
Bulk Synchronous Parallel Scheduling of
Uniform Dags

Radu Calinescu

Programming Research Group, Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OXl 3QD, England

A b s t r a c t . This paper addresses the dag scheduling problem, proposing
the bulk synchronous parallel (BSP) model as a framework for the deriva-
tion of general purpose parallel computer schedules of uniform dags, i.e.,
of dags that stand for tightly-nested loops with computable distance
vectors. A general technique for the BSP scheduling of normalised uni-
form dags is introduced and analysed in terms of the BSP cost model,
and methods for the normalisation of generic uniform dags are briefly
overviewed in the paper.

1 I n t r o d u c t i o n

During the last two decades a great deal of research effort has been devoted
to the identification and scheduling of potential parallelism. Despite the criti-
cism pointing out its slow pace of progress, this research has led to remarkable
advances. Data dependence analysis [2], loop transformation [1, 13], potential
parallelism identification [6, 13], and dag scheduling [4, 7] are but a few exam-
ples of fields whose tremendous development has provided techniques successfully
incorporated into nowadays' optimising compilers and tools.

Nevertheless, there is a justifiable dissatisfaction about the overall progress in
the scheduling area; one of its main causes is the lack of unity in approaching the
problem, especially the lack of a standard and realistic parallel programming and
cost model. Therefore, the researchers have had either to restrict their interest
to the analysis of virtual parallelism--when they wanted to remain general,
or to address the problem for a specific parallel architecturc if they aimed
at being practical. Clearly, both options have their disadvantages. This paper
avoids limiting to one of the two directions by proposing the bulk synchronous
parallel (BSP) programming and cost model [11, 8] as a target platform for the
derivation of scalable dag schedules for general purpose parallel computers.

The paper is organised as follows. In Sect. 2, the BSP model is briefly de-
scribed. Then, in Sect. 3, a new technique for the BSP scheduling of normalised
uniform dags, i.e., of dags that stand for tightly-nested loops whose data depen-
dences are expressible as distance vectors with all non-negative components, is
devised and analysed in terms of the BSP cost model. Several methods for the
conversion of generic uniform dags (or, equivalently, of generic tightly-nested
loops with computable distance vectors) to normalised uniform dag form are
mentioned in Sect. 4. A final section including a short summary and further
work directions concludes the paper.

556

2 T h e B u l k S y n c h r o n o u s P a r a l l e l M o d e l

The existence of a standard model is the only way to fully impose parallel com-
puting as a viable alternative to sequential computing. The BSP model [11, 8]
provides such a unifying framework for the design and programming of gen-
eral purpose parallel computers. A BSP computer consists of a set of processor-
memory pairs, a communication network for point-to-point message delivery, and
a mechanism for efficient barrier synchronisation of all processors or of a subset
of processors. No specialised broadcasting or combining facilities are available.

The performance of a BSP computer is characterised by three parameters:
p, the number of processors; L, the minimal number of time steps between suc-
cessive synchronisation operations, or the synchronisation periodicity; and g, the
ratio between the total number of local operations performed by all processors
in one second and the total number of words delivered by the communication
network in one second. The parameter L is a measure of the network latency,
whereas the parameter g is related to the time required to complete a so-called
h-relation, i.e., a routing problem where any processor has at most h packets to
send to various processors in the network, and where at most h packets are to
be received by any processor; practically, g is the value such that gh is an upper
bound for the number of time steps required to perform an h-relation.

A BSP computation consists of a sequence of supersteps; in any superstep, the
processors may execute operations on locally held data and/or initiate read/write
requests for non-local data. However, these non-local memory accesses take ef-
fect only when all the processors reach the barrier synchronisation that ends
that superstep. To assess the complexity of a BSP algorithm, one has to count
the costs of its constituent supersteps. The cost of a superstep S depends on
the synchronisation cost (L), on the maximum number of local computation
steps executed by any processor during S (w), and on the maximum number of
messages sent/received by any processor during S (h,, respectively hr)l:

cost(S) = max{L, w, gh,, ghr} (1)

Accordingly, the complexity of a BSP algorithm depends not only on the problem
size and on the number of processors, but also on the BSP parameters L and g.

3 B S P S c h e d u l i n g o f N o r m a l i s e d U n i f o r m D a g s

A normalised uniform dag is a directed acyclic graph used to represent a fully
permutable [12] loop nest (Fig. 1). The dag is uniform in the sense that edges
(data dependences) are uniform across the vertex space (iteration space); the
uniform dag is normalised if any edge head points to a vertex (point in the
iteration space) with all coordinates greater than or equal to those corresponding
to the tall of the edge. A formal definition follows.

1 several expressions have been proposed for the cost of a superstep; since all these
expressions are equivalent within a small multiplicative constant, we chose the one
in [8], which best accounts for the overlapping of computation and communication

557

f o r i l = 0 , n - l d o
for iz = 0, n - 1 do

for iK = 0 ,n- - 1 do
(al [i], a2 [i],. . . , ar [i]) = f (a ~ [i - dl], ao 2 [i - d2],. . . , a~q [i - dq])

Fig. 1. A fully permutable loop nest: i = (i l , i % . . . , i K) ; aj, 1 < j <_ r is a
K-dimensional array; a~ i E { a l , a z , . . . ,at} and dj is a K-dimensional distance (de-
pendence) vector with non-negative elements, 1 < j < q; f : ~q -~ IR ~.

D e f i n i t i o n 1. A K-dimensional normalised uniform dag (NU-dag for short) is
a directed acyclic graph G = (V, E) with:

V = (0..n - 1) K, n �9]N*,
E = {< x , x + d > : < V , V >1 d �9 { d l , d 2 , . . . , d q } }, (2)

where dj : ~IK\{ (0, 0 , . . . , 0) }, 1 < j < q. Each vertex i �9 V stands for a computat ion

(al[i] ,a2[i], . . . , ar[i]) = f (a a l [i - dx],aa2[i - d2], . . . , aa , [i - dq]),

where as[i] : ~ , 1 < j <_ r, a a r 1 4 9 , a t} for 1 _< j < q, and f :]R q -~]R r,
with appropriate boundary values for the arrays as, 1 _< j _< r.

Although Definition 1 requires that all loops iterate from 0 to n - 1, the results
in this section can be easily extended to the case when V = (0..hi - 1) • (0..nz -
1) x . . . • (O..nK -- 1). It is also worth noticing that , if any identical vectors
dj = ds,, 1 < j < j ' <_ q exist, D = {d l , d2 , . . . , dq} must be considered a bag
instead of a set; multiple edges between some pairs of vertices exist in this case.

In the following, we shall consider the case when D contains K linearly
independent vectors; otherwise, a parti t ion of the dag into p independent sub-
dags of equivalent complexity exists and can be used to perform the loop in
a single computation superstep. To derive a p-processor BSP program for the
computation of an NU-dag, the dag G is first parti t ioned into p K / (K - 1) identical
sub_dags 2 Gh,~2 ~K, 0 __< 51, i2 , . . . , ~K < p l / (r - 1) , each of which is isomorphic
with G:

G~,,~2 ~K = (V ~,,~2 ~K, E~,,~= ~) =
�9 ~ n __ 1 n = ({(ix , iz , . . , i K) : V I V j : I . . K . Sp~-rZZ-ezW < ij < (~S +)p,-rrrrzW},

{< z , y >: E I z , y e V ~,,~ ~ }) .

The computation of each sub-dag G h,~2 ~X__also called a t i le---will be assigned
to one of the p processors of the parallel machine�9 Data dependences codified
by edges in an E h,~2,''',~K set are internalised by this approach (i.e., they are

solved locally by the processor computing G h,~2 ~x), whereas edges in E bu t

2 assume that K > 1 and pl / (K-1) divides n

558

not in any E h 32 ~K stand for data dependences that must be satisfied through
inter-processor communication. The choice of the tile size (i.e., n /p 1/(g- l)) is
justified later b~ Theorem 3.

The graph G = (~r,~) = ((O . . p l / (K - 1) _ 1)K,{ < x , y >:< ~ , ~ > I x # y A
3 < a,/~ >: E * a �9 V = A/~ �9 V~}) is itself an NU-dag having a vertex
for each tile in the original dag; we shall call it the tile dag. The hyperplane
method of Lamport [6] is used to schedule the tile dag for parallel execution. This
widely applied method (also known as wave front scheduling [1, 13]) consists of
successively scheduling for concurrent execution the intersections of the iteration
space ((O..p 1/(K-l) - 1) K in our case) with a family of (K - 1)-dimensional
parallel hyperplanes. The number of hyperplanes in this family gives the number
of supersteps required to accomplish the computation (i.e., the schedule length).

T h e o r e m 2. Let G = (V, E) be a K-dimensional NU-dag and G = (~", E) be its
associated tile dag. Assume that the tile size is large enough (i.e., larger than the
distance vector sizes) for the dependences not internalised by the tiling to occur
only between neighbour tiles, and for any tile G i~'i2 ix to depend (at least) on
each of the tiles G h-l'~2 ~K, G h92-1 ~K, " " , G h,h ~x--1 Then, the set of
(K - 1)-dimensional hyperplanes given by

{31 + 32 + . . . + ~K = t I 0 < t < K p 1/(K-1) - K } (3)

defines a minimum-length legal schedule for the tile dag G.

Proof. It is a well-known result (see for instance [5]) that when a family of
hyperplanes all1 + a2i2 + . . . + aKiK = t, a = (a l , a 2 , . . . , a K) :]N is used
for the (linear) scheduling of a size x hypercube whose distance vector set is D,
the schedule is legal if and only if Vd �9 D * a �9 d > 0, and requires a number
of (al + a2 + -." + aK)X + 1 supersteps. In our case, D includes (1 ,0 , . . . ,0),
(0, 1 , . . . , 0) , . . . , (0, 0 , . . . , 1) (and possibly other distance vectors d: {0, 1}K), so
the schedule is correct if and only if a j >_ 1, 1 _<j <_ K. Therefore, the schedule in
(3), which corresponds to a j = 1, 1 _< j < K, is legal and has minimum length. []

Thus, the BSP schedule of a K-dimensional NU-dag (Fig. 2) requires K p 1/(K-1)-
K + 1 supersteps, with the following actions taking place in each superstep t,
0 < t < Kp 1/(K-l) - K: (1) each tile G h ,~2,..3K with i1+ 32+" "+iK = t is computed
by a distinct processor; (2) the results required for the computation of other tiles
are sent to the processors that will compute those tiles in later supersteps.

T h e o r e m 3. At most p processors are required in any superstep of the BSP
schedule in Fig. 2.

Proof. Let x = pl/(K-1), and let NK : O..Kx - K --+ ~q be a function such
that for any 0 < t < K x - K , NK(t) gives the number of tiles scheduled for
concurrent execution in superstep t. We shall prove by induction that, for any
K > 1, the following proposition equivalent to the theorem's statement is true:

P (K) : Vt : O..Kx - K �9 NK(t) < X K-1.

559

for t = 0, Kp 1/(K-1) - K do
forall (31,32,... ,3K) : (O..p 1/(g-1) - 1) K such that 3x + i2 + . . " + 3/~ = t do in parallel

(1) compute G 'a'~2 K
for i l = 3, (31 + 1) - 1 do

for i2 = 32 ,-rrc r, + 1) - 1 do

f o r i g = 3 / ~ ~ , (~ K + I) ~ - l d o

(al [i], a2 [i] , . . . , ar [i]) = f (aa, [i - dx], aa2 [i - d2] , . . . , aaq [i - dq])
(2) send data required by other tile computations

Fig. 2. The pseudocode for the p-processor BSP scheduling of a K-dimensional
NU-dag. An initial superstep in which input data is provided for the boundary tiles
must precede the whole computation.

T h e base s tep is immedia te . For the induct ion s tep, assume t h a t P (n) is t rue and
let K = n + 1. Then , Nn+l (t) can be compu ted as a sum count ing the solut ions
for the cases when ~n+l = r and (Zl ,~2, . . . , in) is allowed to t ake any value such
t h a t Zl + ~z + " " + in = t - r , for v = 0, 1 , . . . , t. Formally,

Vt : O..(n + 1)x - (n + 1) * Nn+l(t) = aoN'n(t) + a lN 'n(t - 1) + . . . + atN~(O),

1, if v _< x - 1 I N . (T) , if 7 < n x - - n
where a r = 0, o therwise and N'n(7) = , 0, o therwise ,0 < T < t.

Indeed, we mus t count only the cases when a legal value is assigned to in+l. Since
in+t m a y be assigned only x legal values, ao + a l + . . . + a t = min{x , t} < x, or

Vt : 0. .(n q- 1)x - (n -t- 1) �9 Nn+l(t) _< x 0<r<tmax NIn(r) < x x n-1 = x n,

which is P (n + 1) (the induct ion hypothes is was used for the last s tep) . []

T h e last result needed for the c o m p u t a t i o n of the cost of a super s t ep is
p rov ided by the following theo rem 3.

T h e o r e m 4. The amount of data sent by a processor after computing an inner
tile G i l 'h i~ is given by

n K K (n \1 n K - 1 / K +O(1~'~

The amount of data received by any processor during a superstep is at mos t Corn.

Proof. Let d E D; this vector implies d a t a dependences be tween pairs of vert ices
^ ^

of the fo rm < i, i + d >. For a given tile G il,12 iK, we are in teres ted in finding

3 results similar to the first part of this theorem have been presented in [3, 9, 10]

560

the number of such pairs whose first element belongs to G h'~2 ~K, but whose
second element does not:

C o m (d) = # { < i , i + d > : < V , V > I i E V h'~2 ~K A (i + d) e V \ V ~''~2 ~K}
= #(Vh,~2 ~K\{i: Vh,~, iK [Vj : 1 . . K * i j + d j < ([j + 1) n~-W~})

=#Vh,~2 ~ K _ # { i : V h,~2 ~K [V j : l . . g * i j + d j < (~ j + l) ~ }

= #Vil,~2 ~K __ # { i : ~ K [Vj : 1..K * ~j px-r'/~-~y -< ij < ([j + 1) p~-r-Z~'y - dj}
n K K n

---~ Hi----1 - - d s) .

As each distance vector brings a simiIar contribution to the amount of data sent
by a processor after computing G h 32 ~x, and does this independently of other
distance vectors, (4) is now straightforward.

For the second part of the theorem, let us consider the worst case, i.e., the
case of a processor Px which is assigned a tile in each of the K supersteps
that may depend on data sent during the current superstep t. Consider now
all the vertices in the K isomorphic tiles assigned to Px during the supersteps
t + 1, t + 2 , . . . , t + K, and let x = (Xl, x z , . . . , XK) be one of these vertices such
that x - d E V h'~2 ~x with ~1 + ~2 + " " + ~K = t. Then, the distance vector d
does not generate dependences on data computed during the superstep t for any
of the other K - 1 vertices isomorphic with x. Indeed, assume that such a vertex
Y : (Yl,Y2,.. �9 ,YK) ----- (Zl +0~1 pl_iT.(.R.=~., X 2 n q-a2 pl-iT('R'=~,...n ,X K q_O~ K pl-i-]'(-R-=Y~)n
existed with ~ = 1 aS ~ 0 (the two vertices must belong to tiles computed in
different supersteps). Then, we have:

~ ~ : - -)p,-vrr-=w
x - d e V "~''2 '~ = = } V j : I . . K . S ~ < x s d S < (~ S + I n

- - q 1 ?% V j : I . . K * (~ S + j)nT/r~=rr<xs+ Sn~-rTr~=~ ds< + +)n~-~w=rr==:}
_ 1 n a ~ (~j + a s V j : I . . K . ([S + S)n~-u~-- -rr<ys-dj< +) ~ = : : : }

y - d = (yl - dl,y2 - d2, . . . ,yI,: - dK) E V h+a~'~*+~2 iK+a~.

Since both x - d and y - d are supposed to be computed in the same superstep
K ~J~")-~j=I($jK ~. + ~ j) , t = ~ S - x = the assumption that)'~'~=1 as ~ 0 is contradicted.

We ca~-therefore "superpose" the K isomorphic tile~, and for any vertex for
which the distance vector d involves an external data dependence, at most one
vertex from the superposed set of tiles will receive this data from a tile computed
in superstep t. Hence, the maximum amount of data received by P , during
superstep t due to the distance vector d can be computed as in the first part of
the proof, and the desired result is immediate, i3

Consequently, the cost of a superstep t of the schedule is

max~L, n g --= k (p l / (K--1)) c08t(f) ,gCor~), c08t(t)

with Cam given by (4), and cost(f) representing the computational cost for a
single vertex of the dag. After simplifications, the cost of the entire schedule is

nK (gprr~-~l - g + l) g C o m } . (5) max{ (K p ~ - K + I) L , (K+o(1))--~-cost(f) ,

561

Thus, K-optimality 4 is obtained if the BSP parameters L and g are low enough
(i.e., L < nKcos t (f) /p K/(K-1) and g < n cos t (f) / (p 1~(K-l) EdED K ~-]d=l dj)).

4 I t e r a t i o n S p a c e N o r m a l i s a t i o n

Since not all tightly-nested loops can be directly mapped onto an NU-dag, the
BSP schedule proposed in the Sect. 3 would be really useful if a procedure existed
to transform a generic uniform iteration space into a normalised one. As proved
by Wolf and Lain [12], such a procedure does exist in the general case; indeed,
the authors show in [12] that any perfect loop nest with computable distance
vectors can be converted into a fully permutable loop nest (which they call the
canonical form of the loop nest) by using an affine transformation of the iteration
space. Formally, if D is the K x q matrix whose columns are the distance vectors
of the original loop nest, a O(K2q)-time algorithm that finds a unimodular lower
triangular transformation matrix T = (tij)l<_id<_K such that D + = T �9 D > 0
(where the inequality is applied component-wise) is developed in [12]. However,
Wolf and La.m pay no attention to choosing a transformation that would result
in a minimum communication overhead. Still, if the NU-dag BSP schedule is to
be extended for generic uniform dags, one needs to know this communication
overhead for the transformed loop.

C o r o l l a r y 5. The amount of data exchanged by a processor computing a size x
hypercubic tile of the transformed iteration space is

) C~ = agK-1 E tikdkj + o(1) . (6)
\i=1 j=l k=l

Proof. Since the distance vectors of the transformed loop are
1 < j <q, with ~ K = ~'~k=l tikdkj, (6) directly follows from Theorem 4. 13

Several approaches to find a transformation T that minimises (6) have been
proposed so far. Ramanujarn and Sadayappan [9] have formulated a linear pro-
gramming problem whose solution is an optimal unimodular lower triangular
transformation T: find (tij)l<i,j<K_ _ which minimises ~-~ff=l Ej=lq Ek=IK tikdkj

subject to t i i = 1, 1 < i < K; tij = O, 1 < i < j < K; EK=I tikd~j > O,
1 _< i, j _< K. Although such a transformation leads to a particularly simple
rewriting of the loop nest, better results can be obtained when no restriction
are placed on the affine transformation T. Thus, Schreiber and Dongarra [10]
have developed a heuristic which aims at maximising the computation to com-
munication ratio for the transformed loop nest. Also, in [3], Boulet et al. devise
a method that yields, for any fixed amount of computation, a legal tiling of the
iteration space which minimises the communication overhead 5.

4 remember that K is rarely larger than 3 or 4
5 if D is square, the matrix of the affine transformation induced by this method is

D -1 (recall that D is non-singular), which is optimal under all circumstances

562

5 C o n c l u s i o n s

This paper has proposed a strategy for the BSP scheduling of loop nests repre-
sentable as uniform dags, attempting to clarify the relation between tiling and
scheduling for real computers--a currently open problem raised in [3]. The result-
ing schedule is portable across any parallel platform, and attains K-optimality
(where K is the depth of the loop nest) if the BSP parameters L and g of the tar-
get machine are low enough (or, equivalently, if the problem size is large enough).

Further work is required to asses the effectiveness of varying the tile size
across the computation in order to improve the load balancing, while maintain-
ing the synchronisation and communication overheads within acceptable bounds.
Also, a slight modification of the basic NU-dag scheduling technique must be con-
sidered after the normalisation of a generic uniform dag, since the transformed
iteration space is no longer rectangular. Finally, subsequent efforts must focus
on the design of techniques for the scheduling of untightly-nested loops onto
general purpose parallel computers.

Acknowledgments The author would like to thank Dr. W.F. McColl for his
constant advice and encouragement. The author is also grateful to an anonymous
referee whose comments resulted in a significant improvement of the paper.

R e f e r e n c e s

1. D.F. Bacon et al., Compiler transformations for high-performance computing. In:
ACM Comp. Surv. 26(4), Dec. 1994, 346-420.

2. U. Banerjee, Dependence Analysis for Supercomputing. Kluwer Acad. Publ., 1988.
3. P. Boulet et al., (Pen)-ultimate tiling?. In: Integration, the VLSI Journal 17(1),

Aug. 1994, 33-51.
4. A. Gerasoulis and T. Yang, A comparison of clustering heuristics for scheduling

DAGs on multiprocessors. In: J. Par. Distr. Comp. 14(4), Dec. 1992, 276-291.
5. F. Irigoin and F. Triolet, Supernode partitioning. In: Conf. Rec. 15th ACM Syrup.

Prine. Progr. Lang., ACM Press, 1988, 319-329.
6. L. Lamport, The parallel execution of DO loops. In: Comm. ACM 17(2), Febr.

1974, 83-93.
7. B.A. Malloy et al., Scheduling DAG's for asynchronous multiprocessor execution.

In: IEEE Trans. Par. Distr. Syst. 5(5), May 1994, 498-508.
8. W.F. McColl, General purpose parallel computing. In: A.M. Gibbons, P. Spirakis

(eds.), Lectures on Parallel Computation, Cambridge Univ. Press, 1993, 337-391.
9. J. Ramanujam and P. Sadayappan, Tiling multidimensional iteration spaces for

multicomputers. In: J. Par. Distr. Comp. 16(2), Oct. 1992, 108-120.
10. R. Schreiber, J.J. Dongarra, Automatic blocking of nested loops. Technical Report

90-38, Univ. of Tennessee at Knoxville, May 1990.
11. L.G. Valiant, A bridging model for parallel computation. In: Comm. ACM 33(8),

Aug. 1990, 103-111.
12. M.E. Wolf and M.S. Lain, A loop transformation theory and an algorithm to

maximize parallelism. In: IEEE Trans. Par. Distr. Syst. 2(4), Oct. 1991, 452-470.
13. M.J. Wolfe, Optimizing Supercompilers for Supercomputers. Research Monographs

in Parallel and Distributed Computing, MIT Press, 1989.

