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Abstract .  Most latency hiding studies for Distributed Shared Memory 
(DSM) systems use prefetching, while few explore use of poststoring. This 
study develops, and compares performance gains obtained using, a run- 
time poststoring scheme (PST) and an application-specific prefetching 
scheme (PFH). The PST and PFH schemes produced scalable reductions 
in loop execution times. 

1 I n t r o d u c t i o n  

Most Distributed Shared Memory (DSM) systems [1] implement an invalida- 
tion based coherence protocol, which frequently trigger expensive remote ac- 
cesses. Hence, latency hiding features such as p r e f e t c h i n g  and p o s t s t o r i n g  2 
assume critical importance. Many studies have used either hardware [3] or soft- 
ware [4] prefetching schemes largely for array-based regular applications with 
static locality. They mostly used simulations of the memory system driven by 
memory access events generated during application execution. Also, their eval- 
uations are restricted to at most 32 processors and do not address scalability 
issues. We present two latency hiding schemes, PST and PFH, and evaluate 
their performance on a dynamic application (Barnes-Hut algorithm [5]), which 
uses pointer-based lists of aggregate data structures. As opposed to execution- 
driven simulations, we directly study the execution performance on the target 
DSM machine (viz. KSR1). The schemes produced significant (21%) and scal- 
able improvement in the overall loop execution time of the application. 

2 B a c k g r o u n d  

K S R 1  A r c h i t e c t u r e :  The KSR1 [6] interconnect is a two-level ring hierar- 
chy. Each first level ring connects 32 processor cells and provides sequentially 
consistent shared memory via an invalidation coherency protocol. An onboard 
split-cache (called subcache) and a secondary cache (called local cache) are avail- 
able at each processing node. The data transfer unit is a 128 byte chunk termed 

* This work was supported in part by an NSF Young Investigator Award CCR-9357840 
The poststore [2] allows users to implement a source-level selective-update protocol. 
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a subpage. The Prefetch instruction moves a specific subpage into the local cache. 
The Poststore broadcasts a subpage onto the ring and local caches having place- 
holders for this subpage update their entries. Often, local caches enroute between 
the responding and requesting caches having invalid place-holders automaticMly 
update their entries. This feature is termed Automatic Updates. 

The  Barnes  Hu t  Algor i thm:  The application performs an N-body simu- 
lation of stars in interacting galaxies [5]. The main data structure is an octree 
whose internal cells represent recursively subdivided partitions of the physical 
space. The leaf cells of the tree represent the bodies (stars). The computational 
structure of the Barnes-Hut code is outlined in Figure 1. The ForceTime consti- 
tutes 90~ to 95~ of the total TrackTime, and is hence the focus of our scalability 
analysis. Dynamically changing body interactions defy static analysis warrating 
our runtime PST and PFH schemes. 

~ , t ~ l n ~ l  -qlmrJ, ,~  In I~n,~a. .Hi l | / t  f,~l~..t tnn  
, .  . . . . . . . . . . . . . . . . . . . . . . .  : 

, i . . . . . . . . . . . . . . . . . . . . . . . . . .  I'~ 

~,'*NF,,*~,,~m~,T,~*OC.O~h*,,Q,h I 1 

P u . t J l J e e ~  Pu~qtee IJet  Ame~ ~ I m on : ~g 

1 t 
. . . . . . . . . . . . . . . .  I ! 

V . . . . . . . . . .  ~,-" . . . . . . .  I V! 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

Fig. 1. Computational Flow 

3 L a t e n c y  H i d i n g  S c h e m e s  

We assume that data abstractions ('bodies') are aligned into subpages and sub- 
pages mapped to processors during data partitioning are said to be owned by 
those processors. An 'unowned (processor) reference' implies a reference to data 
within an unowned subpage 3. Conversely, references to data within subpages 
owned locally are 'owned references'. Two descriptors per subpage copy, Owner  
and ExtFlag ,  track the ownership and occurrence of unowned references respec- 
tively. The Ex tF lag  of a locally owned subpage is reset upon an owned-write 
and, is set by the first subsequent unowned reference. Descriptor updates pro- 
duce system-wide coherency invalidation of subpage copies. Processor stalls due 
to such invalidations are prevented by poststoring the updated subpage. 

a Includes references to a dirty (unshared) local copy of a remotely-owned subpage. 
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.PST Scheme:  We assume architectural/runtime system support for mon- 
itoring the number of owned (Ro) and unowned (Run) references between two 
consecutive invocations of the PST runtime system. Upon invocation, the PST 
scheme computes the measure of remote-processor affinity (Ai) of the subpage (i) 
as: Ai = Run/(Run+ Ro) Also, a running average, called the Poststore Threshold 
(A), of selected past Ai values is used for making poststoring decisions. 

After computing the Ai, if the ExtFlag of subpage i is set: (a) ExtFlag for 
subpage i is reset, (b)  A is updated: .4 = (A + Ai)/2 and, (c) subpage i is 
poststored. Else if ExtFlag is unset: Subpage i is poststored only if Ai > A. 

P F H  Scheme  We implemented a history-based [3], domain-specific [4]), tem- 
poral lookahead [7] PFH scheme. PFH tries to anticipate and prefetch: (a) un- 
owned references to leaf-cells and, (b) previously unreferenced internal cells. 
The PFH scheme defines CurrDist as the distance in physical space between 
successive bodies updated in the ForceTime loop. AvgDist is defined as a mov- 
ing average of the CurrDisl values. An explicit history of octree cells/bodies 
traversed by the first body is recorded. When a body's CurrDist exceeds the 
AvgDist value, the history is updated where this body's traversal deviates from 
the stored history. A deviant reference to an internal cell triggers a prefetch of 
its unowned octree descendants. 

4 S c a l a b i l i t y  E v a l u a t i o n  S e t u p  

R C T S  Rule:  Realistic Constant Time Scaling (RCTS) [8] of the number of pro- 
cessors by k, requires scaling the number of bodies n by v/k, to maintain a con- 
stant execution time. Subsequently, the accuracy parameter 0 and the timestep t 
are scaled to ensure that error contributions from all sources in the scaled simu- 
lation are proportional to those in the unscaled simulation: If n scales by a factor 

then 0 scales to ,-~ and t scales to ~7" The base case is a 4 processor run for 8, 

which (n = 4k, O = 0.8, t = 0.05). The scaled problem sizes (see Table 1), are 
derived via the RCTS rule. 

~_ Simulation Sizes & Parameters::RCTS Simulation 

NPROC 4 24 40 56 64 80 96 112 120 
NBODY n l ~ l 1 2 9 5 2 ]  ~ 1 8 3 1 2 1 2 0 0 6 6 1 2 1 6 7 4 1 2 3 1 7 0 [ [  
THETAO[ ~ 5  0.55] 0.54] 0.53[ 0.5111 

TIME t 

Table  1. Simulation Sizes and Parameters under RCTS Scaling 

C o n s t a n t  P r o b l e m  Size Scaling Rule:  The application parameters were 
fixed over all runs to be: (n = 32768, 0 = 0.53, t = 0.018). 
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5 Performance Analysis 

The results for four different sets of runs are presented. One set of runs use the 
uninstrumented Normal version of the code. The second uses the P S T  scheme 
while the third is for the P F H  runs. The last, labeled P F H P S T ,  uses both 
the PFH and PST schemes. The PST, PFH and PFHPST timings include the 
overheads of lhe latency hiding schemes. 

5.1 Appl ica t ion  Behavior  

This section examines the scalability of the Norm and latency hiding runs. 
Cons t an t  T ime Scalability: The RestTime, in Fig. 2, represents synchro- 

nization etc., while the TreeTime equals (TreeTime + PartitionTime) of Fig. 1. 
The ForceTime decreases from representing about 90% to approximately 20% - 
30% of the TrackTime in the Norm runs. The TreeTime and RestTime together 
increasingly dominate the Tracktime (10% to 60% of TrackTime). The finer data 
partitions in larger runs reduce the ForceTime, but also increase remote accesses 
and lock contention thereby increasing the RestTime. The TrackTime compo- 
nents scaled much better in the the latency hiding versions. Fig. 3 compares the 
versions for an 80 processor run. The PST, PFH and PFHPST versions reduce 
the (RestTime + TreeTime) while maintaining a constant ForceTime. Hence, 
PST and PFH versions produced a 21% reduction while PFHPST produced a 
10% reduction in the TrackTime over the Norm run. 

mrnul~en: ~ cmnpmvmm r I~utmmon: Compe~ Jve Ev~umtlon 

4 14 4O Ii 1r Ill li 11I llI ~ Pit ~ 

Fig. 2. TrackTime Compo- 
nents:Norm RCTS Simulation 

Fig. 3. Latency Hiding::80 Pro- 
cessor, 18k Particles RCTS Sim- 
ulation 

Cons t an t  P rob lem Size Scaling: Again, the TrackTime components for 
Norm runs do not scale well (Fig. 4). The ForceTime component decreases from 
representing almost 99% of the TrackTime to less than 50%. Fig. 5 compares the 
Norm and latency hiding versions for a 112 processor run. The PST, PFH and 
PFHPST schemes produced a 35%, 37% and 50% reduction over the 112 proces- 
sor Norm run respectively. In summary, the PST and PFH schemes successfully 
reduce latencies arising from invalidation-misses and locality variations. They 
also scale very well in performance. 
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Fig. 5. Constant Problem Size 
TrackTime Components: Latency 
Hiding vs. Norm Runs 

5.2 KSI~I Machine  Behavior  

Local Cache Per formance :  In this section, the plots of the subpage misses 
and stall times present the maximum values over the processors in each run. 

Effect of  Scaling Working  Set: The scaling rules used, produced suc- 
cessively smaller partitions at each processor [8], therefore increasing remote 
accesses. This is seen in the increasing number of local cache misses in Fig. 7 
with a noticeable peak in the 80 processor run. The half-ring peak is seen to a 
lesser extent, at the 112, 24 and 56 processor runs as well since their working 
sets contain enough locality to offset the effects of au~ornalic updates. 

Effect of  La tency  Hid ing  Schemes: The effects of the PST version is a 
smoothing effects on the half-ring peaks, as in Fig. 7. However, the increased 
remote accesses are not very well predicted by the PFH scheme for larger runs. 
Combining the PFtI and the PST schemes should therefore yield better results 
as seen by the PFHPST run in Fig. 7. The interested reader is referred to [9] for 
further details. 

Stall  T ime  Analysis:  The StallTime (Fig. 6) is a good indicator of the com- 
putation to communication (CC) ratio of the execution. This is because the 
main memory misses stall the processor while communicating data requests, to 
effectively lower the CC ratio. Thus, the Stall times shown in Fig. 6 correlate 
well with the local cache subpage miss curves. The lower local cache misses in 
the latency hiding runs produce lower stall times. This effect is pronounced in 
the larger runs where the stall time proportion of the TrackTime in the Norm 
runs is high (90% in 120 processor run). Thus, latency hiding assumes critical 
importance for increasing CC ratio via overlapping communication for satisfying 
remote accesses with the computation. 

6 Conclusions 

Both the PST and PFH schemes produced significant (20% in 80 proc. run) 
reductions in the TrackTime over the Norm versions. However, the PST scheme 
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Fig.  7. Subpage Misses in Local 
Cache::RCTS Simulation 

is application-independent and allows users to selectively implement an update 
coherency semantics. The successful use even in applications using pointer-based 
da ta  structures further adds to PST's  attractiveness. Hence, the main result is 
tha t  poststoring (as opposed to prefetching) in general, and our PST scheme (as 
opposed to the PFH scheme) in particular, is the better path toward significant 
and scalable performance improvements. 
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