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A b s t r a c t .  We present a scheduling technique that guarantees asymp- 
totically a performance within a factor of four of the optimum for a 
subclass of parallel programs even if communication is expensive on 
the target machine. This class includes programs for FFT and matrix- 
multiplication for which we give practical results on a Parsytec Power- 
Xplorer and on a workstation-cluster. 

1 I n t r o d u c t i o n  

For most parallel programs the communication behavior only depends on the 
size of the problem and not on the actual input. Using this property for trans- 
lation and optimization improves the efficiency of the generated code dramati- 
cally [ZL94, LZ95c, LZ95b, ZLG96]. Moreover, programmers may focus on the 
inherent parallelism of the problems and relax to the properties of the target 
machine, i.e. they can use a synchronous, shared memory programming model 
and neither data alignment nor mapping of processes onto processors is ex- 
plicitly required in the source code 1. Data and processes are distributed auto- 
matically. For the necessary optimization that clusters processes and reduces 
communications by redundant computations, a cost model is required reflect- 
ing latency for point-to-point-communication in the network, overhead of com- 
munication on processors themselves, and the network bandwidth. The LogP- 
machine [CKP+93] models these communication costs with parameters Latency, 
overhead, and gap (which is actually the inverse of the bandwidth). In addition 
to L, o, and g, parameter P describes the number of processors. These pa- 
rameters have been determined for the CM-5 [CKP+93] and for the IBM SP1 
machine [DMI94]. Both works found all LogP-based predictions on the runtimes 
confirmed by practice. 

With this cost model we can not only perform optimization automatically 
but also predict the quality of the optimized programs in terms of their runtime 
on a specific target machine. Our optimization techniques guarantee a factor of 
four of the theoretically optimal performance if the problem size is sufficiently 
large. We prove this time bound and confirm it by performance measurements 
of programs for FFT and matrix-multiplication on a Parsytec Power-Xplorer 

1 This programming model is equivalent to the CREW-PRAM machine model, 
see [KR90]. 
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and a cluster of workstations. With these measurements  we also show tha t  the 
LogP-model  is appropriate  for these machines, as well. 

We structure this paper  in the following way: In section 2, we give some 
basic definitions. In section 3, we define the optimization algorithm and prove 
the worst case performance of the optimized programs.  In section 4, we apply this 
algorithm on our example programs and measure the runtime of the resulting 
code. Finally in section 5, we conclude our results and show directions of further 
work. 

2 B a s i c  Definit ions 

First, we define the notion of communication structure of a parallel program. We 
assume a PRAM programming model and make explicit the implicit assumption 
tha t  a PRAM has a global clock. Then parallel programs are classified according 
to their communication structure. 

For defining communication structures, we assume the following: The only 
composite da ta  structures we use are arrays. This is no restriction since the 
shared memory  may be considered as an array of integers. We allow the intro- 
duction of several arrays that  may be concatenated to one single array a. The  
size of a problem n is defined by lal. Px (n) denotes the max imum number  of 
processors used by a PRAM-program on a problem x of size n. Each sequence 
of the PRAM-program which has no side effects on the shared memory  is a 
PRAM-step.  D= (n) denotes the maximum number  of sequential steps necessary 
for a problems x of size n. 

D e f i n i t i o n  1. Processor i communicates at step s with processor j iff there is a 
memory  cell m which was either writ ten by processor j at  step s '  or s '  = 0, no 
processor writes into m between step s '  and step s, and processor i reads at step 
s from m. We denote this by the predicate comm(i, s , j ,  s'). A communication 
structure of a PRAM-program for an input x for problem size n is a directed 
acyclic graph G=(n) = (V=(n), Ex(n)), where V,(n) = {(i, s ) :  0 _< i < P,(n), 0 < 
s < D=(n)} and Ex(n) = {(( j ,s ' ) , ( i ,s)):  s' < s A  comm(i ,s , j , s ' )} .  

G=(n) does not always depend on the actual  problem, i.e. input x. In most  
cases of practical relevance it only depends on the problem size n. We call these 
PRAM-program oblivious and denote its communication structures by G(n). In 
the following, we consider oblivious programs and write G instead of G(n) if n 
is arbi t rary  but  fixed. 

Each PRAM-step  is assigned to exactly one vertex v and T(v) denotes the 
t ime for executing this sequence on the target  machine. The set of vertices can be 
part i t ioned according to the step when the vertices are executed on the PRAM. 
We call this parti t ioning a layering of the communicat ion structure: 

D e f i n i t i o n  2 L a y e r .  A layer A s of a communication structure G = (V, E)  is 
the set of vertices A" = {(i, s '  E V) : s '  = s}. The work Wk(n) and the com- 
putation time Tk(n) of a layer A ~ are defined as Wk(n) = ~ S ( 1  ) T((i, k)) and 
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Tk(n) P(n) = maxi= 1 T((i, k)), respectively 2. A part  of the PRAM-program induced 
by succeeding layers AJ, ..., A k, j <_ k is called a super-layer A~. The work W k (n) 
and computation time Tk(n) of A k are defined as Wk(n) = ~'~ik=j Wi(n) and 

T~(n) ~ i = ~'~i=j T (n), respectively. 

Any oblivious PRAM-program can be transformed into a semantically equiv- 
alent program tha t  can be executed asynchronously on a distributed memory  
machine, i.e. on the LogP-machine. For this t ransformation,  we compute its 
communication structure. The computat ions corresponding to each vertex of 
the communication structure is assigned to a separate  process tha t  receives da ta  
from the processes corresponding to its predecessor vertices and sending da ta  to 
the processes corresponding to its succeeding vertices. This t ransformation leads 
to a semantically equivalent LogP-program. A formal program transformation 
and the proof of its correctness is given in [ZL94] for oblivious and in [LSw95] for 
non-oblivious PRAM-programs.  The result of these t ransformations are LogP- 
programs or LogP-schedules. A definition of the notion of LogP-schedule can be 
obtained from [ZL94]. Informally, a schedule is a set of sequences of computa-  
tions, send- ,  and receive operations and their s tar t ing times corresponding to 
the vertices and edges of the communication structure. For the start ing times 
it must  be considered tha t  sending and receiving a message takes t ime o, tha t  
between two sends or receives on one processor, there must be at  least t ime g, 
tha t  a receive, i t  must  correspond to some send at  least L + o t ime units ear- 
lier in order to avoid waiting times, and that  computing a process v takes t ime 
T(v). Of course, a correct LogP-schedule of a communication structure G must 
compute all its vertices at  least once. The goal is to minimize the execution t ime 
of LogP-schedules. We rather  refer to the sets of processes computed on the 
same LogP-processor than  to its concrete sequences of computations,  send-, and 
receive-operations. Such a set Cl of processes of a communication structure G is 
called cluster Cl, the set of all clusters of a program is called clustering C(G) of 
G. 

Papadimitr iou and Yannakakis showed, tha t  finding an opt imal  clustering 
is NP-hard,  even if o -- g -- 0 and P -- ~ ,  [PY90]. They also showed tha t  
under the same assumptions approximations guaranteeing a factor of two of 
the opt imum TIMEopt(G) cannot be found in polynomial time, unless P=NP.  
We can therefore not expect to find an efficient and optimal  transformation.  If  
o = g = 0 and P = oo, Gerasoulis and Yang [GY93] find solutions guaranteeing 
(1 + 1/'y) x TIMEopt (G) without redundant  computat ions,  where the granularity 
~, is a constant closely related to the ratio of computat ion and communication 
times. For trees they find the op t imum if ~, _> 1 and for a subclass of trees they 
find the opt imum even for small computat ion times [YG94], both  in polynomial 
time. We showed in  [LZ95a] tha t  an optimal  solution with redundant  computa-  
tions can be found in polynomial t ime for general communication structures, if 

2 Note, that these definition of work and time differ form those of the PRAM-work 
and -time. Ours reflect the actual computational effort on a concrete architecture 
rather than number of computational steps on some abstract machine. 
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7 -> 1, o = g = 0, and P = cr Unfortunately, these results do not generalize 
for the LogP-machine in a straightforward way. Karp et al. e.g. [KSSS93] give 
optimal LogP-schedules for fork- and join-trees tha t  significantly differ from the 
optimal schedules for the same structures proposed in [GY93, YG94, LZ95a]. 
However, a performance of LogP-programs not worse than a factor of 1 + 1 /7  
of the optimal program can be guaranteed if the granularity 3' is generalized 
to the LogP-machine [LZ95c, LZ95b]. It is easy to see that  in case of expen- 
sive communication this performance guarantee is large. In the next section, we 
present a scheduling algorithm guaranteeing bet ter  results in this latter case. 
More precisely, we remove the impact of L, o, and g on the performance guaran- 
tee for LogP-programs and improve it for programs running on machines with 
expensive communication. 

3 The Algorithm 

The basic idea is to save communications by computing some processes redun- 
dantly. Therefore, we first cluster the vertices of succeeding layers such tha t  
communication within the same cluster is avoided. This construction guarantees 
that  the computation time in each cluster dominates the succeeding communica- 
tion. Second, we reduce the number of clusters of the same super-layer to P such 
that  the introduced redundancy is minimized. Finally, we assign each cluster to 
a LogP-processor, and schedule communication operations between clusters of 
different super-layers. 

First of all, we find an upper bound for the all-to-all-communication of m 
items on LogP-machines, i.e. each processor communicates m items to all other 
processors. 

L e m m a  3. A LogP-machine all-to-all broadcast of m items requires at most: 
t ( m )  = m -  (P  - 1) max{2o, 9} + i .  

Proo]. To transmit one item per processor to all other processors requires t ime 
(P  - 1)max{2o, g} + L if every processor p sends its item to processor (p + 
i) mod P, 1 _< i < P at time (i - 1) max{2o, g} and receives the item of processor 
( p -  i) mod P as soon as possible after t ime o + L +  (i - 1) max{2o, g}. Note, tha t  
send and receive operations interleave on the single processors without gaps 3. 

The clustering algorithm is as follows: Start  with layer of depth j -- 0. Con- 
sider all layers from depth k = 0 to D(n) and check whether L(HAkl/PT) <_ 
max{T~, w k / p }  holds. If this is the case, set for all v in A k Cl(v) = ANC(v)NA k 
and set j = k + 1, i.e. layers A j to A k form a super-layer A k without  internal 
communication. The set of all Cl(v) together defines a clustering C(G). 

a The described schedule for communication is a generalization of [KSSS93]. Note, 
that the communication between super-layers can be improved for machines where 
it is more efficient to send one message of size m than m messages of size one. 
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L e m m a 4 .  Let 79 be a PRAM-program with communication structures G(n). 
Assume a super-layer-wise (arbitrary) balanced distribution of the Cl(v) to the 
P processors. I f  it holds that (I) G(n) contains only edges connecting vertices 
of immediately succeeding layers, then the communication between super-layer 
A k and the succeeding super-layer takes at most L(HAkl/P)] Furthermore, the 
computation of the processes of a super-layer on P processors requires at least 
time max { T~, W~ / P }. 

Proo]. Because of balanced distribution of clusters, every processor computes 
at most HAkl/P] clusters. Because of condition (I) there are only HAkl/P] 
items to transmit between the super-layers. Together with lemma 3 bound for 
communication is proven. The bound for computation is obvious. 

L e m m a  5. Let 7 9 be a PRAM-program. If (I) from holds, then for all clusterings 
CG(n) the depth of each super-layer is bound by a constant. 

Proof. It is obvious that  L([[Akl/P]) is O(max{T k, Wk/P}) ,  since L, o, g, and 
P are constants and already Wk(n) >_ IAk(n)[. Because of condition (I) only 
vertices in the last layer of a selected super-layers communicate with succeeding 
clusters. For each additional layer Ai, j  < i < k in super-layer A k computation 
time increases by W i ( n ) / P  without affecting communication costs. Hence, there 
is only a constant number of layers A i, i < k, required to make the clustering 
condition in our algorithm true. 

Now, we consider communicatiofi structures where C(G) does not contain 
redundant computations, e.g. full binary trees, pyramids etc. 

T h e o r e m  6. Let 79 be a PRAM-program. I] additionally to conditions (I) it holds 
that (II) G(n) is a balanced forest 4, and (III) there is only a constant number of 
layers A with ]A I < P, then any balanced distribution of the clusters o] the same 
super-layer to P processors defines a Schedule with an asymptotic execution time 
of at most: 

TIME(G(n)) <_ (4 + o(1)).  TIMEopt(G(n)). 

Proof. Because of condition (II), the sets of ancestors ANC(v) of vertices of 
the same layer are pairwise disjoint. Hence, the sum of the work of the clusters 
containing vertices of layers A k to AJ is equal to W~ (n). The work of each of these 
clusters is Wk(n)/IAJ[ Assume Vj 6 [0,n(n)] : [AJl >_ P. Because of balanced 
distribution, for the time to compute the clusters of A k on the LogP-machine it 

holds TIME k <_ 2 .  Wk(n) /P .  The time for succeeding communication L k is at 

most equal to TIME ], see lemma 5. Therefore, TIME]+ L ] <_ 2 .  Wjk(n)/P + 
max(Tk(n) ,  Wjk(n)/P}. Summing up the times on both sides of the inequation 
over the super-layers leads to TIME(G) <_ 2. W ( n ) / P  + T(n)+ W(n) /P ,  where 

a A forest is balanced iff all vertices of the same height (same layer) have the same 
weight (same computation times) and their subtrees are equal. 
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W ( n ) / P  and T(n) are lower bounds of the optimum execution time. Since, there 
are only constant many layers containing less than P vertices (III) there is only a 
constant delay to this bounds for increasing n while W ( n ) / P  and T(n) increase 
with n. This completes the proof. 

Condition (II) excludes a lot of important  PRAM-programs. On the other 
hand, if (II) is not guaranteed our algorithm computes a schedule with a per- 
formance depending on the amount of redundant  computation. We therefore 
t ry  to find a weaker conditions such that  redundancy can be eliminated while 
scheduling the clusters to processors. We formalize the problem of reducing the 
redundancy in the following straightforward way: For all super-layers we con- 
struct a redundancy graph GR = (VR, ER). This graph is undirected and there 
is a one-to-one-correspondence between the clusters Cl(v) and the vertices in 
Vn. There exists an edge (v ~, v") iff Cl(v ~) and Cl(v") compute some vertices re- 
dundantly. The edges are weighted with the time for computing these redundant  
vertices sequentially. The general problem is to find a minimum balanced P-cut  
in Gn 5. Unfortunately, this problem is NP-hard [SV91], even for the unbalanced 
version, and the best approximation for the balanced version is within a factor 
of IVnl. ( P -  1) /P of the optimum. Hence, we cannot expect acceptable solutions 
for all PRAM-programs. 

C o r o l l a r y  7. Let 7 ) be a PRAM-program. If  for all super-layers A k and in- 
creasing problem size the corresponding redundancy graph GR = (VR,ER) can 
be divided into X = w(1) connected components of size O(P(n) /x) ,  theorem 6 
holds even if its condition (II) is neglected. 

Proof. At each super-layer A~ we compute the redundancy graph GR = (Vn, En). 
Note, that  [Vn[ <_ P(n). For each superlayer, we reorder the shared array such 
that  no array cells of different connected components are merged. There are X 
sets of clusters with pairwise disjoint sets of vertices. We compute each set on 
exactly one processor. Hence, we can remove all redundancy. Since their number 
is growing with the problem size and their sizes are balanced up to a constant 
factor, we can schedule these X sets onto P processors such that  scheduling is 
balanced and theorem 6 holds. 

The proof is constructive. We can therefore find a correct alignment of the 
shared memory in these cases. Note, that  the induced algorithm performs possi- 
bly a realignment at every super-layer. The class of tractable programs include 
now F F T  and matrix-multiplication (with duplicated second matrix),  and sort- 
ing networks. 

We conclude this section with the remark that  we finally apply heuristics 
which keep the communications between the clustered layers small: The clusters 
and communication edges between these clusters define a directed acyclic graph. 

5 A balanced k-cut of a undirected graph is a set of edges that, if removed, divides G 
into k connected components of equal size. A minimum k-cut of a weighted undirected 
graph is a k-cut with minimum weight of removed edges. 
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Recursively, we assign the clusters on the maximum weighted path in this graph 
to the same processor and remove them, until the graph is empty. This sequen- 
tialization of clusters possibly decreases the overall computation time since it 
saves some communication. 

4 P r a c t i c a l  R e s u l t s  
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Fig.  1. Predicted and measured performance for matrix-multiplication and F F T  on a 
Power-Xplorer and a Workstation-Clusters. T(x) is the measured and P(x) the pre- 
dicted running time for x processors. 

We applied this scheduling algorithm for a PRAM-implementation of the Fast- 
Fourier-Transform (FFT) and matrix-multiplication on a Parsytec Power-Xplorer 
with eight processors and on a cluster of four workstations with a 360 MHz 
DEC-21064 Processor connected via the ParaStation Network 6. Comparing the 
predicted runtime of these programs with practical times we found that the 
LogP-model is adequate for these machines (see figure 1). With the range of 
input-sizes shown in figure 1 we obtained the maximal speed-ups shown in fig- 
ure 2. We measured the maximum speed-up for FFT with an input size of 218 
and for matrix-multiplication of 750 x 750-matrices. 

http ://wwwipd. ira. uka. de/+psuser 
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Parsytec Power-Xplorer Workstation-Cluster 
P=2 P=4 P=8 P=2 P=4 

FFT 1.83 3.46 6.35 1.92 3.72 
Matrix-Multiplication 1.98 3.92 7.60 1.60 3.90 

Fig. 2. Measured speed-up for matrix-multiplication and FFT on a Power-Xplorer and 
on a network of four DEC-Workstations. 

Note, that  the speed-ups are close to the theoretical optimum. It shows that  our 
scheduling algorithm may in practice lead to significantly bet ter  programs than 
proved above. However, the upper time bound holds and it should be possible 
to construct odd programs where this bound is tight. 

5 C o n c l u s i o n  

The main result of this article showed that  it is possible to get both: machine 
independent programming and efficient execution of parallel programs, at least 
for the class of oblivious programs. This class includes programs for matrix- 
multiplications, FFT,  summations, sorting networks etc. It can be extended to 
programs for solving partial differential equations with finite element methods 
or methods of finite differences and others 7. 

Our optimization algorithm guarantees asymptotically a factor of four of 
the theoretical optimum even on parallel machines with expensive communica- 
tion costs. This optimization considers the limited number of available proces- 
sors, the time bound does not depend on communication times. It is therefore 
a generalization of [ZL94, LZ95c, LZ95b, ZLG96]. We applied the algorithm on 
F F T  and matrix-multiplication programs. Performance measurements of the op- 
timized programs on a Parsytec-Xplorer and on a workstation-cluster confirmed 
the practical relevance of our main result. The measurements also show, that  
the LogP-model yields precise runtime predictions and is therefore appropriate 
for these machines. 

The next step is to integrate the optimization methods into a compiler. If 
this is done, then programming languages on a PRAM-level can be implemented 
and efficient code can be guaranteed. The main result of this article shows, that  
there is no serious slowdown in spite of the abstract PRAM-model,  even if com- 
munication is expensive. Such a language would simplify parallel programming 
a lot. The programmers could focus on the parallelization of the i r  problem at 
hand. All other tasks like data  distribution, introducing and optimizing com- 
munication, and mapping parallel processes and processors will be done by the 
compiler. 

7 It is omitted because of the strict page limit and can  be taken form the (also re- 
viewed) extended version of this paper http://i44www, inof .uni-kar ls ruhe.  de/" 
loewe/parallel, html 
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