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A b s t r a c t .  A performance prediction method is presented, which accu- 
rately predicts the expected program execution time on massively par- 
allel systems. We consider distributed-memory architectures with SMD 
nodes and a fast communication network. The method is based on a 
relaxed task graph model, a queuing model, and a memory hierarchy 
model. The relaxed task graph is a compact representation of commu- 
nicating processes of an appfication mapped onto the target machine. 
Simultaneous accesses to the resources of a multi-processor node a r e  

modeled by a queuing network. The execution time of the appfication 
is computed by an evaluation algorithm. An example application imple- 
mented on a massively parallel computer demonstrates the high accuracy 
of our model. Furthermore, two applications of our accurate prediction 
method are presented. 

1 Introduction 

Performance evaluation is important  at every stage in the life-cycle of a comput-  
ing system: Compute r  architects, programmers  as well as end-users are interested 
in obtaining realistic figures on the expected performance. Prediction techniques 
are used in the system development by comparing alternative designs without 
actually implementing all of them. In algorithm design, performance prediction 
does not yield just  the complexity of the algorithm, but  even the expected exe- 
cution t ime on a real machine. The results can be used to improve algorithms, 
i.e. to obtain highly efficient implementations.  In any case, an abstract  model of 
the hardware and of the algorithm is desirable to analyze performance. 

The first approach for modeling programs on parallel machines was the 
PRAM model IF J78]. This model and the more detailed BSP and LogP models 
are popular  in theoretical computer  science, where they are used for the eval- 
uation of computat ional  complexity [Val90, CKP+93].  Some authors improved 
these models by extending them with further features [HK95, RR95]. As it turns 
out the models are still not suitable for an accurate performance prediction of 
today ' s  parallel system architectures with their sophisticated hardware struc- 
tures and applications with a high level of concurrency. The abstract  machine is 
represented by only a few machine parameters  describing the network (latency, 
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bandwidth) and the processor (operations per time). Main emphasis was laid 
on algorithmic aspects of the parallelism and the communication cost of the 
algorithm. But the node design, for example, which is the most relevant part 
of parallel systems in terms of performance, has not been modeled accurately 
enough. 

Today's MPP systems are usually composed of standard R.ISC microproces- 
sors, designed for the personal computer and workstation mass-markets. The 
most performance critical part of this processor architecture is its memory sys- 
tem. A model for multi-level memory hierarchies can precisely describe the data- 
movements in a single processor machine [ACFS94]. In addition the extended 
memory hierarchy of parallel machines with shared memory architectures can 
be modeled quite accurately [BCKL94, MB92, Zha91, ZYC95]. 

Here, we present a performance prediction method which accurately pre- 
dicts the runtime of a parallel application using the message-passing model and 
asynchronous task programming paradigm. We focus on a distributed memory 
architecture with shared memory nodes. Our prediction method combines the 
features of (1) distributed memory models, (2) shared memory models, and (3) 
models of memory limited computation. 

2 T h e  P r e d i c t i o n  M e t h o d  

The different levels of a parallel system are modeled by several techniques: The 
concurrency of the algorithm is described by its task graph. Communication is 
modeled by functions depending on the message size and distance. Multipvocess- 
ing on an SMP node is modeled by an abstract scheduler with zero task switching 
time, fixed time-slices and a single priority level. The resource-contention on an 
SMP-node is estimated by a simple closed queuing network. An abstract model 
of a processor and the connection to the memory hierarchy is used to predict 
the sequential computation phases. 

2.1 Task Graph 

A parallel program can be seen as a collection of concurrent tasks with a cer- 
tain control flow (Fig. 1). A task graph represents tasks and communication 
dependencies as nodes and edges which are labeled with computation and com- 
munication loads. A complete graph contains all tasks of a program which are 
spawned at execution time. We assume that the mapping of tasks to processors 
can be predetermined and does not change during the program runtime. A task 
is created and lives on a fixed processor until its termination. The load and lo- 
cation of a task frequently depends on the input data of a program (e.g. amount 
of work in computation-phases, the distance in communications). Estimations 
provided by mean-value analysis are substituted for problem dependent control 
flow. 

Note that the size of the task graphs increases with the degree of concurrency, 
machine size, and problem size. The number of tasks in high performance imple- 
mentations often exceeds the number of processors by a large factor [SW96b]. 
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Creating such large graphs is quite effort-intensive and can be error-prone. Only 
for toy-problems on small parallel machines it is possible to generate and eval- 
uate the complete task graph. For performance prediction of relevant problem 
and machine sizes, we need to reduce the task graph. 
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Fig. 1. Example task graphs. 

2.2 Re laxed  Task G r a p h  

A first approach to reduce the size of the task graph is to express the regulari- 
ties in the graph by loops. The resulting cyclic task graphs have been studied by 
several authors [KME92, MST94]. Loops are represented by labeling loop edges 
with two parameters, the loop counter and the limit. Figure 2(a) shows a cyclic 
representation of Figure l(a). The loop counter of loop edge ! is i and the loop 
limit is n. Similar to a loop edge, a forward edge is labeled with a counter and a 
limit. Forward edges represent dependencies between tasks of different iterations. 
In our example f is such a forward edge. The size of task graphs becomes inde- 
pendent of the problem size with the introduction of loops, nevertheless it still 
depends on program size and machine size. A further graph reduction method 
is to group similar tasks on different nodes together [MNT93]. 

In our performance prediction method, we use a relaxed task graph for rep- 
resenting parallel programs. The large number of tasks of a massively parallel 
machine is reduced by eliminating negligible edges. Only the edges with high 
finishing times have to be considered in the set of incoming edges because of the 
maximum operation. Therefore, incoming edges with earlier finishing times can 
be omitted. Typically, this kind of edge reduction is possible within global com- 
munication operations and also in regular communication patterns on groups 
of processors. Figure l(b) shows a typical global communication operation. Let 
us assume that only the labeled edges resp. nodes represent the relevant loads. 
It is obvious that the execution time of the graph is determined by the longest 
path (bottom). The resulting graph is depicted in Figure 2(b). This technique 
also works for a variable number of nodes. The number of nodes may depend 
on a probability function due to problem dependent control flow. In this case, 
the resulting load can be expressed by the mean-value. While these relaxations 
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potentially underestimate the runtime, our examinations in Section 4 show this 
to be negligible. 

Simple paths (subsequent nodes without branches) of the resulting graph can 
be reduced further by replacing them by a single edge with empty nodes. The 
load of this new edge is the composition of functions of the eliminated nodes and 
edges. The resulting relaxed task graph is typically independent of the machine 
size (Fig. 2(c)). In the following, nodes and edges of the task graph are called 
states and transitions. 
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Fig. 2. Cyclic task graph (a) and relaxed task graphs (b,c). 

2.3 Transitions in the Graph 

The main part of the evaluation of the performance model is the determination of 
the computation and communication time functions. These functions character- 
ize the architecture of the machine and the arguments specify the computational 
effort of the analyzed algorithm. 

Communica t ion :  The communication time is a function of the message size 
and the communication distance represented by its source and target. 

rcomm (size, dist) = Ttat (dist) + s ize .  vgap (cont, dist) (1) 

Message size and communication distance have to be determined by an anal- 
ysis of the algorithm. Low-level benchmarks are used to determine the hardware 
dependent functions startup time (lat) and the time interval between consec- 
utive transmissions of words (gap). The reciprocal of rg~p corresponds to the 
available communication bandwidth. Phases of intensive communication lead to 
contention of network resources (links, switchs, etc.). Communication contention 
is estimated during the evaluation of the task graph. 

Computat ion:  High performance implementations require an efficient utiliza- 
tion of the memory hierarchy of each node of the parallel machine. Usually 
arithmetic pipelines can process data in local memory faster than data can be 
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transferred between the different levels of the memory hierarchy. In order to 
design a simple model of memory-limited computation, we consider a single 
arithmetic pipeline connected to each level of the memory hierarchy (Fig. 3). 

The execution time of scientific applications primarily depends on instruc- 
tions on floating-point data  including arithmetic and memory accesses. Here, 
we focus on algorithms allowing to hide integer instructions by floating-point 
instructions. The model includes three classes of floating-point instructions .~: 
arithmetic operations and load and store instructions (| ld(l), and st(l)). Mem- 
ory accesses are distinguished with respect to the level l of the memory hierarchy 
of the data. Level 0 corresponds to the register file. The cost of each instruction 
is independent of its execution context. The instruction stream I = i(1), . . . ,  
/(k) of an algorithm is transformed into a stream of instructions I of the model. 
I must be determined by an analysis of the algorithm. The arithmetic operation 
A = B | C, for example, is modeled by the stream ld(lB), ld(1c), | and st(IA). 
lx specifies the level of the memory hierarchy of data  X. In the following the 
frequency of such instructions is defined as Pinstr. 

k 

7 ( •  = = 

j = l  ins t rE~ 

(2) 

r ( I )  defines the execution time in the model which The function approxi- 
mates the execution time of I. 

0 1 2 m 

Fig.  3. Abstract model of processor 
and memory hierarchy. 

ocessors Memory 

Fig. 4. Queuing model of an SMP-node. 

S h a r e d - M e m o r y  M o d e l :  Frequent simultaneous accesses to the shared mem- 
ory lead to heavy contention on the memory bus in multi-processor systems. 
Mean value analysis of closed queuing networks gives an estimation on the in- 
creased response time [Lay83]. A node of the parallel machine is described by 
a single FCFS 1 queuing center. Apart from the memory queue and the cor- 
responding server, the model contains p delay servers representing the proces- 
sors (Fig. 4). 

The time needed to execute of an arbitrary task T in the parallel system is 
given by r(p) = Rproc(p) + Rmem(P), where Rmem and Rproc are the response 

1 FCFS: first-come first-serve 
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times of the memory system resp. processors. At first a one processor system 
is considered (r(1), no contention). The execution time is divided into demands 
on the processor (7-p~oc) and demands on the memory module (r,~e,n). These 
correspond to the delay times of the servers. We assume that at any time the 
queuing network contains p tasks of the same type. This leads to a constant 
response time Rpro~(p) = Rv~o~(t) = rv~oc of the processors. The response time 
of the memory module of a system with p processors can be described by the 
following recursion: 

R,n~m(p + 1) -- [1 + _p: Rm~m (p) ] 
+ Rme (p)/ (3) 

The previously described processor and memory hierarchy model defines the 
service demands. The delay time of the processors includes accesses to local 
memory levels and accesses to the shared memory define the delay time of the 
memory module. 

2.4 Microbenchmarks 

We devised a simple set of low-level benchmarks to determine the system param- 
eters of the performance prediction model. The benchmarks aim at measuring 
performance parameters that characterize the basic architecture of the system 
and the used compiler software. 

Computation parameters are benchmarked with various synthetic algorithms 
whose execution patterns reflect real algorithms. These programs consist of mixes 
of load, store, and arithmetic operations on vectors of various lengths and investi- 
gate all levels of the memory hierarchy (register, caches, main memory, etc.). For 
example, in technical documentations of processors only the maximum pipeline 
through-put is reported. This peak performance is very often not realized in al- 
gorithms because data cannot be transferred to and from memory as fast as it 
is needed. The memory bottleneck and the stalls of pipelines are approximately 
modeled by a microbenchmark by considering different computational intensities 
(ratio of arithmetic operations to memory references). 

The basic communication properties of the message-passing MIMD computer 
are measured by ping-pong and message-exchange benchmarks. Messages of vari- 
able length are transmitted between nodes to determine the communication pa- 
rameters latency and bandwidth (resp. gap). The parameters are measured with 
respect to communication distance and network contention. 

2.5 The  Evaluat ion  Algorithm 

An evaluation of the relaxed task graph is necessary for the execution time 
forecast of the algorithm. The following scheme uses a transition based internal 
task graph representation. Starting with the activation of the initial state, our 
evaluation algorithm performs the following steps: Each active state becomes 
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inactive and all computation and communication functions of its transitions are 
computed according to the actual parameters. The flow control is carried out 
through updating the parameters of the loop edges and propagating time stamps 
to subsequent nodes. A time stamp is the sum of the activation time of its state 
and the execution times of the considered transition. The activation time of a 
state is determined by the maximum time stamp of its incoming edges. 

3 A n  E x a m p l e  

In this section we apply the previously described performance prediction method 
to a parallel benchmark program. For our studies we choose the parallel Linpack 
program. A lot of algorithm research and performance analyses have focused on 
this popular benchmark. Runtimes of the program are measured on a parallel 
machine with distributed memory. 

3.1 T h e  Para l le l  Sys t em 

The considered computer architecture is a massively parallel distributed mem- 
ory system with multi-processor nodes. Each node of the system consists of two 
RISC microprocessors, local shared-memory, and communication engines con- 
nected to the global communication network. The communication network is a 
two-dimensional mesh. Measurements are done on the Parsytec GC/PowerPlus 
system with 192 PowerPC-601 processors. The peak floating-point performance 
per node is 160 MFLOPS while the communication network provides moder- 
ate 3.3 MByte/s unidirectional communication bandwidth per link. The two- 
processor node architecture enforce multi-threaded programming to achieve most 
efficient programs. 

H a r d w a r e  P a r a m e t e r s :  The performance prediction model uses the following 
hardware parameters of the GC/PowerPlus. Some parameters are given by the 
architecture while others are obtained by running benchmark programs. 

The architecture parameters are the number of processors per node (two), 
a description of the memory hierarchy (32 fp-register and 32 kByte cache per 
processor and 64 MByte main memory per node), and the cycle time of the 
machine (12.5 ns). The size of a user partition of the machine is specified by the 
parameters X and Y. The largest user partition is 12 x 8. 

The set of low level benchmarks described in Section 2.4 was executed on 
the machine. Table 1 shows the hardware parameters which are determined by 
the microbenchmarks. Note that the arithmetic operations also include memory 
accesses to the register file (memory level 0). Memory level 1 is the cache (ldc, 
stc) and memory level 2 is the shared memory (ldm, stm). 
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instruction Tinstruction remarks 
(cycles) 

add 
m a d d  
ld_c 
st_c 
ld_m 

s t_m 
gap 

la t  
ts  

1 
2 

0.46 
3 

2.5 
8.5 

220 
16800 

800000 

floating-point addition 
floating-point multiply&add, multiplication 
register load from cache 
register store in cache 
register load from main memory (full cache line) 
register store in main memory (full cache line) 
communication time per double (bidirectional) 
communication latency 
scheduler time-slice 

Table 1. Hardware parameters of a Parsytec GC/PowerPlus as determined by our 
microbenchmarks 

3.2 T h e  P a r a l l e l  A p p l i c a t i o n  

The Linpack program solves a system of linear equations which is an important  
task in scientific computing. The main part of the Linpack program is the LU- 
decomposition algorithm. The coefficient matr ix of size N x N is factorized into 
two permuted-triangular matrices. Numerical instability is avoided by partial 
pivoting based on the search in the column of an entry of largest magnitude. 
Operations on submatrices of size B x B allows efficient utilization of the memory 
hierarchy. In the following, the performance relevant features of our algorithm 
are outlined. 

�9 load balancing: 

- static on machine level (two-dimensional block-cyclic matr ix  distribution) 
- dynamic on node level (scheduling of two computing tasks) 

�9 communication hiding: 

- concurrent pivoting 
- pendent row communication 
- pendent blocked elimination 

For a detailed description of the high performance implementation of the 
parallel LU-decomposition we refer to [SW96b]. 

Task  G r a p h :  The relaxed task graph of the parallel LU-decomposition algo- 
r i thm resulting from the relaxations is depicted in Figure 5. The graph shows 
three main paths of pivoting, row communication and blocked elimination. Piv- 
oting consists of the two parts node-level pivoting and global pivoting. Row 
communication includes the elimination and broadcast of the pivot row and the 
communication of the exchange row. The update of the submatrix is represented 
by the blocked elimination path. The outer loop iterates the blocked operations. 
The inner loop iterates pivoting and row communication of a block. A forward 
edge shows the dependencies between two iterations. 
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Fig. 5. Relaxed task graph of blocked LU-decomposition. 

T r a n s i t i o n s :  As an example we describe the transition e of Figure 5. The edge 
represents two subparts  of the LU-algorithm. The first te rm of the m a x i m u m  
operation of function 4 is the update of the block row which includes the pivot, 
the copy of the pivot row in a communicat ion buffer and j - 1 eliminations of 
the pivot row. The second term is the copy of the first part  of the pivot row in 
a buffer and the sending of the buffer. 

e = M a x { a .  u p d a t e _ r o w  + copy2 + r o w _ d i m ,  c o p y l  + s e n d _ r o w }  (4) 

At first a detailed description of the function u p d a t e _ r o w  is given. Due to the 
pending block elimination we need a to describe the probabil i ty that  the consid- 
ered row is not yet computed.  In the following N ,  and N y  represent the size of 

[ N - B . ( i - 1 ) ]  the submatr ix  which must be updated on a node. In this case N~ = ~ X B 

and N y  is equal to one. Table 2 includes all necessary implementat ion details 
of the blocked elimination routine of the LU-decomposition (register blocking of 
size 2 x 12, 12 x 2, 2 x 2 resp. ). 

proc 
type of op. number of operations remarks 

m a d d  
ld_c 
st_c 

B "2 �9 N u �9 N~ �9 B arithmetic op. 
B 2. g y .  ( r f l g =  - 1 + (r@l - 1). N=) cache loads 
B 2 . N~. ( ( [B]  _ 1). Nx) cache stores 

m e m  ld_m B 2 �9 Nu �9 (2. N~ + 1) memory loads 
s t_m B 2 �9 Ny �9 N~ memory stores 

Table  2. Number of operations occurring in the block elimination routine 

1 
rp,.or = ~ �9 (Pma,~d " r . ~ , d d  + Ptd_~ " nd_~ + ~U,t_~ �9 r~t_~) 

1 

u p d a t e _ r o w = r p , . o ~ + [ l +  _rm~m_ '] "rmem 
Tproc -}- Trnern J 

(5) 

(6) 

(7) 
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Function 5 specifies the number of cycles of arithmetic operations and cache 
accesses on a single processor. The number of cycles needed for data  movement 
between memory and processors can be determined with function 6. The update 
of a block row on a two processor node is described by function 7. The increased 
response time of the memory module derived from bus contention is estimated 
by the queuing model described in Section 2.3. 

Function send_row is the time for the communication of the first part of the 
pivot row which needs no further update. 

send_row = rgap" ~f- + nat"  3-----~ § fl" Y (8) 

The last term is the average waiting time of a communication thread being exe- 
cuted on one of the two processors under the assumption that  two computation 
threads are active (fi = 1). If no computation task is active,/9 is equal to zero. 
The factor of vlat is the average distance between any two processor rows. 

4 M o d e l  V a l i d a t i o n  

The performance prediction model developed in Section 3 is validated by com- 
paring the predicted numbers with already reported performance results [SW96b]. 
Several numbers of processors and problem sizes are considered. We use system 
sizes between 2 and 192 processors and problem sizes from 352 to 26400 vari- 
ables. The overall runtimes lie in the wide range of 0.6 to 1700 seconds. In 
particular, applications with small problem sizes are hard to analyze because 
of their short runtimes. Figure 6 depicts the measured and predicted runtimes 
implicitly expressed by the performance per node. Four classes of problem sizes 

l 'x' ~ 
-~ ........... ~ 6x6 9x6 simulated ~--- 

i . . . . . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . .  

2 0  

0 i i i i i i i J i 

4 6 16 24 36 54 64 96 
number of nodes 

Fig. 6. Comparison of measured and predicted performance for different processor 
numbers and problem sizes (top to bottom: 100%, 25%, 6%, and < 2% mere. util. ). 
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Fig. 7. Relative error of simulation for different processor numbers and problem sizes 

are considered, leading to 100%, 25%, 6%, and 2% memory utilization. The di- 
agram shows that  our predicted results conform well with the experimentally 
obtained results. Also on small problem sizes the absolute difference between 
the two values is negligibly small. 

A closer look at the quality of the model is shown in Figure 7. The relative 
error, of the prediction is presented relative to the measured values. Problem 
sizes which utilize more than 25 percent of the memory lead to relative errors 
between -4-2 percent for all machine sizes. This is a very accurate result. Also the 
prediction of runtimes of very small problems on large machines is quite good 
(+6.5 percent). 

5 A p p l i c a t i o n s  

In this section we present two applications of our performance prediction method: 
optimizing parallel algorithms and evaluation of alternative designs for parallel 
computer architectures. The first one is useful in early stages of algorithm design 
and implementation while the second application is important  for architecture 
designers interested in the influence of improved hardware parameters on the 
runtime of real parallel programs. 

5.1 Optimizing Algorithms 

When prediction tools allow to model precisely, successful program tuning is 
more likely to be achieved. Exact performance prediction may avoid the t ime 
consuming and error-prone process of implementation of different program ver- 
sions. Furthermore the modeling and simulation prevent usage of expensive re- 
sources of large parallel machines. 

In the following the optimization of the block size of the LU-decomposition is 
considered. Standard prediction methods assume a constant number of cycles for 
arithmetic operations regardless of the hierarchical memory system. The results 
of our performance prediction and a standard prediction method are compared 
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Fig. 8. Simulated performance of LU-decomposition on different machine sizes versus 
block size. 

for different machine sizes (Fig. 8). The standard prediction is not able to show 
the expected behavior of the performance curve. In contrast, our method yields 
the same dependency between block size and performance as the experimental 
results [SW96b]. For all machine sizes our prediction conforms well with the 
measured performance. 

5.2 Valuat ion  of  Arch i t ec tu re  Designs 

A further application of our performance prediction method is the valuation of 
architecture designs. During system development this technique can be used to 
compare a number of alternative designs to find the best one without realizing 
all different variants. In the following experiment, we study how the four main 
classes of machine parameters influence the runtime of the example application. 

The parameter classes are computation (add, madd, ld_c and st_c), communi- 
cation (gap and lat), load&store (ld_m and st_m) and the general data movement 
(lat, gap, Id_m and st_m). A parameter class is improved by the factor of two 
realized by halving the cycle numbers of all hardware parameters. 

Figure 9 shows the obtained speedups resulted from the individual improve- 
ment of each parameter class in relation to the machine size. Here, the problem 
size scales with the machine size. With larger machines the node performance 
becomes less important while the influence of communication performance in- 
creases. Additionally to these already known tendencies our prediction method 
allows to determine real speedup numbers to quantify this behavior. The im- 
provement of the memory bandwidth has the least effect on the speedup of all 
considered parameter classes (from +13% to +4%). This relative low speedup 
is due to the optimal utilization of the memory hierarchy of a node derived 
by the blocked algorithm. Its influence on the runtime decreases slowly with 
the machine size. For large machines a similar behavior can also be observed 
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Fig. 9. Speedup in relation to the number of nodes of the machine (mere. util. of 25%). 

if the computation parameters are improved. A doubled processor clock speed 
(faster pipelines and cache memory) improves the program execution time on 
a single node by 46%. But on a four node system the profit drops dramati- 
cally to 30%. The improvement of the communication leads up to 37% on the 
largest machine. This curve compared to the data movement (communication 
+ load&store) shows the effect of the complex concurrencies in the considered 
application. The resulted function is not the sum of the two underlying curves. 
These complex relations between hardware characteristics and runtimes of par- 
allel programs can only be analyzed with such an accurate prediction model. 

A similar complex behavior occurs if the speedup is related to the problem 
size [SW96a]. Smaller problem sizes lead to an increasing of the influence of the 
communication parameters on the runtime. On the other hand, the influence of 
the computation parameters decreases. 

6 C o n c l u s i o n  

We presented a performance prediction model that is appropriate for distributed 
memory architectures with multi-processor nodes. The underlying programming 
paradigms are message-passing and multi-threading. The complex memory hier- 
archy of nodes is described by a special processor model and a queuing model. 
We introduced several techniques to reduce the large task graphs of real parallel 
programs. As shown, mean-value analysis can result in accurate representations 
of problem dependent applications. The relaxed task graphs and the efficient 
evaluation algorithm give quick runtime forecasts. Both features, accuracy and 
fast evaluation of our method, open new applications of performance prediction 
of parallel programs. 
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