
List Scheduling in the Presence of Branches:
A Theoretical Evaluation

Franco Gasperoni 1 and Uwe Schwiegelshohn 2

1 T~l~com Paris-ENST, 46, rue Barrault, 75634 Paris, Cedex 13, France,
gasperoniQinf.enst .fr

Computer Engineering Institute, University Dortmund, 44221 Dortmund, Germany,
uwe@carla.e-technik.uni-dor t round .de

Abstract . The extraction of operation level parallelism from sequential code
has become an important problem in compiler research due to the prolifera-
tion of superscalar and VLI'W architectures. This problem becomes especially
hard for code containing a large number of conditional branches. In this par
per we extend previous work on straight line code scheduling by looking at
branching task systems whose control flow graph is acyclic. First, we define an
optimality measure based on the probability of the various execution paths.
Then, we apply a list scheduling algorithm to these systems and derive a worst
case performance guarantee for this method. Finally, we show that there are
branching task systems for which this bound is almost tight.

1 I n t r o d u c t i o n

With the wide spread use of microprocessors capable of executing multiple operations
per cycle, extraction of fine grain parallelism from sequential programs is regaining
momentum. This concept dates back to the 60s where machines like the IBM 360/91
or the CDC 6600 provided hardware mechanisms to exploit operation level parallelism
automatically. Due to the frequency of conditional jumps in system code, this purely
hardware based approach rarely exceeded speedup factors of two or three [9].

In the early 80s Fisher developed an innovative compilation technique called trace
scheduling, that went beyond the conditional jump barrier in its quest to extract par-
allelism. Fisher subsequently introduced an architectural paradigm, termed VLIW,
which by employing a trace scheduling compiler was claimed to provide high perfor-
mance at low cost [4].

Today all systems that boost performance by exploiting fine grain parallelism
combine multiple functional units/single thread of control machines with sophisti-
cated compilers. Several new compilation algorithms such as percolation schedn]ing
[1] or region scheduling [7] have generalized the ideas behind trace scheduling for non
numerical programs.

However, for most of these techniques the actual motion of operations beyond
conditional branches has been given priority over mechanisms for the selection of the
operations to move. Trace scheduling is an exception as operations from the execution
path with highest probability are always chosen to be the subject of a transformation.
But to date no theoretical performance evaluation has been presented for this or any
other scheduling heuristic dealing with conditional branches.

516

This is in contrast with the large body of theoretical results known for scheduling
problems in the absence of conditional operations. In general these problems are NP-
hard [5]. Frequently, a classical heuristic called list scheduling is employed to guarantee
close to optimum performance. There, operations are first ordered in a priority list.
Instructions are then constructed in a top down fashion by selecting operations from
this priority list and moving them to the instruction. This procedure guarantees in
general a final running time of at most (2 - l /m) times the optimum where m is the
number of operations that can be executed concurrently [2].

In this paper we show that a generalization of the list scheduling heuristic in the
presence of branches limits the deviation from the optimum to the factor 2 - 1/m +
(1 - l / m) . 112. og2 m].

The remainder of the paper is structured as follows. Section 2 introduces branch-
ing task systems which formalize the notion of programs containing conditionals. Sec-
tion 3 explains our machine model and defines schedules containing branches. Next,
Section 4 defines optimality while Section 5 explains how list scheduling has been ex-
tended in the presence of branches and gives its new performance guarantee. Finally,
Section 6 gives an example which shows that the performance bound established in
Section 5 is almost tight.

2 Branching Task System

A conventional task system comprises a set of operations O and a precedence relation
-~ on O. The operations must be executed so that the dependence constraints dictated
by -~ are respected in the final schedule [2]. To formalize the notion of an acyclic
program containing branches we extend this definition by adding conditionals, that
is operations whose outcome determines the next set of operations to execute.

Def in i t i on1 B r a n c h i n g Task S ys t em . A triple T = (O, G, -~) consisting of a set
of operations O, a control flow graph G, and s dependence relation -~ is called a
branching task system if the following conditions are valid:

1. G is an acyclic single entry, single exit di-graph with vertex set O U {~, r such
that no operation in G has out-degree greater than 2. Operations with out-degree
2 are called conditionals. ~ is G's entry and has out-degree one, while r is G ' s
exit. A path from the entry ~ to the exit r is called an execution path of T. The
set of all such paths is denoted 7~(T). For any op E O, 7~(op, T) denotes the set
of execution paths traversing op.

2. For each execution path P, -~ is a partial order on P compatible with its linear
ordering, that is op -~ op ~ only if op precedes op I in P.

An example of a branching task system T is given in Figures 1 and 2. Figure 1
gives the low-level code generated for a procedure computing the square roots of the
polynomial a .z2+b.z+c with aS 0.

The precedence relation of the branching task is given in Figure 2. The relation is
portrayed in the form of a dependence graph where a solid edge from an operation op to
an operation op I denotes op -~ op I. Note that output dependencies between operations
on different execution paths, as e.g. between op15 and op14 are realized by introducing

517

procedure Poly_Roots (a , b , c : inoomins; x l , x 2 , r o o t s : outgoin 8) i s
r l := h * b; - - opl
r2 := 4 * a; - - op2
r3 := c * r2; - - op3
r4 := r l - r3; - - op4
if r4 >= 0.0 then -- cjl

r5 := 2 * a; - - op5
if r4 = 0.0 then -- cj2

r6 := -b; -- op6

xl := r6 / rS; -- op7

r o o t s := i ; - - op8
e l s e

r7 := sqr t (r4) ; - - op9
r8 := r7 - b ; - - oplO
xl := r8 / rS; -- opll

r9 := -r7 - b; -- op12

x2 := r9 / rS; -- op13

roots := 2; -- op14

end if;

else

r o o t s := O; - - op15
end if;

end Poly_Roots;

F i g . 1. Code to compute the roots of a degree 2 polynomial.

s tat ic dependencies from appropria te condit ional branches to these operations. There
are various other possibilities to address this problem as e.g. renaming. However, a
discussion of these issues is beyond the scope of this paper .

The control flow can also be extracted from Figure 2. Within each block the control
flow is defined by the numerical order of the opera t ion with the condit ional operat ion
being the last. Between blocks the control flow is represented by dashed edges. Vertex

is the single predecessor of o p l while vertex ~ is the successor of operat ions opg,
op l4 , and op lS .

Note tha t t ime is considered to be a discrete, ra ther than a continuous entity.
Fur ther i t is assumed tha t every operat ion requires a single unit of t ime to execute.
The use of mult i cycle operations is more thoroughly discussed in [61. In general it can
be s ta ted tha t the bound derived in this paper is no longer valid when operat ions have
a rb i t r a ry durations. In this case list schedules may yield arbi t rar i ly poor performance.

For the sake of simplicity we will also require tha t the control flow graph G - {~}
is a tree al though the presented results apply to a rb i t ra ry control flow graphs as
well. For more general branching task systems it may be necessary to sacrifice space
performance in order to obtain even a modest speedup [6]. More specifically, a speedup
as l i t t le as 2 may require exponential code size. Thus for branching tasks, whose
control flow graph is not a tree, t ime and space performance can be ant ipodal .

This phenomenon can be intuitively explained by considering the number of ex-
ecution pa ths of a control flow graph. If the control flow graph is a tree, the overall

518

opl op2

op3

op5 cj2

\

o71)
o,_Z o,...y-

Pig. 2. A branching task system

op6 op8

number of execution paths is equal to the number of leaf operations in the graph.
However, in an arbitrary control flow graph with n operations there can be close to
2 '~ execution paths.

3 M a c h i n e M o d e l a n d B r a n c h i n g S c h e d u l e s

Our machine model is capable of executing m arbitrary operations per time unit. The
set of operations executed in a given time instant is called an instruction. When an
instruction I contains 1 < k < rn conditionals, these are arranged to form a decision
tree with k + 1 outgoing branches that specifies which instruction must be executed
next. This machine model is inspired by the branching paradigm of Kazplus & Nicolau
[8] and Ebcio~lu [3]. A formal definition is given below:

Def in i t ion2 B r a n c h i n g Schedule. A branching schedule ~ of a comprises a set of
instructions ~(~) and a control t]ow graph G(~).

1. An instruction is a set of operations. If every instruction contains at most m
operations, cr is said to be an m-schedule.

519

2. G(g) is an acyclic single entry, single exit di-graph with vertex set Z(~r) U {(, (}.
An instruction I has out-degree k iff it contains k - 1 conditionals. A path from the
entry ~ to the exit (is called an execution path of g. The set of all such execution
paths is denoted 7~(cr). The length d(P, ~) of an execution path P 6 7~(cr) is the
number of instructions traversed by P.

As we have assumed that the control flow graph of a branching task is a tree, the
control flow graph of a branching schedule will also be a tree.

De f in l t i on3 Admiss ib i l i ty . Let T : (O, G, -<) be a branching task system and cr
be a branching schedule, cr is said to be admissible for T i f f the following constraints
are met:

1. B r a n c h i n g : There is a bijective function ~b mapping 7~(T) into 7~(~) such that
for all P E 7~(T) the instructions traversed by ~(P) in ~ contain all the operations
traversed by P in T. Furthermore, if conditional cj is an ancestor of conditional
cj t in T then either cj and cj ' are scheduled in the same instruction in ~ or cj
is scheduled in an instruction which is an ancestor of the instruction where cj' is
scheduled.

2. D e p e n d e n c i e s : For any pair of operations op, op t 6 0 with op -< op t, op 6 I and
op t 6 I ' follows that / is a proper ancestor of I ' .

Two branching 3-schednles admissible for the branching task system of Figure 2
axe given in Figure 3. Note that an operation op need not be scheduled in a single
instruction. For instance in the right schedule, operation op5 is scheduled both in I6
and I8.

If an operation op is scheduled in an instruction I but there exists a path P
traversing I such that P ~ ~v(op, T), we say that op is speculatively scheduled in I .
This means that the execution o f op will not be useful if execution path P is taken.
For instance in the left schedule operation op5 is scheduled speculatively in I1.

4 O p t i m a l i t y D e f i n i t i o n

Depending on the outcome of the conditionals contained in a branching task system T,
the actual path followed during execution varies. Consequently an admissible schedule
for T may require different completion times for different executions. Therefore for two
execution paths P1, P2 o f t and two admissible rn-schednles ~, cr t for T, d(~b~,(P1), or) <
d (~ , (P1), g ') and d(q~,(P2), ~) > d(~bq, (P2), ~ rt) is possible. Consequently, a weight
function is typically employed to define the average execution time of a branching
schedule.

Def in i t ion 4 Weigh t Func t ion . Let T be a branching task and G its control flow
graph. A function w mapping 7~(T) into the non-negative reals is called a weight
function for T if and only if

520

I1 [o p l op2 op5 [

I2 lops op6 [

I' I~ I

14 I c J1 c J2 op9,1

o~- Ii~ i+ lop, o~. I

I6 [oplO op12 op14]

I7 [opl l op13 [

Decision tree in 14

r /'a
I5 I6 I8

I1

I2

I3

I4

J
op15 II5

i opl op2 op6 I

I ~ I
I '~ I
i ~1 oJ2 op0 I

I8 [opt

I9 I op8

ops[

I6 Iop10op12 oPg I

IT I op l l op13 op141

Decision tree in I4

I5 I6 I8

Pig. 3. Two branching schedules.

When G - {(} is a tree there exists a function ~ mapping the edges of G into the
non-negative reals such that:

v P = (~, ~ , . . . , ~) ~ ~,(T)
k

~(P) = M ~(e,)

D e f i n i t i o n 5 O p t i m a l i t y . The weighted average running time t(cr), is defined as

PE~(T)

cr is said to be m-opt imum for zo iff there exists no admissible m-schedule or' for T
such that ~(~') < ~(~).

Usually weights are taken to be execution path probabilities. If the probability
to take the ' i f r4 >= 0 .0 t h e n ' branch is 0 .9 and the probability to take the
' i f r4 = 0.0 t h e n ' branch is 0 .2 in Figure 2 then the average running time of the
schedule on the left of Figure 3 is 6.72, whereas the average running time of the
schedule on the right of Figure 3 is 6.9.

521

5 O p t i m u m P e r f o r m a n c e A p p r o x i m a t i o n

As pointed out in the introduction, the problem of generating optimum m-schedules
for tasks without conditionals is NP-complete. In these cases the approach is fre-
quently taken to devise simple heuristics that always produce a result within a con-
stant factor from the optimum. By introducing a new list scheduling heuristic we ex-
tend Graham's result on the performance of fist scheduling algorithms [2] to branching
task systems.

When generating instructions for branching or straight llne codes, frequently sev-
eral operations are available for execution in the same instruction. In the case where
such operations cannot all be executed together a selection criterion must be em-
ployed. For a straight line task system a random choice guarantees a bound of 2 - 1 / m
from the optimum. In the presence of conditionals such a selection process may pro-
duce disastrous results as available operations may belong to different computational
paths with disparate execution weights. The obvious generalization of the random
heuristic is to give priority to operations belonging to the execution paths with great-
est weight. We call such a heuristic greatest weight first (GWF).

Note that the schedule given on the left of Figure 3 will always be a GWF schedule
independent of branching probabilities, whereas the one on the right will never be one
as op5 should have been scheduled in I1.

Before stating our main result, we introduce two lemmas which are used later.

Z e m m a 6. Let (ai)l<_i<n and (bi)l<~<_n be two sequences of n >_ 1 positive numbers.
Then

<

Proof. It is easy to see that the lemma is true for n < 2. The correctness for arbitrary
n follows by induction.

I, emrna 7 Heavies t Subgraph in a Tree. Let k be a positive integer, T a directed
binary tree with at least k vertices, and ~b a weight function which maps every edge
of T into the non-negative reals such that the sum of the weights of the edges sharing
the same tail vertez is 1. The weight w(z) of a vertez z o f t is defined to be I i f z is
the root of T and otherwise the product of ~he weights of the edges from T 's root to
X .

Assume that k vertices Z l , . . . , z;~ of T are marked. For every marked ver~ez xi,
i e {1, . . . , k) define Wmax(zi) to be ~he mazimum of the weights of all marked vertices
reachable from zi. Then the following condition holds:

k
1

= - w in=(= ,) _< 1 + k]
i = 1

Proof. We just provide a sketch of the proof. First, we consider only balanced trees
where each edge has the weight 1/2. For these trees we assume that the nodes axe
marked by levels in top down fashion such that at most one node has exactly one
marked child. It is easy to see that the claim holds for this kind of marking. Finally,
we map an arbitrary directed tree into a tree of the above described type such that
the number of marked nodes will not increase while s will not decrease.

522

T h e o r e m 8. Let T = (0, G, -<) be a branching task, w a weight function for T,
a GWF admissible m-schedule for T and aopt an m-opiimum schedule for T and w.
Then we have

t(~) 1 m - 1
tC~op,) - < 2 - -~ + ~ �9 ~og~ m].

Proof. For every operation op let w(op) be the overall weight of the execution paths
traversing op in T, that is

~,(ov)= ~ ~(P).
Pe~'(op,T)

] ewise for each instruction I, w(I) denotes the sum of the weights of the execution
] hs traversing I . Further for each op 6 I we define w(op, I) = min(w(op), w(I)).
] ~e that if op is scheduled in ins t ruct ions/ '1 , . . . , I,,, then

j = l

] ally, define Wmax(I):

f 0 if I contains less than m operations
Wmax(I)

minopel w(op, I) otherwise

] m the above it is easy to prove that

~(~) = ~ ~(v). ~(P) : ~ ~(1)
PET~(T) IEa

] I be some instruction in cr containing k _< m vertices. Then after some simple
~braic manipulations we have

,n . w(X) = ~ w(op, Z) + ~ (w(I) - ~,(op, O) + (m - k) . ,,,(I).
opEI opel

a is a G W F schedule, at least one non speculative operation must be executing in
J Phus, there exists at least one operation op0 6 I such that w(op0, I) -- w(I) . This
i flies

m- ,.,,(I) _< ~ ,.,.,(~, I) + (m - 1)- (w(X) - ',,.,~(_,")).
opEI

' .~refore, we have

m. ~(,,) = ,-,. ~ , , , (I) _< ~ ~ w(ov, I) + (,', - ~). ~ (, , , (I) - ~-,~(0).
IEa IE~ opEI IEa

] It, it is easy to see that

~ ~(op, i) = ~ ~,(op) <_ ,,.w(~op,).
IE~ opEI opEO

523

Thus to bound t(a) in terms of ~(~o~) it sumces to bound

H = (,-,, - 1) . - w . , , , . (x)) .
I6o"

Let S denote the set of all the instructions X E a which either contain less than m
operations or an operation which is scheduled speculatively in I. For these instructions
we have Wm~(I) < w(I). Now, consider the following branching task system T' :
(0 ' , G', ~) with

1. O' : Os UOc with Os = {op E I l I G S} and Oc isthe set of conditional operations
not in O~.

2. The control flow graph G' is obtained from the control flow graph of T by ddeting
every operation not in O'.

3. The dependence relation of T' is the restriction of the dependence relation of T
to the operations in O t.

As T' has the same set of execution paths as T w can also be used as weight
function for T'. Consider the m-optimum schedule ~o admissible for T t such that
each conditionals in Oc is scheduled alone in an instruction of ~o. If R denotes the
set of instructions in ~o which only contain operations from Os, then

 (Xo) _<
Io6R

For each I E S define its representative operation op(I) to be some operation
scheduled in I. These representative operations can be sdected so that for each in-
struction Io E R and for all representative operations op(I) and op(I') scheduled in
Io there is:

w(xo) >_ and w(Xo) >_
2. If I is an ancestor of r in cr then Wm~(I) __ "w(I').

For an instruction I E S let cj be the first conditional which is scheduled non
speculatively in an instruction following I in ~. Note that cj may not necessarily
exist. Initially, op(I) is defined as follows:

c j
op(x) =

i f c j ~ I
with op~ E I and op~ -< cj if cj exists.
any operation op G I such that w(op, I) = w(I) otherwise

If cj exists and cj ~ I then op~ must exist as cr is a GWF schedule. Also, opa
cannot be scheduled speculatively in I. Further, there must be at least one operation
op E I which is scheduled non speculatively. Hence w e have w(op(1), I) = w(1) in
all of the above cases. Also due to the initial choice of op(I) for each I G S no
conditional branch following op(I) in cr can be executed before op(I) in any schedule
admissible for T. Therefore, for each Io E cro such that op(I) G Io initially, we have
~(Io) _> ~(op(X), I) : ,~(Z).

524

Next, this initial value of op(I) is updated such that both conditions above are
respected. To perform this update the control flow graph of cro is traversed in bottom
up fashion.

If there exist two representative operations op(I) and op(I t) scheduled in some
Io G ~o such that I is an ancestor of I ~ with wmax(I) < ~ (r) then, there must exist
an operation op" 6 I such that op" -~ op(I') as cr is a GWF schedule. Change op(I)
so that op(I) = op". Note that op" must be scheduled in c'o in an instruction Io'
preceding Io with w(I) ~ W(Io) < w(I~o). Furthermore, I~o has not yet been explored
by our bottom tree traversal. Thus as we proceed up the control flow graph of ao
both, conditions for representative operations are preserved by this transformation.
Therefore, we can write:

.H = (~ - 1). ~ ~(x) - ,~m=(x) = (~ - 1).
IES l o f i R

which implies that

H <
. ~ . t (v ~ ,) -

Using Lemma 6 we obtain

~ (x) - - - m . (X)
{x:o.p(l')~.,'o }

(m - 1). Ez0~R E{Z:om)~o) w(I) - wm=(I)
m. Ezo~R ~O(Io)

H ~ - 1 ~(x) - ~m=(x)
- - �9 m a x

~ . t(~-o,,) < ~ ~(~o) - m Xo~a {x:op(x)~X,}

call this XUo)

Because of the first condition for representative operations w(I) <_ W(Io) whenever
op(I) 6 Io. Thus to bound X(Io) it suffices to find the upper bound U to the solution
of the graph theoretical problem given in Lemma 7. This lemma establishes that
X(Io) <_ U resulting in

H _< (~- I). ~. t(~o~,).

Therefore, we finally get

~ . ~(~) _< ~ . t (. . ,) + (~ - 1) . ~ . t (. . ,)

and
t(v) < 1 + m - 1 - . U .

6 T i g h t n e s s o f t h e B o u n d

The bound of Theorem 8 is almost tight. A deviation from the optimal case may
occur if two operations opl and op~ which do not belong to the same execution path
are both ready for scheduling. In this case GWF systematically selects the operation
with the highest weight, say opl, whereas thek weights might be close and op2 could
be a critical operation for the execution paths containing i t . This kind of behavior is
illustrated in the example of Figure 4.

525

C o m p l e t e k - a r u t r e e o f h e i g h t h

A l l bas i c b l o c k s ar e i d e n t i c a l

e x c e p t f or t h e r o o t .
c h a i n of"

D o p e r a t i o n s

d e c i s i o n t r e e w i t h k b r a n c h e s

c h a i n of" I
D operat ions [o o o

t 0 0 0
0 0 0

f

(m - l) D / k

o p e r a t i o n s

f

+
0 0 0

t 0 0 0
0 0 0

[o o
~~176

o o

f

f
J ~ j

I o o ~ ~ 1 7 6
o o

Fig. 4. Branching task system on which GWF performs poorly.

The branching schedule of the figure consists of a control flow graph whose basic
blocks form a complete /~-ary tree of height h. Each block contains a chain of D
dependent operations, whose last operation is a conditional. Apart from the root
block, every other block also contains (m - 1) �9 D / k independent operations. If we
assume that D is very big, we can regard the last conditional in a block as having
out-degree/~. However, this means that a decision tree of/~ - 1 conditionals jumps is
at the end of a block.

Next, let us assume that all execution paths in the branching task system are
equally likely. Further, let k : h - log m / l o g log m. Consider the schedule o'1 where
the independent operations are scheduled in the block immediately above. Clearly
this schedule is GWF and its average execution time ~(crl) = h . 13.

Consider now the schedule ~2 where all the chains of operations are scheduled
in the root block, and the independent operations are scheduled in the k ~ leaf basic
blocks. Then, the average execution time of cr 2 is approximately 2 �9 D resulting in
~(~1)/~(~2) _ 1/2. log m/loglog.~.

526

References

1. A. AIKBN AND A. NICOLAU, A development environment for horizontal microcode, IEE.~
~l~ansactions on Software Engineering, 14 (1988), pp. 584-594.

2. E. G. COFFMAN, Computer and Job-shop Scheduling Theory, John Wiley and Sons, New
York, New York, 1976.

3. K. EBCIOC~LU Some design ideas for a VLIW architecture for sequential-natured software,
in Proe. IFIP WG 10.3 Cons on Parallel Processing, 1988, North-Holland, pp. 1-21.

4. J. A. FISHER, J. R. ELLIS, J. C. RUTTEI~BRG, AND A. NICOLAU, Parallel processing:
A smart compiler and a dumb machine, in Proc. SIGPLAN 1984, June 1984, ACM,
pp. 37-47.

5. M. R. GAP~Y AND D. S. JOHNSOI'~, Computers and Intractability - A Guide to the
Theory of NP-Completeness, Freeman, New York, New York, 1979.

6. F. GASPBROm, Scheduling for Horizontal S~.]stems: The VLIW Paradigm in Perspective,
PhD thetis, New York University, New York, New York, July 1991.

7. R. GUPTA AND M. L. SOFFA, Region scheduling: An approach for detecting and redis-
tributing parallelism, IEEE Transactions on Software Engineering, 16 (1990), pp. 421-
431.

8. K. KARPLUS AND A. NICOLAU, A compiler-driven supercomputer, Applied Mathematics
and Computations, 20 (1986), pp. 95-110.

9. A. NICOLAU AND 3. A. FISHER, Measuring the parallelism available for very long instruc-
tion word architectures, IEEE Transactions on Computers, C-33 (1984), pp. 968-976.

