
Scalable Software Latency Hiding Schemes:
Evaluation of the Poststore and Prefetch

Options*

Chaitanya Tumuluri and Alok N. Choudhary

121 Link Hall, ECE Department, Syracuse University, Syracuse, NY-13244
Email: (tumuluri, choudhar) @cat.syr. edu

Abstract . Most latency hiding studies for Distributed Shared Memory
(DSM) systems use prefetching, while few explore use of poststoring. This
study develops, and compares performance gains obtained using, a run-
time poststoring scheme (PST) and an application-specific prefetching
scheme (PFH). The PST and PFH schemes produced scalable reductions
in loop execution times.

1 I n t r o d u c t i o n

Most Distributed Shared Memory (DSM) systems [1] implement an invalida-
tion based coherence protocol, which frequently trigger expensive remote ac-
cesses. Hence, latency hiding features such as p r e f e t c h i n g and p o s t s t o r i n g 2
assume critical importance. Many studies have used either hardware [3] or soft-
ware [4] prefetching schemes largely for array-based regular applications with
static locality. They mostly used simulations of the memory system driven by
memory access events generated during application execution. Also, their eval-
uations are restricted to at most 32 processors and do not address scalability
issues. We present two latency hiding schemes, PST and PFH, and evaluate
their performance on a dynamic application (Barnes-Hut algorithm [5]), which
uses pointer-based lists of aggregate data structures. As opposed to execution-
driven simulations, we directly study the execution performance on the target
DSM machine (viz. KSR1). The schemes produced significant (21%) and scal-
able improvement in the overall loop execution time of the application.

2 B a c k g r o u n d

K S R 1 A r c h i t e c t u r e : The KSR1 [6] interconnect is a two-level ring hierar-
chy. Each first level ring connects 32 processor cells and provides sequentially
consistent shared memory via an invalidation coherency protocol. An onboard
split-cache (called subcache) and a secondary cache (called local cache) are avail-
able at each processing node. The data transfer unit is a 128 byte chunk termed

* This work was supported in part by an NSF Young Investigator Award CCR-9357840
The poststore [2] allows users to implement a source-level selective-update protocol.

487

a subpage. The Prefetch instruction moves a specific subpage into the local cache.
The Poststore broadcasts a subpage onto the ring and local caches having place-
holders for this subpage update their entries. Often, local caches enroute between
the responding and requesting caches having invalid place-holders automaticMly
update their entries. This feature is termed Automatic Updates.

The Barnes Hu t Algor i thm: The application performs an N-body simu-
lation of stars in interacting galaxies [5]. The main data structure is an octree
whose internal cells represent recursively subdivided partitions of the physical
space. The leaf cells of the tree represent the bodies (stars). The computational
structure of the Barnes-Hut code is outlined in Figure 1. The ForceTime consti-
tutes 90~ to 95~ of the total TrackTime, and is hence the focus of our scalability
analysis. Dynamically changing body interactions defy static analysis warrating
our runtime PST and PFH schemes.

~ , t ~ l n ~ l -qlmrJ, ,~ In I~n,~a. .Hi l | / t f,~l~..t tnn
, . . :

, i . I'~

~,'*NF,,*~,,~m~,T,~*OC.O~h*,,Q,h I 1

P u . t J l J e e ~ Pu~qtee IJet Ame~ ~ I m on : ~g

1 t
. I !

V ~,-" I V!

. i

Fig. 1. Computational Flow

3 L a t e n c y H i d i n g S c h e m e s

We assume that data abstractions ('bodies') are aligned into subpages and sub-
pages mapped to processors during data partitioning are said to be owned by
those processors. An 'unowned (processor) reference' implies a reference to data
within an unowned subpage 3. Conversely, references to data within subpages
owned locally are 'owned references'. Two descriptors per subpage copy, Owner
and ExtFlag , track the ownership and occurrence of unowned references respec-
tively. The Ex tF lag of a locally owned subpage is reset upon an owned-write
and, is set by the first subsequent unowned reference. Descriptor updates pro-
duce system-wide coherency invalidation of subpage copies. Processor stalls due
to such invalidations are prevented by poststoring the updated subpage.

a Includes references to a dirty (unshared) local copy of a remotely-owned subpage.

488

.PST Scheme: We assume architectural/runtime system support for mon-
itoring the number of owned (Ro) and unowned (Run) references between two
consecutive invocations of the PST runtime system. Upon invocation, the PST
scheme computes the measure of remote-processor affinity (Ai) of the subpage (i)
as: Ai = Run/(Run+ Ro) Also, a running average, called the Poststore Threshold
(A), of selected past Ai values is used for making poststoring decisions.

After computing the Ai, if the ExtFlag of subpage i is set: (a) ExtFlag for
subpage i is reset, (b) A is updated: .4 = (A + Ai)/2 and, (c) subpage i is
poststored. Else if ExtFlag is unset: Subpage i is poststored only if Ai > A.

P F H Scheme We implemented a history-based [3], domain-specific [4]), tem-
poral lookahead [7] PFH scheme. PFH tries to anticipate and prefetch: (a) un-
owned references to leaf-cells and, (b) previously unreferenced internal cells.
The PFH scheme defines CurrDist as the distance in physical space between
successive bodies updated in the ForceTime loop. AvgDist is defined as a mov-
ing average of the CurrDisl values. An explicit history of octree cells/bodies
traversed by the first body is recorded. When a body's CurrDist exceeds the
AvgDist value, the history is updated where this body's traversal deviates from
the stored history. A deviant reference to an internal cell triggers a prefetch of
its unowned octree descendants.

4 S c a l a b i l i t y E v a l u a t i o n S e t u p

R C T S Rule: Realistic Constant Time Scaling (RCTS) [8] of the number of pro-
cessors by k, requires scaling the number of bodies n by v/k, to maintain a con-
stant execution time. Subsequently, the accuracy parameter 0 and the timestep t
are scaled to ensure that error contributions from all sources in the scaled simu-
lation are proportional to those in the unscaled simulation: If n scales by a factor

then 0 scales to ,-~ and t scales to ~7" The base case is a 4 processor run for 8,

which (n = 4k, O = 0.8, t = 0.05). The scaled problem sizes (see Table 1), are
derived via the RCTS rule.

~_ Simulation Sizes & Parameters::RCTS Simulation

NPROC 4 24 40 56 64 80 96 112 120
NBODY n l ~ l 1 2 9 5 2] ~ 1 8 3 1 2 1 2 0 0 6 6 1 2 1 6 7 4 1 2 3 1 7 0 [[
THETAO[~ 5 0.55] 0.54] 0.53[0.5111

TIME t

Table 1. Simulation Sizes and Parameters under RCTS Scaling

C o n s t a n t P r o b l e m Size Scaling Rule: The application parameters were
fixed over all runs to be: (n = 32768, 0 = 0.53, t = 0.018).

489

5 Performance Analysis

The results for four different sets of runs are presented. One set of runs use the
uninstrumented Normal version of the code. The second uses the P S T scheme
while the third is for the P F H runs. The last, labeled P F H P S T , uses both
the PFH and PST schemes. The PST, PFH and PFHPST timings include the
overheads of lhe latency hiding schemes.

5.1 Appl ica t ion Behavior

This section examines the scalability of the Norm and latency hiding runs.
Cons t an t T ime Scalability: The RestTime, in Fig. 2, represents synchro-

nization etc., while the TreeTime equals (TreeTime + PartitionTime) of Fig. 1.
The ForceTime decreases from representing about 90% to approximately 20% -
30% of the TrackTime in the Norm runs. The TreeTime and RestTime together
increasingly dominate the Tracktime (10% to 60% of TrackTime). The finer data
partitions in larger runs reduce the ForceTime, but also increase remote accesses
and lock contention thereby increasing the RestTime. The TrackTime compo-
nents scaled much better in the the latency hiding versions. Fig. 3 compares the
versions for an 80 processor run. The PST, PFH and PFHPST versions reduce
the (RestTime + TreeTime) while maintaining a constant ForceTime. Hence,
PST and PFH versions produced a 21% reduction while PFHPST produced a
10% reduction in the TrackTime over the Norm run.

mrnul~en: ~ cmnpmvmm r I~utmmon: Compe~ Jve Ev~umtlon

4 14 4O Ii 1r Ill li 11I llI ~ Pit ~

Fig. 2. TrackTime Compo-
nents:Norm RCTS Simulation

Fig. 3. Latency Hiding::80 Pro-
cessor, 18k Particles RCTS Sim-
ulation

Cons t an t P rob lem Size Scaling: Again, the TrackTime components for
Norm runs do not scale well (Fig. 4). The ForceTime component decreases from
representing almost 99% of the TrackTime to less than 50%. Fig. 5 compares the
Norm and latency hiding versions for a 112 processor run. The PST, PFH and
PFHPST schemes produced a 35%, 37% and 50% reduction over the 112 proces-
sor Norm run respectively. In summary, the PST and PFH schemes successfully
reduce latencies arising from invalidation-misses and locality variations. They
also scale very well in performance.

490

~ Pmi~m Wm Nero1 ~.al: Trwk~

4 | * a e s e s 4 IJo e l 1 1 t

Fig.4 . Norm Run TrackTime
Components: Constant Problem
Size Scaling

Cons~t Prok~m ~ : : Run: Comp~mN

Fig. 5. Constant Problem Size
TrackTime Components: Latency
Hiding vs. Norm Runs

5.2 KSI~I Machine Behavior

Local Cache Per formance : In this section, the plots of the subpage misses
and stall times present the maximum values over the processors in each run.

Effect of Scaling Working Set: The scaling rules used, produced suc-
cessively smaller partitions at each processor [8], therefore increasing remote
accesses. This is seen in the increasing number of local cache misses in Fig. 7
with a noticeable peak in the 80 processor run. The half-ring peak is seen to a
lesser extent, at the 112, 24 and 56 processor runs as well since their working
sets contain enough locality to offset the effects of au~ornalic updates.

Effect of La tency Hid ing Schemes: The effects of the PST version is a
smoothing effects on the half-ring peaks, as in Fig. 7. However, the increased
remote accesses are not very well predicted by the PFH scheme for larger runs.
Combining the PFtI and the PST schemes should therefore yield better results
as seen by the PFHPST run in Fig. 7. The interested reader is referred to [9] for
further details.

Stall T ime Analysis: The StallTime (Fig. 6) is a good indicator of the com-
putation to communication (CC) ratio of the execution. This is because the
main memory misses stall the processor while communicating data requests, to
effectively lower the CC ratio. Thus, the Stall times shown in Fig. 6 correlate
well with the local cache subpage miss curves. The lower local cache misses in
the latency hiding runs produce lower stall times. This effect is pronounced in
the larger runs where the stall time proportion of the TrackTime in the Norm
runs is high (90% in 120 processor run). Thus, latency hiding assumes critical
importance for increasing CC ratio via overlapping communication for satisfying
remote accesses with the computation.

6 Conclusions

Both the PST and PFH schemes produced significant (20% in 80 proc. run)
reductions in the TrackTime over the Norm versions. However, the PST scheme

491

RCIIS Ilnsu rime.: ~ 11mN ~q~ * l TrWITIns* @/rJ~)

Wi.r I 'm.~.m

Fig. 6. Processor StaltTime ::
RCTS Simulation

~ 1 ~ : to~w C~chr 8vbpag* M**.*.~I Ok O/robe

] : 11

Fig. 7. Subpage Misses in Local
Cache::RCTS Simulation

is application-independent and allows users to selectively implement an update
coherency semantics. The successful use even in applications using pointer-based
da ta structures further adds to PST's attractiveness. Hence, the main result is
tha t poststoring (as opposed to prefetching) in general, and our PST scheme (as
opposed to the PFH scheme) in particular, is the better path toward significant
and scalable performance improvements.

References

1. I. Kuskin et al., "The Stanford FLASH Multiprocessor," in Proceedings of the 21st
Annual International Symposium on Computer Architecture, pp. 302-313, 1994.

2. E. Rosti et al., "The KSRI: Experimentation and Modelling of Poststore," in Pro-
ceedings of the 1993 Sigmetrics Conference on Measures and Modelling of Computer
Systems, pp. 74-85, 1993.

3. J. W. C. Fu and J. Patel, "Data Prefetching in Multiprocessor Vector Cache Mem-
ories," in Proceedings of the 18th Annual International Symposium on Computer
Architecture, pp. 54-63, 1991.

4. T. Mowry and A. Gupta, "Tolerating Latency Through Software-Controlled
Prefetching in Shared Memory Multiprocessors," Journal of Parallel and Distributed
Computing, vol. 12, pp. 87-106, June 1991.

5. J. P. Singh, W. Weber, and A. Gupta, "SPLASH: Stanford Parallel Applications
for Shared Memory," Computer Architecture News, vol. 20, pp. 5-44, March 1992.

6. K. S. R. Corporation, KSR1 Principles of Operations, 1992.
7. J. Baer and G. R. Sager, "Dynamic Improvement of Locality of Virtual Memory

Systems," IEEE Transactions on Software Engineering, vol. SE-2, pp. 54-62, March
1976.

8. 3. P. Singh, J. L. Hennessy, and A, Gupta, "Implications of Hierarchical N-body
Techniques for Multiprocessor Architecture," Technical Report CSL-TR-92-506,
Stanford University, 1992.

9. C. Tumuluri and A. N. Choudhary, "Exploitation of Latency Hiding on the KSR1,
Case Study: The Barnes Hut Algorithm," Technical Report CTC94TR176, Cornell
Theory Center, 1994.

