
Workshop 13 (15) 

Parallel Computer 
Architecture 





HPP: A High Performance PRAM* 

Arno Formella, J6rg Keller** and Thomas Walle 

Universit~it des Saarlandes, FB 14 Informatik, 66041 Saarbrticken, Germany 
{formella, jkeller, twalle}@cs.uni-sb, de 

Abstract. We present a fast shared memory multiprocessor with uniform mem- 
ory access time. A first prototype (SB-PRAM) is running with 4 processors, a 
128 processor version is under construction. A second implementation (HPP) 
using latest VLSI technology and high speed links shall run at a speed of 96 
MHz. To achieve this speed, we first investigate a re-design of the hardware of 
the SB-PRAM. We then balance processor speed and memory bandwidth by in- 
vestigating the relation between local computation and global memory access in 
several benchmark applications. On numerical codes such as Linpack 2 resp. 8 
GFlop/s shall be possible with 128 resp. 512 processors, thus approaching proces- 
sor performance of an Intel Paragon XPS. On non-numerical codes, i.e., circuit 
simulation and ray tracing, we achieve speedups over a one processor SGI chal- 
lenge of 35 and 81 for 128 processors and 140 and 327 for 512 processors. 

1 Introduction 

Most of todays massively parallel machines are distributed memory multiprocessors 
(DMM). They are well suited for numerical problems which are mostly regular, but pro- 
gramming irregular problems is complicated, and performance is often poor. Program- 
ming of irregular problems is simplified on shared memory multiprocessors (SMM) 
such as KSR1 or DASH. However, their non-uniform memory access (NUMA) de- 
mands an extensive tuning to obtain expected performance. 

SMM with uniform memory access (UMA) avoid these problems, but bus-based 
machines such as Sequent Symmetry are restricted to small numbers of processors, and 
PRAM emulations (parallel random access machine) have long been theoretical. 

The SB-PRAM is an architecture that emulates a PRAM. Key concepts are avoid- 
ing hot spots by universal hashing, implementing concurrent access by combining, and 
hiding latency by synchronous multithreading with hardware support for multiple con- 
texts. Furthermore, parallel prefix computations without serialization are supported. A 
4-processor prototype is running, a 128-processor machine is under construction. We 
investigate a re-design of the SB-PRAM hardware with todays technology, including 
the use of high speed network links and the use of processors that allow multiple local 
instructions per global instruction. We explore to which extent applications can exploit 
this feature without expensive compiler optimizations. We use both numerical and ir- 
regular non-numerical benchmarks. 

Our first result is that the improved PRAM called HPP runs at a speed of 93.6 MHz 
and achieves a ten-fold performance improvement over the SB-PRAM for a 128 pro- 
cessor machine and about 40-fold for a 512 processor machine. 

* Research partly funded by the German Science Foundation (DFG) through SFB 124, TP D4. 
** Supported by a DFG Habilitation Fellowship. 



426 

Our second result is that the I-IPP shows good performance on the numerical codes 
and superior performance on the non-numerical benchmarks. Programming is quite 
simple, extensive performance tuning was not necessary. For numerical codes similar 
to Linpack (with matrices of size 16000), we obtain a performance of 15.6 MFlop/s per 
processor approaching the record performance of 19.5 MFlop/s per processor as rated 
in [2, p. 379]. For circuit simulation, speedups of 140 over a SUN Sparc20 or a one pro- 
cessor SGI Challenge are possible with a 512-HPP. For ray tracing, speedups of 325 
over a one processor SGI Challenge are possible with a 512-HPP. For 128 processors, 
these speedups are 35 and 81, respectively. We are not aware of similar performance 
data on any other parallel machine. 

A project with similar goals is the Tera computer [3], now marketed as Tera MTA. 
Tera directly targeted leading edge technology, e.g., a GaAs processor with a 4 ns cycle 
time is to be used. To our knowledge, there is no prototype yet available. Tera also uses 
multithreading and interleaving of global and local instructions, and also provides hard- 
ware support for multiple contexts. However, the Tera processor simulates several in- 
structions of each thread before switching and thus looses synchronous behavior. Also, 
the Tera machine does not support combining and their fetch&add primitive leads to se- 
rialization. Furthermore, Tera' s processors do not have local memories, thus the fraction 
of global instructions will be much higher than in HPP. 

The remainder of the article is organized as follows. In section 2, we briefly review 
the SB-PRAM architecture and the prototype's technology. In section 3, we investigate 
how processors, network nodes and network links can be improved. In section 4, we 
investigate our benchmark applications and show which performance gain is possible by 
careful instruction scheduling. In section 5, we conclude and present further directions 
of research. 

2 SB-PRAM 

The SB-PRAM [ 1] is a massively parallel multiprocessor architecture with p processors 
providing users with a shared memory. The global memory is physically distributed 
among p memory modules. Memory requests are transmitted between the processors 
and the memory modules via a butterfly network. While machines such as KSR1 [2] or 
Stanford DASH [8] use caches and coherence protocols to avoid slow remote access, 
the SB-PRAM uses universal hashing to distribute addresses among the memory mod- 
ules. Every shared memory access is remote. The hashing avoids module congestion 
and leads to a large but uniform memory access time, whereas caching leads to large 
variations in access time. The latency to access global memory is hidden by using mul- 
tithreaded processors which simulate v v i r tua l  p roces sor s  (vPs) in a pipeline. Each vP 
has its own register set, thus context switching does not cause any overhead. Network 
latency is found to be 3 logp cycles (by simulation) even in the presence of contention, 
hence v can be set to that value. 

Concurrent access of multiple processors to some memory cell is handled by com- 
bining. The requests of each physical processor are sorted according to their hashed 
addresses. The sorted order of requests is maintained in each network node by merging 
the incoming streams of requests. Requests to one cell must inevitably meet and can 
be combined. Answers are duplicated on the way back. Computation of parallel prefix 
sums is implemented by the same mechanism. The network nodes can perform simple 
integer arithmetic. 



427 

The SB-PRAM prototype consists of p = 128 physical processors and the same 
number of memory modules. Each physical processor implements v = 32 vPs which 
are scheduled round-robin for every instruction. Load instructions to global memory 
are delayed, i.e., the result is only available in the next but one instruction. The physical 
processor is realized as an ASIC. The register sets of the vPs are held off-chip in a fast 
static RAM. The processor runs at a speed of 8 MHz, which is confined by the speed of 
the interconnection network, as we will see. 

The sorting device is realized as a linear sorting array in a separate ASIC. It receives 
requests at processor speed, and sends requests with network speed. A request consists 
of a 32 bit address, a 32 bit data word, and 6 mode bits. An answer to a request is a 32 
bit data word. 

The network speed is 32 MHz. This frequency is determined by using the minimum 
of (a) the critical path in the network chip, which allows 36 MHz and (b) the speed of the 
chip I/O which allows 32 MHz. A network chip implements a routing switch with two 
inputs and two outputs. Due to pin restrictions, a request must be transmitted or received 
in two cycles. Selection starts after having received the first part of a request and takes 
two cycles as well. Each network link has four control signals in each direction and thus 
consists of (32 + 32 + 6)/2 + 4 = 39 bits in forward direction and 32/2 + 4 = 20 bits 
in backward direction. 

As the network needs two cycles to handle a request, a processor utilizing the net- 
work at its peak bandwidth can have a speed of at most 16 MHz. We assume here that 
a processor is able to access the global memory via the network in every instruction. 
However, a utilization of 100% is not possible because conflicts can occur within the 
network. To keep the protocol between processors, sorting devices, and network nodes 
simple, we chose cycle times that are multiples of each other. Hence, 8 MHz was the 
maximum frequency for the processor, utilizing half of the network' s peak bandwidth. 

The network consists of 7 stages, each with 64 network chips. We implement on a 
printed circuit board either a 3-stage butterfly network or two 2-stage butterfly networks. 
Thus, we obtain three levels, each consisting of 16 boards. The wiring between boards 
is done by flat cables. A link is realized by two cables consisting of 130 wires in total 
(incl. ground). 

3 Technological Improvements 

The speed of the SB-PRAM processor, 8 MHz, is quite slow. This speed is determined 
by the speed of the SB-PRAM network. The network speed is limited by three factors: 
the processing speed of the network chip, the I/O capacity of the network chip, and the 
capacity of transmissions between network boards. 

To make the SB-PRAM faster, we explore how these limitations change by the use 
of 1995 technology and how processors and memory modules can be adapted to such 
a faster network. We investigate how fast we can clock network chips, how fast we can 
transmit and receive requests with network chips, and how fast the network links can 
be. 

3.1 Network Chips 

Our current network chip is fabricated in Thesys' 2 metal layer 0.8#m HCMOS tech- 
nology (Master THA172 with about 70K gates and 200 signal pins). A worst case anal- 



428 

ysis determined the maximum clock frequency to be 36 MHz. To estimate today' s max- 
imum frequency we compare different technology levels from some manufacturers and 
extrapolate the factor by which the nearly available 0.35 # m  technology will run faster. 

Motorola's M5C technology is 1.875 times faster than our current. The extrapo- 
lation from 0.5 # m  to 0.35 #m gives another factor of 1.4. Thus, an overall speedup 
of about 2.6 will be possible, which yields to an internal clock speed of 2.6 �9 36 = 
93.6 MHz. At the cost of the chip price an even bigger factor is possible, if we switch 
to faster technologies such as ECL, GaAs or full custom design. 

If we make chip I/O independent of the inner computation by placing a register be- 
fore and after each I/O pad we get the following values for input and output transfer 
times, i.e. the propagation delay from the external register to the internal register and 
vice versa. Considering todays common technology the clock-to-output time of the ex- 
ternal register is 4 ns, the typical delay of an input pad is 1 ns, and the internal register 
setup time is 2 ns. If  we use a PLL for the internal clock, only the delay of the clock 
input pad has to be added due to clock skew. This totals to 8 ns. In consideration of 
some smaller delays due to board wires we can say that the inputs can be driven with a 
frequency of 100 MHz. For outputs, the clock-to-output time of the internal register is 
3 ns. The output driver delay is 4 ns if we assume a capacitive load of 20 pE This can be 
achieved if the external register is close to the network chip. The external register has 
a maximum setup time of 2 ns. This totals to 9 ns. Hence, the I/O transfer time is not 
critical. 

For our current ASIC the number of signal pins was a limiting factor due to the 
cost of a larger package. Therefore, we had to multiplex inputs and outputs. Because 
the external multiplexer circuit works close to its limits, we can not apply this trick at 
higher clock rates. But the implementation of a routing switch needs only 4 links with 
59 bit each, i.e., 236 signal pins in total. If  we assume that we must must add one power 
pin for every three signal pins about 320 pins will be needed, which is possible with 
todays ASICs. 

3.2 Links between boards 

The links between two network boards, respectively between processor or memory 
boards and network boards, reach a maximum length of about 1.5 m. Even if we assume 
higher integration of the entire machine, the length will not be less than i m. Thus, the 
transmission with flat cables will be reasonable only up to a frequency of 35 MHz. To 
achieve the same bandwidth as the chips, three flits of one packet have to be transmitted 
staggered. This leads to a complicated external logic; three different clocks have to be 
generated for the registers. Furthermore, a multiplexing circuit has to be added. The 
ICs as well as the additional connectors need an enormous amount of area and cause an 
additional external propagation delay to the the I/O transfer time. Moreover, one has to 
employ three cables with 100 wires each, which leads to mechanical problems. Thus, 
fiat cables do not seem suitable. 

As an alternative approach we investigate high speed transmission via serial lines. 
Actually there are three possibilities commercially available: 

1. Hewlett-Packard 1012/1014 Transceiver module: 21 bit at 66 MHz; parallel and 
serial ECL interface (level shifters to TTL needed); 17.2mm x 23.2mm; 6 chips per 
link; 



429 

2. G-Link-T/R from Laser2000: the HP module together with an laser/diode on a tiny 
printed circuit board forming an optical link: 21 bit at 50 MHz; level shifters can 
be placed under the modules; 44.45mm x 75.74mm; 6 modules per link; 

3. Motorola MC100SX1451-FI100 Autobahn Spanceiver: 16 bit at 50 MHz; parallel 
TTL and serial ECL interface; 17.4mm x 17.4mm; 10 chips per link; 

In all three cases we have to apply two multiplexed cables for one link. But in con- 
trast to fiat cables we can choose very fast and very high integrated multiplexer/register 
ICs which we use in our current machine, too. If  we generate an inverted clock the 
external circuitry can be held simple (cf. Fig. 1). 

network 

chip 

> 

) 
) 
< 

Fig. 1. Two multiplexed channels with 3 wires each 

In case (2) the construction of  a board which contains a 4x4 butterfly network, 
i.e. 8 links on each side, seems impossible. The soon available Motorola chip with 
200MByte/s (-FI200; 16 bit at 100MHz) gives (3) an advantage over the others. 

3.3 Processor 

Simulations for the 128-SB-PRAM have shown that if we are using only 50% of the 
network bandwidth the waiting time of  the processors is negligible if we do a random 
access in each instruction. Assuming two cycles to handle a request by the network the 
processor runs by a factor of  4 slower than the network. If  we run the network with 
93.6 MHz this is not a limitation. 

The processor's I/O needs are as follows: in every cycle it does an instruction fetch 
(32 bit address, 32 bit instruction). In addition, it might send a request (70 bit) and 
receive an answer to a request (32 bit). This is too not a limitation as it requires only 
166 signal pins at 23.4 MHz. 

The processor can even run faster by using the observation that a load request needs 
only one network cycle to be handled. In an application, the total number of  store in- 
structions is usually not larger than the total number of  load instructions. Thus, the 
average network load is less than 3 /4  �9 50% = 37.5%. If  we increase the processor 
speed by a factor of  4 /3  to 31.2 MHz the average load will be 50% again. "Bursts" of  
store instructions increase the load for a time to 4 /3  �9 50% = 67%. We observed such 
bursts in our benchmarks only at the entry of  functions. These pushes however can be 
handled in a local memory and do not need network access at all. 



430 

3.4 Commercial Processors 

If we switch to the technology of commercial processors, it should be possible to imple- 
ment the SB-PRAM processor including the register sets in a single chip. As we have 
v = 32 register sets, each with 32 registers of 32 bits, this requires an 8 KByte dual- 
ported RAM. On-chip memories of this size are possible, e.g., the DEC Alpha has first 
level data and instruction caches on-chip, each with 8 KByte. The sorting device can be 
implemented on the processor chip, too. This would not even increase the pin count. 
For the interface to the network the same limitations as for the network chips hold. 

We can run the processor faster by a factor r, where r is an integer. We must there- 
fore ensure that only one of r instructions accesses the global memory. Then, the aver- 
age network load is not altered. Furthermore, a delayed load by 2r - 1 instructions must 
be tolerated. Note that with increasing r the danger of an overstressed network due to 
bursts and thus waiting time of the processors grows. 

The benchmarks of the next section suggest that a value of r = 3 is possible on a 
range of applications. This pushes processor speed to 3.31.2 --- 93.6 MHz which is still 
below the actual clock frequency of commercial microprocessors. The floating point 
unit has enough pipeline stages due to the 32 vPs. 

Chip I/O can be brought down to a speed of 93.6/2 = 46.8 MHz by using alternate 
busses for vPs with odd and even numbers, respectively. For instructions, which now 
must be fetched every 10 nanoseconds, we will use an on-chip instruction cache and 
a second level cache off-chip. If the vPs run synchronously, the on-chip cache will 
be large enough to deliver almost all instructions at the requested speed. If the vPs 
run asynchronously, e.g., each one operates on a different application, the size of the 
instruction cache is too small to serve 32 vPs. They can be served by the second level 
cache, but this may slow down the machine by a factor of 3 to 4. This slowdown can be 
avoided by carefully assigning vPs to applications. As long as the vPs of one physical 
processor belong to only four groups, the on-chip cache should still suffice. 

3.5 Memory 

The memory boards must handle requests at a rate of 23.4 MHz, provided that all mem- 
ory modules are utilized evenly. The universal hashing only supports "almost" even 
utilization. Furthermore, there may be bursts by requests arriving every other network 
cycle, i.e., at 93.6/2 = 46.8 MHz. 

To handle this, each memory module consists of four banks of EDRAM which 
is a fast dynamic RAM with on-chip cache. The EDRAM is available in a 1Mx36 
SIMM package with a cycle time of 85 n s .  If we assume that at most each third request 
accesses a certain bank, then the module can handle requests at a rate of 35 MHz. In 
case of bursts, packets are queued at each bank. This avoids blocking of one bank while 
another bank is crowded. 

3.6 Machine size 

The design of the HPP so far assumes that it has 128 processors as employed in the 
SB-PRAM. A machine with 512 processors is possible as well. As mentioned earlier, 
a 3-stage butterfly network can be implemented on one network board. Thus, a 9-stage 
butterfly network can be implemented without increasing the three stages of network 



431 

boards. As the additional network links are all on-board, the memory access latency 
increases only slightly. 32 vPs per physical processor are still sufficient to hide this 
latency. The speed of the machine is not affected. 

4 Applications 

Let us first characterize the instruction stream of a physical processor. The behavior 
of the machine as a synchronous PRAM is determined only by the correct sequence 
of global instructions for all instruction streams of the vE Machine instructions can be 
divided into global and local instructions. Global instructions are those loading from or 
storing to shared memory. Local instructions are all other instructions. If the compiler 
achieves that in each request slot (time for one request to shared memory) at most one 
global instruction is scheduled, the run time can be reduced by a factor of r, where r 
is the number of instructions executed in one request slot. The code of irregular appli- 
cations typically exhibits only 10% global instructions. Local variables and stacks, for 
instance, can be held local. However, the delay slot for load instructions can introduce 
additional dependencies. 

The instruction stream of a vP is a trace through the basic block graph during run 
time. The ratio of the total number of instructions to the number of global instructions 
gives an upper bound for the improvement that can be achieved by speeding up the 
execution time of a local instruction. Because we want to make a worst case analysis, 
we consider the worst case ratio which can be found in any possible trace in the basic 
block graph. The calculation of this worst trace is straight forward through a two pass 
analysis of the machine program. Because the machine model is a synchronous PRAM 
no additional simulations are necessary. 

The network can be accessed with a request rate of f = 31.2 MHz (see section 3.3). 
The peek floating point performance P in inner loops with i local instructions and 

c global instructions is given by P = p �9 f �9 n / z ,  where p is the number of physical 
processors, n is the number of floating point operations, and ~ = m a x  e, (i + e ) / r .  In 
the sequel we analyze the performance of four applications, two simple numerical loops 
and two inner loops of irregular applications. 

4.1 Numerical Applications 

The inner loop of the machine code for the dotproduc t  of a row vector of a matrix with 
a column vector of the same or another matrix consists of six instructions. The length 
of the vectors must be known at compile time. Two of the instructions count as floating 
point operations. This results in a performance of approximately 341 MFlop/s on the 
SB-PRAM prototype. Two of the instructions are global load instructions. Without soft- 
ware pipelining the block can be executed in three request slots, i.e., two load instruc- 
tions and one delay slot. So the peak performance on matrix multiply on the 128-HPP 
will be close to 2.66 GFlop/s for 4096 • 4096 matrices or for a set of smaller matrices 
allowing enough parallelism. A 512-HPP would yield 10.64 GFlop/s for 16384 x 16384 
matrices, or an appropriate set of smaller ones. 

As a more complex example of numerical code, we chose an indexed dot  product.  
A row of an index matrix is used to address a row of a data matrix and a column of 
another index matrix is used to address a column of the same or another data matrix. 
The translation of a C routine to machine code for the body of the loop is straight 



432 

forward as well. There occur additional load instructions as well as more complex index 
calculations in the basic block. The inner loop of the indexed dot product has eleven 
machine instructions. Two of them count as floating point operations. This results in a 
performance of approximately 186 MFlop/s on the SB-PRAM. Four of the instructions 
are global load instructions. Without software pipelining the block can be executed in 
five request slots. So the peak performance on such a routine, which covers a large set 
of often used inner loops in scientific programming, will be close to 1.6 GFlop/s on 
the 128-HPP, provided there is sufficient parallelism to explore. A 512-HPP will yield 
6.38 GFlop/s. 

If one includes software pipelining, a more sophisticated compiler can reduce the 
number of request slots to two for the dot product and to four for the indexed dot prod- 
uct, thus almost 4 respectively 2 GFlop/s seem to be achievable on a 128-HPP. This in- 
creases to 16 respectively 8 GFlop/s on a 512-HPP. In [2, p. 379] the performance of 19 
machines on the Linpack benchmark is listed. The fastest machine in the list is an Intel 
Paragon XPS with 1872 processors. It achieves a performance of 36.45 GFlop/s at a ma- 
trix size of 17500. Hence, the performance per processor is 19.5 MFlop/s. On indexed 
dot product, the 128-HPP achieves a performance of 1/128- 2 GFlop/s -- 15.6 MFlop/s 
per node. There is no performance data available for this loop on other parallel ma- 
chines. 

4.2 Irregular Applications 

The third example is taken from the SPLASH benchmark suite [11]. We analyzed the 
inner loop of the parallel discrete event simulator as implemented in [7]. In this loop 
more than 60 percent of the total run time is spent. The basic block graph contains 59 
nodes. The worst case ratio of total to global instructions on any trace is about 2.6, i.e., 
we expect--including the faster clock speed--an improvement of about 10 on the H P P  
compared to the SB-PRAM. 

Note, that the achievable speedup for discrete event simulation is strongly limited 
by the critical path of the circuit being simulated as long as the conservative approach 
is implemented. Due to the possibility to use very efficient parallel data structures with 
concurrent access to shared data, more aggressive simulation methods become an inter- 
esting and promising research area. If  the HPP  is implemented with more processors 
than the SB-PRAM, they can be used only effectively if there is enough parallelism to 
exploit. Concurrent simulation of more than one test pattern seems to be the method of 
choice, where the representation of the simulated circuit is stored only once in memory. 
An example are production tests for ASICs that usually consist of 10 to 50 independent 
groups of patterns. 

In [ 10], the SB-PRAM implementation is compared to a sequential implementation 
to obtain an absolute speedup. There, for the benchmark circuit Multiplier, both a SUN 
Sparc 20 and a SGI Challenge need about 12 seconds to simulate the circuit on the input 
vectors delivered with SPLASH. The SB-PRAM with 16 processors needs about 27 
seconds. Then, the HPP with 16 processors obtains an absolute speedup of 12/27-10 = 
4.4. On a 128-HPP, 128/16 = 8 test patterns can be simulated simultaneously. On a 
512-HPP, this increases to 32. Thus, the speedups rise to 35.5 and 142.2, respectively. 

The last example consists of the inner loop of a ray tracer [6]. The basic block 
graph has 83 nodes, the subroutine calls to the function calculating intersection points 
are not counted. The program spends approximately 80 percent of the run time in this 



433 

loop. Any trace through the complex loop reveals a ratio of total to global instructions 
in the range of 4.5 and 8. No consecutive global instructions appear. So it seems that the 
proposed improvement of performing three times as much local instructions as global 
instructions is easy to achieve. 

Clearly, exact performance data for the irregular application cannot be provided, 
but due to the fact that one of the fastest ray tracing methods has been parallelized 
with almost linear speedup even for a large number of processors, the performance of 
the HPP  will be considerably larger than the one of any other parallel machine. In [5] 
it is shown that the SB-PRAM is seven times faster than an SGI challenge with one 
150 MHz MIPS R4400 processor. The analysis of the I-IPP promises an 11.7 times 
faster version of the ray tracer. Moreover, a 512-I-IPP will be about 327 times faster 
than a one processor SGI challenge on sufficiently large data bases. 

5 Conclusions 

We presented how to re-engineer the SB-PRAM multiprocessor. Fast ASIC technol- 
ogy and high speed network links allow to increase the request rate from 8 MHz to 
31.2 MHz, i.e., by a factor of 3.9. A further speed gain was obtained by separating lo- 
cal and global operations: during one global operation several local instructions can be 
executed. Hence, we get higher instruction throughput while the request rate remains 
unaltered. 

We analyzed the performance both for numerical and irregular non-numerical bench- 
marks. We observed that the fraction of global to total instructions is low and that there 
is enough independence so that a compiler can statically schedule instructions with- 
out fancy optimizations if we overlap one global with two local instructions. Hence, 
the processor speed can be increased by a factor of 3 to 93.6 MHz. Further speed up 
might be possible by more aggressive dynamic scheduling, i.e., by using a superscalar, 
out-of-order issuing processor. 

The peak performance of the resulting machine is 93.6 - 128 ~ 12 GFlop/s. As 
the same architecture can be used with 512 processors, this increases to 48 GFlop/s. 
We guessed the performance of the benchmarks by inspecting the compiler generated 
assembler code of their kernels. For indexed vector operations, we obtain a performance 
of 15.6 MFlop/s per processor, thus approaching the 19.5. MFlop/s per processor of 
an Intel Paragon on Linpack type applications. Indexed vector operation show on any 
parallel machine normally very poor performance. 

For circuit simulations, we achieve an absolute speedup over a SUN Sparc 20 or a 
one processor SGI Challenge of 35 and 140 with 128 and 512 processors, respectively. 
For ray tracing, we achieve absolute speedups of 81 and 327 over a one processor SGI 
Challenge with 128 and 512 processors, respectively. Thus, for large data bases which 
cannot be duplicated to each processor HPP shows superior performance compared to 
any other parallel architecture. 

Further improvements which have not been discussed in the paper might be think- 
able. The network bandwidth can be doubled if we allow complete requests to be trans- 
mitted at once. In the current solution the amount of transceiver circuits and hence the 
total area per link would be doubled. This seems to be impossible to implement on one 
board. The problem of the enormous amount of external circuits can be overcome if we 
connect the serial line directly to the chip. Referring to the $3 project at Sun Microsys- 
terns [9], this is possible at a transmission frequency of 1 GHz. The amount of chip 



434 

area needed for each channel is I m m  2. Another project that deals with optical busses 
connected directly to a chip is IBM OETC/SCI Link [4] and the announced follow- 
up Jitney. Because the pin limitations are dropped in this case, we can choose a more 
suitable master which exploits the network chip better. For every link 12 serial lines 
are needed. As a chip has four links this totals to 48 serial lines respectively interface 
pins. With higher transmission rates on optical links, this number can be reduced. Then, 
more network nodes can be integrated in one chip both decreasing network latency and 
shrinking the machine. 

References 

1. E Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and D. Scheerer. On the physical design 
of PRAMs. Computer Journal, 36(8):756-762, December 1993. 

2. G. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings, 2nd edition, 
1994. 

3. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera 
computer system. In Proceedings of the 1990 International Conference on Supercomputing, 
pages 1-6. ACM, 1990. 

4. D. Engebretsen, D. M. Kuchta, R. C. Booth, J. D. Crow, W. G. Nation. Parallel Fiber-Optic 
SCILinks. IEEEMicro, pages 20-26, February 1996. 

5. A. Formella. Ray Tracing Complex Scenes: Parallel or Sequential? In Proceedings of 7 ~ 
IASTED/ISMM International Conference on Parallel and Distributed Computing and Sys- 
tems, pages 89-92, October 1995. 

6. A. Formella and C. Gill. Ray Tracing: A Quantitative Analysis and a New Practical Algo- 
rithm. The Visual Computer, 11(9):465--476, December 1995. 

7. J. Keller, Th. Rauber, and B. Rederlechner. Conservative Circuit Simulation on Shared- 
Memory Multiprocessors. In Proc. lOth Workshop on Parallel and Distributed Simulation, 
Philadelphia, USA, May 1996. 

8. D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, 
and M.S. Lam. The Stanford DASH multiprocessor. IEEE Computer, 25(3):63-79, March 
1992. 

9. A.G. Nowatazyk, M.C. Browne, E.J. Kelly, and M. Parkin. S-connect: from networks of 
workstations to supercomputer performance. In Proceedings of the 22nd Annual Interna- 
tional Symposium on Computer Architecture, pages 71-82, 1995. 
B. Rederlechner. Parallele Diskrete Ereignissimulation auf der SB-PRAM. Diplomarbeit, 
Universit~it des Saarlandes, FB Informatik, 1996. 
J.P. Singh, W.D. Weber, and A, Gupta. SPLASH: Stanford Parallel Applications for Shared- 
Memory. Computer Architecture News, 20(1):5--44, 1992. 
L.G. Valiant. General purpose parallel architectures. In Jan van Leeuwen, editor, Handbook 
of Theoretical Computer Science, Vol. A, pages 943-971. Elsevier, 1990. 

10. 

11. 

12. 


