
Compile-Time Task Scheduling for Multi-Phase
Programming

A. Benaini, D. Laiymani

Universit@ de Franche-Comt@ - LIB
16 Route de Gray 25030 Besancon - France

e-mail : [benaini,laiymani]@eomte.univ-fcomte.fr

Abs t rac t . This paper presents a compile time scheduling algorithm
dedicated to parallel machines in which the interconnection network can
be altered during the execution of the same application. We propose an
heuristic technique taking ideas from clustering and list scheduling al-
gorithms to schedule a task graph on these machines. We give an upper
bound to the performances of the algorithm that generalizes the one
given by Gerasoulis and Yang [7].

1 Introduction

We present a compile-time scheduling technique that schedules precedence task
graph onto a reconfigurable multiprocessor architecture. A machine is reconfig-
urable if its interconnexion network can be altered between different phases of
the same algorithm execution. In this paper we consider reconfigurable machines
with p processors and d communication links per processor. These multiproces-
sors systems yield a variety of possible topologies for the network where a possible
topology is any one in which the number of connections per processor is less than
or equal to d.
A parallel algorithm for a reconfigurable machine is implemented as a series of
phases [6] (multi-phase programming). Each phase is then executed onto the
processor graph that reflects, in the best way, the needs of the current data
transfer pattern [I].

A schedule of a DAG for a reeonfigurable machine (or a multi-phase schedul-
ing) is then defined as the assignment to each task of a tuple <phase, processor,
starting time>. A phase is a sub-graph of the initial DAG which can be exe-
cuted, without routing, on a fixed topology of a reeonfigurable machine. In order
to obtain efficient multi-phase schedules, some conflicting goals have to be sat-
isfied. First, a maximum of tasks and links must be assigned to each phase. In
this way the inherent parallelism of the DAG will be kept as much as possible.
~rthermore, for each phase, communication overheads have to be minimized
by assigning to the same processor, tasks which have to exchange costly mes-
sages. Finally, it is necessary to reduce idle times between the execution of two

consecutive phases.

536

2 Problem definition and general approach

Let a reconfigurable machine with p processors and d communication links per
processor. The network is configured at the begining of each phase and execution
of the series of phases is sequential. Reconfiguration overheads are assumed to
be null [2].

Let a DAG G = (V,E) where V = {n j , j = 1 , 2 . . . v } is the set of tasks
and E = {ei,j = (n~, nj)} is the set of arcs. ci,j represents the communication
overhead between ni and nj (which becomes zero if ni and nj are mapped to
the same processor), vi is the computation cost of task ni. The length of a path
is the sum of all task computation and edge communication costs in the path.
The critical path is the path with the longest length in G.

G
�9 P H I (~

P H 2 ~ ~ /

Initial level

v~ ~ PG

PH1 ~

PH2 @

�9 . - ~" Pmcc.~or a,~signmcnt level
. . - " (by linear cluslering techniques)

Phrase partitionning level (list scheduling techniques)

Fig. 1. The assignment levels of our scheduling method

Figure 1 shows the different levels of assignment that requires a scheduling
for reconfigurable machines. The initial level is the tasks graph. The second level
consists in partitionning G into a series of phases. The processor assignment level
defines the assignation of tasks to processors for each phase. A phase P H =
(VP, EP) is a sub-set of G such that V P C_ V and E P C E (an arc in E P may
have only in-node in VP, see figure 1). A multi-phase program is then defined
as a sequence of disjoint phases PHs, 0 < s < q such that

1. uq-~ PH~ = G,
2. the phases graph PG = (GV, GE) with GV = {PHs,s = O, 1 , . . . q - 1} and

GE = {(PHs, PHt) : 3ni E PHs, nj E Pile, (hi, nj) C E} is a DAG (phases
are executed sequentially),

537

3. the execution of each phase must be performed without routing cost on
a fixed topology of a (p, d)-reconfigurable machine i.e. an edge in G will
correspond to one communication link of the reconfigurable machine.

A multi-phase schedule is a partit ion of G into disjoint phases PHi, 0 < s <
q - 1, a mapping of tasks to processors and the assignment of execution starting

q-1 t ime for each task such that ~-~=o ET(PHs) is minimized where ST(n,) is the
starting time of hi, ET(PH~) is the execution time of a phase PH~ and

ET(PH~) = max {ST(hi) + r~}
nIEVP~

As phases are processed sequentially, the parallel execution time of the schedule
is

q-1

PT = max{ST(n,) + vi} = ~ ET(PH~)
niEV

s-~O

Clearly this scheduling problem is NP-complete (this follows by a simple
reduction from the Scheduling on a Clique [3]). Our heuristic algorithm produces
efficient solutions in polynomial time. The algorithm builds the different phases
one by one in a sequential way. It computes two assignment processes which
are an assignment of tasks to phases and an assignment of tasks to processors.
Informally, it scans the different tasks of G and according to a certain priority
function it assigns the choosen task to the current phase. While a phase is
processed we apply a modified clustering technique [4, 5, 7] in order to assign
tasks to processors. Then we will obtain "clusterized" phases such that, clusters
will correspond to processors. Ifi this way we try to well match the physical
properties of the target reconfigurable machine.

3 A s c h e d u l i n g a l g o r i t h m f o r m u l t i - p h a s e p r o g r a m m i n g

The algorithm is a succession of refinement steps in order to build phases, one
by one, starting by phase PHo. A refinement assigns a task to the current phase.

The evaluated finishing time of a task n=, say EFT(n=), is equal to the length
of the longest path in the "clusterized" phase PH8 from any entry node to n~
(including rx). In the same way, EPT(PH~) is the length of the longest path
of phase PHi. Now, let nl , n2 , . . . , n= be the set of ready tasks which are both
candidates to a possible assignment in phase PHi. We begin by selecting a task
for possible assignment to PHs. This task is the one minimizing EPT(PHs).
A tie is broken by choosing the task which minimizes EFT(PHi) - EFT(n=).
This last criterion will reduce the waiting time between phase PHs and PH~+I
induced by the assignment of a task to phase PHi.

The assignment of a ready task nk in phase PH~ is accepted if the linear
clustering procedure generates a number m of clusters m0, m l , . . . m , ~ - i with
m < p and the degree of mi < d, Vi = 0, 1 , . . . m - 1. When no assignment are
possible the algorithm starts to build phase PH~+I.

538

In this way each phase PHs, 0 <_ s < q is executed on a (p, d)-reconfigurable
machine without routing cost [2].

Now, we give a bound on the quality of the scheduling. In order to fit the
particularities of multi-phase scheduling, we adapt the granularity definition
given by Gerasoulis and Yang in [7] to the multi-phase model as follows. For a
task nz E V we define g(nx) = rx/maxj(cjx, czj). Then, the granularity of G is
given by g(G) = minnxey(g(nz)).

Theorem 1. Let PTopt (PG) denotes the optimal parallel time of the phase graph
PG i.e. the length of the longest path in this graph and PTmps the parallel time
of the multi-phase scheduling algorithm. Then

PTopt <_ PTmp~ < (1 + g-~G))L(PG)PTopt(PG)

Moreover for coarse grain DAG (g(G) >_ 1) we have

PTmp, < 2 • L(PG) x PTo, t(PG)

A proof of this theorem is given in [2]. If the number of processors is unbounded
and if they are fully connected, the algorithm clearly generates an unique phase
implying that, PTmp, < (1 + g(-~))) • PTopt. Furthemore if G is coarse grain we

obtain PTmp~ <_ 2 • PTopt which is the result given in [7].
Finally, to test our algorithm we are building a prototype named PHARAON

(PHAse Reconfigurable Automatic cOde generator) that generates code for real
reconfigurable architectures using the multi-phase programming paradigm.

R e f e r e n c e s

1. J-M. Adamo and L. Trejo. Programming Environment for Phase-reconfigurable
Parallel Programming on Supernode. JPDC, 23:278-292, 1994.

2. A. Benaini and D. Laiymani. Compile-time Task Graph Scheduling for Multi-phase
Programming. Technical report, LIB - http://comte.univ-fcomte.fr, 1996.

3. M.R. Garey and D.S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

4. M.A. Palis, J. Liou, and D.S.L. Wei. Task Custering and Scheduling for Distributed
Memory Parallel Architectures. IEEE Trans. on Parallel and Distributed Systems,
7(1):46-55, 1996.

5. V. Sarkar. Partitionning and Scheduling Parallel Programs for Execution on Multi-
processors. M.I.T. Press, 1989.

6. L. Snyder. Introduction to the Configurable, Highly Parallel Computer. J. Par.
Distr'. Comp., 15:47-56, 1982.

7. T. Yang. Scheduling and Code Generation for Parallel Architectures. PhD thesis,
Rutgers University, 1993.

