
Optimization of Parallel Programs on Machines
with Expensive Communicat ion

Welf LSwe JSrn Eisenbiegler Wolf Zimmermann

Institut fiir Programmstrukturen und Datenorganisation, Universit~t Karlsruhe,
76128 Karlsruhe, Germany, E-maih{loeweleisenlzimmer}~ipd.info.uni-karlsruhe.de

A b s t r a c t . We present a scheduling technique that guarantees asymp-
totically a performance within a factor of four of the optimum for a
subclass of parallel programs even if communication is expensive on
the target machine. This class includes programs for FFT and matrix-
multiplication for which we give practical results on a Parsytec Power-
Xplorer and on a workstation-cluster.

1 I n t r o d u c t i o n

For most parallel programs the communication behavior only depends on the
size of the problem and not on the actual input. Using this property for trans-
lation and optimization improves the efficiency of the generated code dramati-
cally [ZL94, LZ95c, LZ95b, ZLG96]. Moreover, programmers may focus on the
inherent parallelism of the problems and relax to the properties of the target
machine, i.e. they can use a synchronous, shared memory programming model
and neither data alignment nor mapping of processes onto processors is ex-
plicitly required in the source code 1. Data and processes are distributed auto-
matically. For the necessary optimization that clusters processes and reduces
communications by redundant computations, a cost model is required reflect-
ing latency for point-to-point-communication in the network, overhead of com-
munication on processors themselves, and the network bandwidth. The LogP-
machine [CKP+93] models these communication costs with parameters Latency,
overhead, and gap (which is actually the inverse of the bandwidth). In addition
to L, o, and g, parameter P describes the number of processors. These pa-
rameters have been determined for the CM-5 [CKP+93] and for the IBM SP1
machine [DMI94]. Both works found all LogP-based predictions on the runtimes
confirmed by practice.

With this cost model we can not only perform optimization automatically
but also predict the quality of the optimized programs in terms of their runtime
on a specific target machine. Our optimization techniques guarantee a factor of
four of the theoretically optimal performance if the problem size is sufficiently
large. We prove this time bound and confirm it by performance measurements
of programs for FFT and matrix-multiplication on a Parsytec Power-Xplorer

1 This programming model is equivalent to the CREW-PRAM machine model,
see [KR90].

603

and a cluster of workstations. With these measurements we also show tha t the
LogP-model is appropriate for these machines, as well.

We structure this paper in the following way: In section 2, we give some
basic definitions. In section 3, we define the optimization algorithm and prove
the worst case performance of the optimized programs. In section 4, we apply this
algorithm on our example programs and measure the runtime of the resulting
code. Finally in section 5, we conclude our results and show directions of further
work.

2 B a s i c Definit ions

First, we define the notion of communication structure of a parallel program. We
assume a PRAM programming model and make explicit the implicit assumption
tha t a PRAM has a global clock. Then parallel programs are classified according
to their communication structure.

For defining communication structures, we assume the following: The only
composite da ta structures we use are arrays. This is no restriction since the
shared memory may be considered as an array of integers. We allow the intro-
duction of several arrays that may be concatenated to one single array a. The
size of a problem n is defined by lal. Px (n) denotes the max imum number of
processors used by a PRAM-program on a problem x of size n. Each sequence
of the PRAM-program which has no side effects on the shared memory is a
PRAM-step. D= (n) denotes the maximum number of sequential steps necessary
for a problems x of size n.

D e f i n i t i o n 1. Processor i communicates at step s with processor j iff there is a
memory cell m which was either writ ten by processor j at step s ' or s ' = 0, no
processor writes into m between step s ' and step s, and processor i reads at step
s from m. We denote this by the predicate comm(i, s , j , s'). A communication
structure of a PRAM-program for an input x for problem size n is a directed
acyclic graph G=(n) = (V=(n), Ex(n)), where V,(n) = {(i, s) : 0 _< i < P,(n), 0 <
s < D=(n)} and Ex(n) = {((j ,s ') , (i ,s)): s' < s A comm(i ,s , j , s ')} .

G=(n) does not always depend on the actual problem, i.e. input x. In most
cases of practical relevance it only depends on the problem size n. We call these
PRAM-program oblivious and denote its communication structures by G(n). In
the following, we consider oblivious programs and write G instead of G(n) if n
is arbi t rary but fixed.

Each PRAM-step is assigned to exactly one vertex v and T(v) denotes the
t ime for executing this sequence on the target machine. The set of vertices can be
part i t ioned according to the step when the vertices are executed on the PRAM.
We call this parti t ioning a layering of the communicat ion structure:

D e f i n i t i o n 2 L a y e r . A layer A s of a communication structure G = (V, E) is
the set of vertices A" = {(i, s ' E V) : s ' = s}. The work Wk(n) and the com-
putation time Tk(n) of a layer A ~ are defined as Wk(n) = ~ S (1) T((i, k)) and

604

Tk(n) P(n) = maxi= 1 T((i, k)), respectively 2. A part of the PRAM-program induced
by succeeding layers AJ, ..., A k, j <_ k is called a super-layer A~. The work W k (n)
and computation time Tk(n) of A k are defined as Wk(n) = ~'~ik=j Wi(n) and

T~(n) ~ i = ~'~i=j T (n), respectively.

Any oblivious PRAM-program can be transformed into a semantically equiv-
alent program tha t can be executed asynchronously on a distributed memory
machine, i.e. on the LogP-machine. For this t ransformation, we compute its
communication structure. The computat ions corresponding to each vertex of
the communication structure is assigned to a separate process tha t receives da ta
from the processes corresponding to its predecessor vertices and sending da ta to
the processes corresponding to its succeeding vertices. This t ransformation leads
to a semantically equivalent LogP-program. A formal program transformation
and the proof of its correctness is given in [ZL94] for oblivious and in [LSw95] for
non-oblivious PRAM-programs. The result of these t ransformations are LogP-
programs or LogP-schedules. A definition of the notion of LogP-schedule can be
obtained from [ZL94]. Informally, a schedule is a set of sequences of computa-
tions, send- , and receive operations and their s tar t ing times corresponding to
the vertices and edges of the communication structure. For the start ing times
it must be considered tha t sending and receiving a message takes t ime o, tha t
between two sends or receives on one processor, there must be at least t ime g,
tha t a receive, i t must correspond to some send at least L + o t ime units ear-
lier in order to avoid waiting times, and that computing a process v takes t ime
T(v). Of course, a correct LogP-schedule of a communication structure G must
compute all its vertices at least once. The goal is to minimize the execution t ime
of LogP-schedules. We rather refer to the sets of processes computed on the
same LogP-processor than to its concrete sequences of computations, send-, and
receive-operations. Such a set Cl of processes of a communication structure G is
called cluster Cl, the set of all clusters of a program is called clustering C(G) of
G.

Papadimitr iou and Yannakakis showed, tha t finding an opt imal clustering
is NP-hard, even if o -- g -- 0 and P -- ~ , [PY90]. They also showed tha t
under the same assumptions approximations guaranteeing a factor of two of
the opt imum TIMEopt(G) cannot be found in polynomial time, unless P=NP.
We can therefore not expect to find an efficient and optimal transformation. If
o = g = 0 and P = oo, Gerasoulis and Yang [GY93] find solutions guaranteeing
(1 + 1/'y) x TIMEopt (G) without redundant computat ions, where the granularity
~, is a constant closely related to the ratio of computat ion and communication
times. For trees they find the op t imum if ~, _> 1 and for a subclass of trees they
find the opt imum even for small computat ion times [YG94], both in polynomial
time. We showed in [LZ95a] tha t an optimal solution with redundant computa-
tions can be found in polynomial t ime for general communication structures, if

2 Note, that these definition of work and time differ form those of the PRAM-work
and -time. Ours reflect the actual computational effort on a concrete architecture
rather than number of computational steps on some abstract machine.

605

7 -> 1, o = g = 0, and P = cr Unfortunately, these results do not generalize
for the LogP-machine in a straightforward way. Karp et al. e.g. [KSSS93] give
optimal LogP-schedules for fork- and join-trees tha t significantly differ from the
optimal schedules for the same structures proposed in [GY93, YG94, LZ95a].
However, a performance of LogP-programs not worse than a factor of 1 + 1 /7
of the optimal program can be guaranteed if the granularity 3' is generalized
to the LogP-machine [LZ95c, LZ95b]. It is easy to see that in case of expen-
sive communication this performance guarantee is large. In the next section, we
present a scheduling algorithm guaranteeing bet ter results in this latter case.
More precisely, we remove the impact of L, o, and g on the performance guaran-
tee for LogP-programs and improve it for programs running on machines with
expensive communication.

3 The Algorithm

The basic idea is to save communications by computing some processes redun-
dantly. Therefore, we first cluster the vertices of succeeding layers such tha t
communication within the same cluster is avoided. This construction guarantees
that the computation time in each cluster dominates the succeeding communica-
tion. Second, we reduce the number of clusters of the same super-layer to P such
that the introduced redundancy is minimized. Finally, we assign each cluster to
a LogP-processor, and schedule communication operations between clusters of
different super-layers.

First of all, we find an upper bound for the all-to-all-communication of m
items on LogP-machines, i.e. each processor communicates m items to all other
processors.

L e m m a 3. A LogP-machine all-to-all broadcast of m items requires at most:
t (m) = m - (P - 1) max{2o, 9} + i .

Proo]. To transmit one item per processor to all other processors requires t ime
(P - 1)max{2o, g} + L if every processor p sends its item to processor (p +
i) mod P, 1 _< i < P at time (i - 1) max{2o, g} and receives the item of processor
(p - i) mod P as soon as possible after t ime o + L + (i - 1) max{2o, g}. Note, tha t
send and receive operations interleave on the single processors without gaps 3.

The clustering algorithm is as follows: Start with layer of depth j -- 0. Con-
sider all layers from depth k = 0 to D(n) and check whether L(HAkl/PT) <_
max{T~, w k / p } holds. If this is the case, set for all v in A k Cl(v) = ANC(v)NA k
and set j = k + 1, i.e. layers A j to A k form a super-layer A k without internal
communication. The set of all Cl(v) together defines a clustering C(G).

a The described schedule for communication is a generalization of [KSSS93]. Note,
that the communication between super-layers can be improved for machines where
it is more efficient to send one message of size m than m messages of size one.

606

L e m m a 4 . Let 79 be a PRAM-program with communication structures G(n).
Assume a super-layer-wise (arbitrary) balanced distribution of the Cl(v) to the
P processors. I f it holds that (I) G(n) contains only edges connecting vertices
of immediately succeeding layers, then the communication between super-layer
A k and the succeeding super-layer takes at most L(HAkl/P)] Furthermore, the
computation of the processes of a super-layer on P processors requires at least
time max { T~, W~ / P }.

Proo]. Because of balanced distribution of clusters, every processor computes
at most HAkl/P] clusters. Because of condition (I) there are only HAkl/P]
items to transmit between the super-layers. Together with lemma 3 bound for
communication is proven. The bound for computation is obvious.

L e m m a 5. Let 7 9 be a PRAM-program. If (I) from holds, then for all clusterings
CG(n) the depth of each super-layer is bound by a constant.

Proof. It is obvious that L([[Akl/P]) is O(max{T k, Wk/P}) , since L, o, g, and
P are constants and already Wk(n) >_ IAk(n)[. Because of condition (I) only
vertices in the last layer of a selected super-layers communicate with succeeding
clusters. For each additional layer Ai, j < i < k in super-layer A k computation
time increases by W i (n) / P without affecting communication costs. Hence, there
is only a constant number of layers A i, i < k, required to make the clustering
condition in our algorithm true.

Now, we consider communicatiofi structures where C(G) does not contain
redundant computations, e.g. full binary trees, pyramids etc.

T h e o r e m 6. Let 79 be a PRAM-program. I] additionally to conditions (I) it holds
that (II) G(n) is a balanced forest 4, and (III) there is only a constant number of
layers A with]A I < P, then any balanced distribution of the clusters o] the same
super-layer to P processors defines a Schedule with an asymptotic execution time
of at most:

TIME(G(n)) <_ (4 + o(1)). TIMEopt(G(n)).

Proof. Because of condition (II), the sets of ancestors ANC(v) of vertices of
the same layer are pairwise disjoint. Hence, the sum of the work of the clusters
containing vertices of layers A k to AJ is equal to W~ (n). The work of each of these
clusters is Wk(n)/IAJ[Assume Vj 6 [0,n(n)] : [AJl >_ P. Because of balanced
distribution, for the time to compute the clusters of A k on the LogP-machine it

holds TIME k <_ 2 . Wk(n) /P . The time for succeeding communication L k is at

most equal to TIME], see lemma 5. Therefore, TIME]+ L] <_ 2 . Wjk(n)/P +
max(Tk(n) , Wjk(n)/P}. Summing up the times on both sides of the inequation
over the super-layers leads to TIME(G) <_ 2. W (n) / P + T(n)+ W(n) /P , where

a A forest is balanced iff all vertices of the same height (same layer) have the same
weight (same computation times) and their subtrees are equal.

607

W (n) / P and T(n) are lower bounds of the optimum execution time. Since, there
are only constant many layers containing less than P vertices (III) there is only a
constant delay to this bounds for increasing n while W (n) / P and T(n) increase
with n. This completes the proof.

Condition (II) excludes a lot of important PRAM-programs. On the other
hand, if (II) is not guaranteed our algorithm computes a schedule with a per-
formance depending on the amount of redundant computation. We therefore
t ry to find a weaker conditions such that redundancy can be eliminated while
scheduling the clusters to processors. We formalize the problem of reducing the
redundancy in the following straightforward way: For all super-layers we con-
struct a redundancy graph GR = (VR, ER). This graph is undirected and there
is a one-to-one-correspondence between the clusters Cl(v) and the vertices in
Vn. There exists an edge (v ~, v") iff Cl(v ~) and Cl(v") compute some vertices re-
dundantly. The edges are weighted with the time for computing these redundant
vertices sequentially. The general problem is to find a minimum balanced P-cut
in Gn 5. Unfortunately, this problem is NP-hard [SV91], even for the unbalanced
version, and the best approximation for the balanced version is within a factor
of IVnl. (P - 1) /P of the optimum. Hence, we cannot expect acceptable solutions
for all PRAM-programs.

C o r o l l a r y 7. Let 7) be a PRAM-program. If for all super-layers A k and in-
creasing problem size the corresponding redundancy graph GR = (VR,ER) can
be divided into X = w(1) connected components of size O(P(n) /x) , theorem 6
holds even if its condition (II) is neglected.

Proof. At each super-layer A~ we compute the redundancy graph GR = (Vn, En).
Note, that [Vn[<_ P(n). For each superlayer, we reorder the shared array such
that no array cells of different connected components are merged. There are X
sets of clusters with pairwise disjoint sets of vertices. We compute each set on
exactly one processor. Hence, we can remove all redundancy. Since their number
is growing with the problem size and their sizes are balanced up to a constant
factor, we can schedule these X sets onto P processors such that scheduling is
balanced and theorem 6 holds.

The proof is constructive. We can therefore find a correct alignment of the
shared memory in these cases. Note, that the induced algorithm performs possi-
bly a realignment at every super-layer. The class of tractable programs include
now F F T and matrix-multiplication (with duplicated second matrix), and sort-
ing networks.

We conclude this section with the remark that we finally apply heuristics
which keep the communications between the clustered layers small: The clusters
and communication edges between these clusters define a directed acyclic graph.

5 A balanced k-cut of a undirected graph is a set of edges that, if removed, divides G
into k connected components of equal size. A minimum k-cut of a weighted undirected
graph is a k-cut with minimum weight of removed edges.

608

Recursively, we assign the clusters on the maximum weighted path in this graph
to the same processor and remove them, until the graph is empty. This sequen-
tialization of clusters possibly decreases the overall computation time since it
saves some communication.

4 P r a c t i c a l R e s u l t s

I e+O8

1 e+07

le+06

100000

10OO0

1000 , ,
64 256 1024

FFT with PowerXplorer
T 1 ~ - - i le+08

T 2 ,
T 4 : le+07
T 8 ~.+'~
P1 / "
P 2 I " 1 e+06

lOOO

' ' ' 100
4096 16384 65536 262144

n

FFT with Workstation-Cluster

P(1) ~ . ~ . ~ "

64 256 1024 4096 16384 65536 262144
rl

1e+09

1 e+O8

1 e+07

1 e+06

1OOOO0

1OOOO

Matrix-Muitiplication with PowerXplorer

P(1) - -

~l~I u : u

TI l l - - - ' ~ I 1 :::: t
+,

1 O0 200 300 400 500 600 700 800
n

Matrix-Multiplication with WorkMatiorwCluMer
le+09

I e + 0 6

Ie+07

I e+06

10000O

10000

1000

!s :-

J
0 I O0 200 300 400 500 600 700 800

n

Fig. 1. Predicted and measured performance for matrix-multiplication and F F T on a
Power-Xplorer and a Workstation-Clusters. T(x) is the measured and P(x) the pre-
dicted running time for x processors.

We applied this scheduling algorithm for a PRAM-implementation of the Fast-
Fourier-Transform (FFT) and matrix-multiplication on a Parsytec Power-Xplorer
with eight processors and on a cluster of four workstations with a 360 MHz
DEC-21064 Processor connected via the ParaStation Network 6. Comparing the
predicted runtime of these programs with practical times we found that the
LogP-model is adequate for these machines (see figure 1). With the range of
input-sizes shown in figure 1 we obtained the maximal speed-ups shown in fig-
ure 2. We measured the maximum speed-up for FFT with an input size of 218
and for matrix-multiplication of 750 x 750-matrices.

http ://wwwipd. ira. uka. de/+psuser

609

Parsytec Power-Xplorer Workstation-Cluster
P=2 P=4 P=8 P=2 P=4

FFT 1.83 3.46 6.35 1.92 3.72
Matrix-Multiplication 1.98 3.92 7.60 1.60 3.90

Fig. 2. Measured speed-up for matrix-multiplication and FFT on a Power-Xplorer and
on a network of four DEC-Workstations.

Note, that the speed-ups are close to the theoretical optimum. It shows that our
scheduling algorithm may in practice lead to significantly bet ter programs than
proved above. However, the upper time bound holds and it should be possible
to construct odd programs where this bound is tight.

5 C o n c l u s i o n

The main result of this article showed that it is possible to get both: machine
independent programming and efficient execution of parallel programs, at least
for the class of oblivious programs. This class includes programs for matrix-
multiplications, FFT, summations, sorting networks etc. It can be extended to
programs for solving partial differential equations with finite element methods
or methods of finite differences and others 7.

Our optimization algorithm guarantees asymptotically a factor of four of
the theoretical optimum even on parallel machines with expensive communica-
tion costs. This optimization considers the limited number of available proces-
sors, the time bound does not depend on communication times. It is therefore
a generalization of [ZL94, LZ95c, LZ95b, ZLG96]. We applied the algorithm on
F F T and matrix-multiplication programs. Performance measurements of the op-
timized programs on a Parsytec-Xplorer and on a workstation-cluster confirmed
the practical relevance of our main result. The measurements also show, that
the LogP-model yields precise runtime predictions and is therefore appropriate
for these machines.

The next step is to integrate the optimization methods into a compiler. If
this is done, then programming languages on a PRAM-level can be implemented
and efficient code can be guaranteed. The main result of this article shows, that
there is no serious slowdown in spite of the abstract PRAM-model, even if com-
munication is expensive. Such a language would simplify parallel programming
a lot. The programmers could focus on the parallelization of the i r problem at
hand. All other tasks like data distribution, introducing and optimizing com-
munication, and mapping parallel processes and processors will be done by the
compiler.

7 It is omitted because of the strict page limit and can be taken form the (also re-
viewed) extended version of this paper http://i44www, inof .uni-kar ls ruhe. de/"
loewe/parallel, html

610

References

[CKP+93]

[DMI94]

[GY93]

[KR90]

[KSSS93]

[LSw95]

[LZ95a]

[LZ95b]

ILZ95c}

[PY90]

[SV91]

[YG941

[ZL94]

[ZLG96]

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E . Schanser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of
parallel computation. In 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP 93), pages 1-12, 1993. published
in: SIGPLAN Notices (28) 7.
B. Di Martino and G. Ianello. Parallelization of non-simultaneous iterative
methods for systems of linear equations. In LNCS 854, Parallel Processing:
CONPAR'94-VAPP VI, pages 254-264. Springer, 1994.
A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed Systems,
4:686-701, june 1993.
R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory
machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science Vol. A, pages 871-941. MIT-Press, 1990.
R. M. Karp, A. Sahay, E. E. Santos, and K. E. Schauser. Optimal broadcast
and summation in the LogP model. In 5th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 142-153. ACM, 1993.
W. LSwe. Optimization of pram-programs with input-dependent memory
access. In S. Haridi and K. Ali, editors, EUROPAR' 95. Parallel Processing,
volume 966 of Lecture Notes in Computer Science, pages 243-254, 1995.
W. LSwe and W. Zimmermann. On finding optimal clusterings in task
graphs. In N. Mirenkov, editor, Parallel Algorithms/Architecture Synthe-
sis pAs'95, pages 241-247. IEEE, 1995.
W. LSwe and W. Zimmermann. Programming data-paral le l - executing
process parallel. In P. Fritzson and L. Finmo, editors, Parallel Program-
ming and Applications, pages 50-64. IOS Press, 1995.
W. LSwe and W. Zimmermann. Upper time bounds for executing pram-
programs on the logp-machine. In M. Wolfe, editor, Proceedings of the
9th A CM International Conference on Supercomputing, pages 41-50. ACM,
1995.
C.H. Papadimitriou and M. Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM Journal on Computing,
19(2):322 - 328, 1990.
H. Saran and V. Vazirani. Finding k-cuts within twice the optimal. In Pro-
ceedings of the 32 Ann. IEEE Symp. on Foundations of Computer Science,
pages 743-751. IEEE Compute Society, 1991.
T. Yang and A. Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Sys-
tems, 5(9):951-967, 1994.
W. Zimmermann and W. LSwe. An approach to machine-independent par-
allel programming. In Parallel Processing: CONPAR 94 - VAPP VI, volume
854 of Lecture Notes in Computer Science, pages 277-288. Springer, 1994.
W. Zimmermann, W. LSwe, and J. Gottlieb. On the design and implemen-
tation of parallel algorithms for solving inverse problems. In Workshop on
Parameter Identification and Inverse Problems in Hydrology, Geology, and
Ecology, 1996. to appear.

