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Abstract .  The extraction of operation level parallelism from sequential code 
has become an important problem in compiler research due to the prolifera- 
tion of superscalar and VLI'W architectures. This problem becomes especially 
hard for code containing a large number of conditional branches. In this par 
per we extend previous work on straight line code scheduling by looking at 
branching task systems whose control flow graph is acyclic. First, we define an 
optimality measure based on the probability of the various execution paths. 
Then, we apply a list scheduling algorithm to these systems and derive a worst 
case performance guarantee for this method. Finally, we show that there are 
branching task systems for which this bound is almost tight. 

1 I n t r o d u c t i o n  

With the wide spread use of microprocessors capable of executing multiple operations 
per cycle, extraction of fine grain parallelism from sequential programs is regaining 
momentum. This concept dates back to the 60s where machines like the IBM 360/91 
or the CDC 6600 provided hardware mechanisms to exploit operation level parallelism 
automatically. Due to the frequency of conditional jumps in system code, this purely 
hardware based approach rarely exceeded speedup factors of two or three [9]. 

In the early 80s Fisher developed an innovative compilation technique called trace 
scheduling, that went beyond the conditional jump barrier in its quest to extract par- 
allelism. Fisher subsequently introduced an architectural paradigm, termed VLIW, 
which by employing a trace scheduling compiler was claimed to provide high perfor- 
mance at low cost [4]. 

Today all systems that boost performance by exploiting fine grain parallelism 
combine multiple functional units/single thread of control machines with sophisti- 
cated compilers. Several new compilation algorithms such as percolation schedn]ing 
[1] or region scheduling [7] have generalized the ideas behind trace scheduling for non 
numerical programs. 

However, for most of these techniques the actual motion of operations beyond 
conditional branches has been given priority over mechanisms for the selection of the 
operations to move. Trace scheduling is an exception as operations from the execution 
path with highest probability are always chosen to be the subject of a transformation. 
But to date no theoretical performance evaluation has been presented for this or any 
other scheduling heuristic dealing with conditional branches. 
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This is in contrast with the large body of theoretical results known for scheduling 
problems in the absence of conditional operations. In general these problems are NP- 
hard [5]. Frequently, a classical heuristic called list scheduling is employed to guarantee 
close to optimum performance. There, operations are first ordered in a priority list. 
Instructions are then constructed in a top down fashion by selecting operations from 
this priority list and moving them to the instruction. This procedure guarantees in 
general a final running time of at most (2 - l /m)  times the optimum where m is the 
number of operations that can be executed concurrently [2]. 

In this paper we show that a generalization of the list scheduling heuristic in the 
presence of branches limits the deviation from the optimum to the factor 2 - 1/m + 
(1 - l / m ) .  112.  og2 m]. 

The remainder of the paper is structured as follows. Section 2 introduces branch- 
ing task systems which formalize the notion of programs containing conditionals. Sec- 
tion 3 explains our machine model and defines schedules containing branches. Next, 
Section 4 defines optimality while Section 5 explains how list scheduling has been ex- 
tended in the presence of branches and gives its new performance guarantee. Finally, 
Section 6 gives an example which shows that the performance bound established in 
Section 5 is almost tight. 

2 Branching Task System 

A conventional task system comprises a set of operations O and a precedence relation 
-~ on O. The operations must be executed so that the dependence constraints dictated 
by -~ are respected in the final schedule [2]. To formalize the notion of an acyclic 
program containing branches we extend this definition by adding conditionals, that 
is operations whose outcome determines the next set of operations to execute. 

Def in i t i on1  B r a n c h i n g  Task  S ys t em .  A triple T = (O, G, -~) consisting of a set 
of operations O, a control flow graph G, and s dependence relation -~ is called a 
branching task system if the following conditions are valid: 

1. G is an acyclic single entry, single exit di-graph with vertex set O U {~, r such 
that no operation in G has out-degree greater than 2. Operations with out-degree 
2 are called conditionals. ~ is G's entry and has out-degree one, while r is G ' s  
exit. A path from the entry ~ to the exit r is called an execution path of T. The 
set of all such paths is denoted 7~(T). For any op E O, 7~(op, T) denotes the set 
of execution paths traversing op. 

2. For each execution path P, -~ is a partial order on P compatible with its linear 
ordering, that is op -~ op ~ only if op precedes op I in P. 

An example of a branching task system T is given in Figures 1 and 2. Figure 1 
gives the low-level code generated for a procedure computing the square roots of the 
polynomial a .z2+b.z+c with aS  0. 

The precedence relation of the branching task is given in Figure 2. The relation is 
portrayed in the form of a dependence graph where a solid edge from an operation op to 
an operation op I denotes op -~ op I. Note that output dependencies between operations 
on different execution paths, as e.g. between op15 and op14 are realized by introducing 
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procedure  Poly_Roots ( a , b , c :  inoomins; x l , x 2 , r o o t s :  outgoin 8) i s  
r l  := h * b; - -  opl  
r2 := 4 * a; - -  op2 
r3 := c * r2;  - -  op3 
r4 := r l  - r3; - -  op4 
if r4 >= 0.0 then -- cjl 

r5 := 2 * a; - -  op5 
if r4 = 0.0 then -- cj2 

r6 := -b; -- op6 

xl := r6 / rS; -- op7 

r o o t s  := i ;  - -  op8 
e l s e  

r7 := sqr t  ( r4) ;  - -  op9 
r8 := r7 - b ;  - -  oplO 
xl := r8 / rS; -- opll 

r9 := -r7 - b; -- op12 

x2 := r9 / rS; -- op13 

roots := 2; -- op14 

end if; 

else 

r o o t s  := O; - -  op15 
end if; 

end Poly_Roots; 

F i g .  1. Code to compute the roots  of a degree 2 polynomial.  

s tat ic  dependencies from appropria te  condit ional  branches to these operations.  There 
are various other possibilities to address this problem as e.g. renaming. However, a 
discussion of these issues is beyond the scope of  this paper .  

The control  flow can also be extracted from Figure 2. Within  each block the control 
flow is defined by the numerical order of the opera t ion  with the condit ional  operat ion 
being the last.  Between blocks the control flow is represented by dashed edges. Vertex 

is the single predecessor of o p l  while vertex ~ is the  successor of operat ions opg, 
op l4 ,  and op lS .  

Note tha t  t ime is considered to be a discrete, ra ther  than  a continuous entity. 
Fur ther  i t  is assumed tha t  every operat ion requires a single unit of t ime to execute. 
The  use of mult i  cycle operations is more thoroughly  discussed in [61. In general it  can 
be s ta ted  tha t  the bound derived in this paper  is no longer valid when operat ions have 
a rb i t r a ry  durations.  In this case list schedules may  yield arbi t rar i ly  poor performance. 

For the  sake of simplicity we will also require tha t  the control flow graph G - {~} 
is a tree al though the presented results apply  to a rb i t ra ry  control flow graphs as 
well. For more general branching task systems it  may  be necessary to sacrifice space 
performance in order to obtain even a modest  speedup [6]. More specifically, a speedup 
as l i t t le as 2 may require exponential  code size. Thus for branching tasks,  whose 
control  flow graph is not a tree, t ime and space performance can be ant ipodal .  

This  phenomenon can be intuitively explained by considering the number  of ex- 
ecution pa ths  of  a control flow graph. If the control  flow graph is a tree, the overall 
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number of execution paths is equal to the number  of leaf operations in the graph. 
However, in an arbitrary control flow graph with n operations there can be close to 
2 '~ execution paths. 

3 M a c h i n e  M o d e l  a n d  B r a n c h i n g  S c h e d u l e s  

Our machine model is capable of executing m arbitrary operations per time unit. The 
set of operations executed in a given time instant is called an instruction. When an 
instruction I contains 1 < k < rn conditionals, these are arranged to form a decision 
tree with k + 1 outgoing branches that specifies which instruction must be executed 
next. This machine model is inspired by the branching paradigm of Kazplus & Nicolau 
[8] and Ebcio~lu [3]. A formal definition is given below: 

Def in i t ion2  B r a n c h i n g  Schedule.  A branching schedule ~ of a comprises a set of 
instructions ~(~) and a control t]ow graph G(~). 

1. An instruction is a set of operations. If every instruction contains at most m 
operations, cr is said to be an m-schedule. 
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2. G(g) is an acyclic single entry, single exit di-graph with vertex set Z(~r) U {(, (}. 
An instruction I has out-degree k iff it contains k -  1 conditionals. A path from the 
entry ~ to the exit ( is called an execution path of g. The set of all such execution 
paths is denoted 7~(cr). The length d(P, ~) of an execution path P 6 7~(cr) is the 
number of instructions traversed by P. 

As we have assumed that the control flow graph of a branching task is a tree, the 
control flow graph of a branching schedule will also be a tree. 

De f in l t i on3  Admiss ib i l i ty .  Let T : (O, G, -<) be a branching task system and cr 
be a branching schedule, cr is said to be admissible for T i f f  the following constraints 
are met: 

1. B r a n c h i n g :  There is a bijective function ~b mapping 7~(T) into 7~(~) such that 
for all P E 7~(T) the instructions traversed by ~(P) in ~ contain all the operations 
traversed by P in T. Furthermore, if conditional cj is an ancestor of conditional 
cj t in T then either cj and cj '  are scheduled in the same instruction in ~ or cj 
is scheduled in an instruction which is an ancestor of the instruction where cj' is 
scheduled. 

2. D e p e n d e n c i e s :  For any pair of operations op, op t 6 0  with op -< op t, op 6 I and 
op t 6 I '  follows that  / is a proper ancestor of I ' .  

Two branching 3-schednles admissible for the branching task system of Figure 2 
axe given in Figure 3. Note that an operation op need not be scheduled in a single 
instruction. For instance in the right schedule, operation op5 is scheduled both in I6 
and I8. 

If an operation op is scheduled in an instruction I but there exists a path P 
traversing I such that P ~ ~v(op, T), we say that op is speculatively scheduled in I .  
This means that the execution o f  op will not be useful if execution path P is taken. 
For instance in the left schedule operation op5 is scheduled speculatively in I1. 

4 O p t i m a l i t y  D e f i n i t i o n  

Depending on the outcome of the conditionals contained in a branching task system T, 
the actual path followed during execution varies. Consequently an admissible schedule 
for T may require different completion times for different executions. Therefore for two 
execution paths P1, P2 o f t  and two admissible rn-schednles ~, cr t for T, d(~b~,(P1), or) < 
d ( ~ ,  (P1), g ' )  and d(q~,(P2), ~) > d(~bq, (P2), ~ rt) is possible. Consequently, a weight 
function is typically employed to define the average execution time of a branching 
schedule. 

Def in i t ion  4 Weigh t  Func t ion .  Let T be a branching task and G its control flow 
graph. A function w mapping 7~(T) into the non-negative reals is called a weight 
function for T if and only if 
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Pig.  3. Two branching schedules. 

When G - {(} is a tree there exists a function ~ mapping the edges of G into the 
non-negative reals such that: 

v P = (~,  ~ , . . . ,  ~ )  ~ ~,(T) 
k 

~(P) = M ~(e,) 

D e f i n i t i o n 5  O p t i m a l i t y .  The weighted average running time t(cr), is defined as 

PE~(T) 

cr is said to be m-opt imum for zo iff there exists no admissible m-schedule or' for T 
such that ~(~') < ~(~). 

Usually weights are taken to be execution path probabilities. If the probability 
to take the ' i f  r4  >= 0 .0  t h e n '  branch is 0 .9  and the probability to take the 
' i f  r4  = 0.0 t h e n '  branch is 0 .2  in Figure 2 then the average running time of the 
schedule on the left of Figure 3 is 6.72, whereas the average running time of the 
schedule on the right of Figure 3 is 6.9.  
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5 O p t i m u m  P e r f o r m a n c e  A p p r o x i m a t i o n  

As pointed out in the introduction, the problem of generating optimum m-schedules 
for tasks without conditionals is NP-complete. In these cases the approach is fre- 
quently taken to devise simple heuristics that always produce a result within a con- 
stant factor from the optimum. By introducing a new list scheduling heuristic we ex- 
tend Graham's result on the performance of fist scheduling algorithms [2] to branching 
task systems. 

When generating instructions for branching or straight llne codes, frequently sev- 
eral operations are available for execution in the same instruction. In the case where 
such operations cannot all be executed together a selection criterion must be em- 
ployed. For a straight line task system a random choice guarantees a bound of 2 - 1 / m  
from the optimum. In the presence of conditionals such a selection process may pro- 
duce disastrous results as available operations may belong to different computational 
paths with disparate execution weights. The obvious generalization of the random 
heuristic is to give priority to operations belonging to the execution paths with great- 
est weight. We call such a heuristic greatest weight first (GWF). 

Note that the schedule given on the left of Figure 3 will always be a GWF schedule 
independent of branching probabilities, whereas the one on the right will never be one 
as op5 should have been scheduled in I1. 

Before stating our main result, we introduce two lemmas which are used later. 

Z e m m a  6. Let (ai)l<_i<n and (bi)l<~<_n be two sequences of n >_ 1 positive numbers. 
Then 

< 

Proof. It is easy to see that the lemma is true for n < 2. The correctness for arbitrary 
n follows by induction. 

I, emrna 7 Heavies t  Subgraph in a Tree. Let k be a positive integer, T a directed 
binary tree with at least k vertices, and ~b a weight function which maps every edge 
of T into the non-negative reals such that the sum of the weights of the edges sharing 
the same tail vertez is 1. The weight w(z) of a vertez z o f t  is defined to be I i f  z is 
the root of T and otherwise the product of ~he weights of the edges from T 's root to 
X .  

Assume that k vertices Z l , . . . ,  z;~ of T are marked. For every marked ver~ez xi, 
i e {1, . . . ,  k)  define Wmax(zi) to be ~he mazimum of the weights of all marked vertices 
reachable from zi.  Then the following condition holds: 

k 
1 

= - w in=(= , )  _< 1 + k] 
i = 1  

Proof. We just provide a sketch of the proof. First, we consider only balanced trees 
where each edge has the weight 1/2. For these trees we assume that the nodes axe 
marked by levels in top down fashion such that at most one node has exactly one 
marked child. It is easy to see that the claim holds for this kind of marking. Finally, 
we map an arbitrary directed tree into a tree of the above described type such that 
the number of marked nodes will not increase while s will not decrease. 
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T h e o r e m  8. Let T = (0,  G, -<) be a branching task, w a weight function for T, 
a GWF admissible m-schedule for T and aopt an m-opiimum schedule for T and w. 
Then we have 

t(~) 1 m -  1 
tC~op,) - < 2 - -~ + ~ �9 ~og~ m]. 

Proof. For every operation op let w(op) be the overall weight of the execution paths 
traversing op in T, that  is 

~,(ov)= ~ ~(P).  
Pe~'(op,T) 

] ewise for each instruction I, w(I) denotes the sum of the weights of the execution 
] hs traversing I .  Further for each op 6 I we define w(op, I) = min(w(op), w(I)).  
] ~e that  if op is scheduled in ins t ruct ions/ '1 , . . . ,  I,,, then 

j = l  

] ally, define Wmax(I): 

f 0 if I contains less than m operations 
Wmax(I) 

minopel w(op, I)  otherwise 

] m the above it is easy to prove that 

~(~) = ~ ~(v). ~(P) : ~ ~(1) 
PET~(T) IEa 

] I be some instruction in cr containing k _< m vertices. Then after some simple 
~braic manipulations we have 

,n .  w(X) = ~ w(op, Z) + ~ (w(I)  - ~,(op, O) + (m - k) .  ,,,(I). 
opEI opel 

a is a G W F  schedule, at least one non speculative operation must be executing in 
J Phus, there exists at least one operation op0 6 I such that  w(op0, I)  -- w(I) .  This 
i flies 

m- ,.,,(I) _< ~ ,.,.,(~, I) + (m - 1)- (w(X) - ',,.,~(_,")). 
opEI 

' .~refore, we have 

m. ~(,,) = ,-,. ~ , , , ( I )  _< ~ ~ w(ov, I) + (,', - ~). ~ ( , , , ( I )  - ~-,~(0). 
IEa IE~ opEI IEa 

] It, it is easy to see that  

~ ~(op, i ) =  ~ ~,(op) <_ ,,.w(~op,). 
IE~ opEI opEO 
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Thus to bound t(a) in terms of ~(~o~) it sumces to bound 

H = (,-,, - 1 ) .  - w . , , , . ( x ) ) .  
I6o" 

Let S denote the set of all the instructions X E a which either contain less than m 
operations or an operation which is scheduled speculatively in I. For these instructions 
we have Wm~(I) < w(I). Now, consider the following branching task system T'  : 
(0 ' ,  G', ~) with 

1. O' : Os UOc with Os = {op E I l I  G S} and Oc isthe set of conditional operations 
not in O~. 

2. The control flow graph G' is obtained from the control flow graph of T by ddeting 
every operation not in O'. 

3. The dependence relation of T'  is the restriction of the dependence relation of T 
to the operations in O t. 

As T'  has the same set of execution paths as T w can also be used as weight 
function for T'. Consider the m-optimum schedule ~o admissible for T t such that 
each conditionals in Oc is scheduled alone in an instruction of ~o. If R denotes the 
set of instructions in ~o which only contain operations from Os, then 

 (Xo) _< 
Io6R 

For each I E S define its representative operation op(I) to be some operation 
scheduled in I. These representative operations can be sdected so that for each in- 
struction Io E R and for all representative operations op(I) and op(I') scheduled in 
Io there is: 

w(xo) >_ and w(Xo) >_ 
2. If I is an ancestor of r in cr then Wm~(I)  __ "w(I'). 

For an instruction I E S let cj be the first conditional which is scheduled non 
speculatively in an instruction following I in ~. Note that cj may not necessarily 
exist. Initially, op(I) is defined as follows: 

c j  
op(x) = 

i f c j  ~ I  
with op~ E I and op~ -< cj if cj exists. 
any operation op G I such that w(op, I)  = w(I) otherwise 

If cj exists and cj ~ I then op~ must exist as cr is a GWF schedule. Also, opa 
cannot be scheduled speculatively in I. Further, there must be at least one operation 
op E I which is scheduled non speculatively. Hence w e  have w(op(1), I) = w(1) in 
all of the above cases. Also due to the initial choice of op(I) for each I G S no 
conditional branch following op(I) in cr can be executed before op(I) in any schedule 
admissible for T. Therefore, for each Io E cro such that op(I) G Io initially, we have 
~(Io) _> ~(op(X), I)  : ,~(Z). 
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Next, this initial value of op(I) is updated such that  both conditions above are 
respected. To perform this update the control flow graph of cro is traversed in bottom 
up fashion. 

If there exist two representative operations op(I) and op(I t) scheduled in some 
Io G ~o such that I is an ancestor of I ~ with wmax(I) < ~ ( r )  then, there must exist 
an operation op" 6 I such that op" -~ op(I') as cr is a GWF schedule. Change op(I) 
so that op(I) = op". Note that op" must be scheduled in c'o in an instruction Io' 
preceding Io with w(I) ~ W(Io) < w(I~o). Furthermore, I~o has not yet been explored 
by our bottom tree traversal. Thus as we proceed up the control flow graph of ao 
both, conditions for representative operations are preserved by this transformation. 
Therefore, we can write: 

.H = ( ~  - 1).  ~ ~(x) - ,~m=(x) = ( ~  - 1).  
IES l o f i R  

which implies that 

H < 
. ~ .  t ( v ~ , )  - 

Using Lemma 6 we obtain 

~ (x )  - - - m . ( X )  
{x:o.p(l')~.,'o } 

(m - 1). Ez0~R E{Z:om)~o) w(I) - wm=(I) 
m. Ezo~R ~O(Io) 

H ~ -  1 ~(x)  - ~m=(x)  
- -  �9 m a x  

~ .  t(~-o,,) < ~ ~(~o) - m Xo~a {x:op(x)~X,} 

call this XUo) 

Because of the first condition for representative operations w(I) <_ W(Io) whenever 
op(I) 6 Io. Thus to bound X(Io) it suffices to find the upper bound U to the solution 
of the graph theoretical problem given in Lemma 7. This lemma establishes that 
X(Io) <_ U resulting in 

H _< (~- I). ~. t(~o~,). 

Therefore, we finally get 

~ .  ~(~) _< ~ .  t ( . . , )  + ( ~  - 1) .  ~ .  t ( . . , )  

and 
t(v) < 1 +  m - 1 - . U .  

6 T i g h t n e s s  o f  t h e  B o u n d  

The bound of Theorem 8 is almost tight. A deviation from the optimal case may 
occur if two operations opl and op~ which do not belong to the same execution path 
are both ready for scheduling. In this case GWF systematically selects the operation 
with the highest weight, say opl, whereas thek weights might be close and op2 could 
be a critical operation for the execution paths containing i t .  This kind of behavior is 
illustrated in the example of Figure 4. 
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Fig.  4. Branching task system on which GWF performs poorly. 

The branching schedule of the figure consists of a control flow graph whose basic 
blocks form a complete /~-ary tree of height h. Each block contains a chain of D 
dependent operations, whose last operation is a conditional. Apart from the root 
block, every other block also contains (m - 1) �9 D / k  independent operations. If we 
assume that D is very big, we can regard the last conditional in a block as having 
out-degree/~. However, this means that a decision tree of/~ - 1 conditionals jumps is 
at the end of a block. 

Next, let us assume that all execution paths in the branching task system are 
equally likely. Further, let k : h - log m / l o g  log m. Consider the schedule o'1 where 
the independent operations are scheduled in the block immediately above. Clearly 
this schedule is GWF and its average execution time ~(crl) = h .  13. 

Consider now the schedule ~2 where all the chains of operations are scheduled 
in the root block, and the independent operations are scheduled in the k ~ leaf basic 
blocks. Then, the average execution time of cr 2 is approximately 2 �9 D resulting in 
~(~1)/~(~2) _ 1/2. log m/loglog.~. 
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