- 

tializing pairs by prepair, the processors work together in log p swaps; the 
computations @ and | .are defined by (11). 

- Compute the result: each processor adds (in the sense of | its element of y 
to each element of its block of z. 

This is exactly the known algorithm for scan on a hypercube with an arbitrary 
fixed number of processors [7]. Its complexity is O ( n / p  + logp), which is a clear 
improvement over the implementation (18) in the general case of DH. 

6 C o n c l u s i o n  

This paper makes a contribution to parallel programming methodology by giving 
a definition of the DH class of functions on lists, and a formal derivation of 
an efficient parallel implementation schema for all functions of the class on a 
hypercube with either a linear or an arbitrary fixed number of processors. The 
derivation is based on the semantically sound transformation rules of the BMF, 
which guarantees its correctness. The performance of the target implementations 
is easily predictable and conforms with the known estimates. 

An argument for the practicality of our approach is that the DH class in- 
dudes the important scan function and that the specialization of the common 
implementation yields the parallel algorithm for scan, which is nowadays consid- 
ered to be the best in practice [8]. The structure of the parallel implementation 
for DH is similar to the ascending algorithms of [10], which provides confidence 
that other important application algorithms can be derived in a similar way. 
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Because of the lack of of space, we only mention the related work on divide- 
and-conquer [11], formal derivation of scan algorithms [12, 13, 14], parallelizing 
transformations in BMF [6] and transition from functional to parallel imperative 
representations [15]. An extended version of the paper  with the full compari-  
son to the related work and other technical details is available in W W W  from 
h t t p  ://www. brahms, fmi. uni-passau, d e / c l / ~ n d e x - g o r l a t c h .  
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