
Accurate Performance Prediction for Massively
Parallel Systems and Its Applications

Jens Simon and Jens-Michael Wierum

Paderborn Center for Parallel Computing - PC 2
Ffirstenallee 11, 33095 Paderborn, Germany

{jens, jmwie}@uni-paderborn.de
http://www.uni-paderborn.de/pcpc/

A b s t r a c t . A performance prediction method is presented, which accu-
rately predicts the expected program execution time on massively par-
allel systems. We consider distributed-memory architectures with SMD
nodes and a fast communication network. The method is based on a
relaxed task graph model, a queuing model, and a memory hierarchy
model. The relaxed task graph is a compact representation of commu-
nicating processes of an appfication mapped onto the target machine.
Simultaneous accesses to the resources of a multi-processor node a r e

modeled by a queuing network. The execution time of the appfication
is computed by an evaluation algorithm. An example application imple-
mented on a massively parallel computer demonstrates the high accuracy
of our model. Furthermore, two applications of our accurate prediction
method are presented.

1 Introduction

Performance evaluation is important at every stage in the life-cycle of a comput-
ing system: Compute r architects, programmers as well as end-users are interested
in obtaining realistic figures on the expected performance. Prediction techniques
are used in the system development by comparing alternative designs without
actually implementing all of them. In algorithm design, performance prediction
does not yield just the complexity of the algorithm, but even the expected exe-
cution t ime on a real machine. The results can be used to improve algorithms,
i.e. to obtain highly efficient implementations. In any case, an abstract model of
the hardware and of the algorithm is desirable to analyze performance.

The first approach for modeling programs on parallel machines was the
PRAM model IF J78]. This model and the more detailed BSP and LogP models
are popular in theoretical computer science, where they are used for the eval-
uation of computat ional complexity [Val90, CKP+93]. Some authors improved
these models by extending them with further features [HK95, RR95]. As it turns
out the models are still not suitable for an accurate performance prediction of
today ' s parallel system architectures with their sophisticated hardware struc-
tures and applications with a high level of concurrency. The abstract machine is
represented by only a few machine parameters describing the network (latency,

676

bandwidth) and the processor (operations per time). Main emphasis was laid
on algorithmic aspects of the parallelism and the communication cost of the
algorithm. But the node design, for example, which is the most relevant part
of parallel systems in terms of performance, has not been modeled accurately
enough.

Today's MPP systems are usually composed of standard R.ISC microproces-
sors, designed for the personal computer and workstation mass-markets. The
most performance critical part of this processor architecture is its memory sys-
tem. A model for multi-level memory hierarchies can precisely describe the data-
movements in a single processor machine [ACFS94]. In addition the extended
memory hierarchy of parallel machines with shared memory architectures can
be modeled quite accurately [BCKL94, MB92, Zha91, ZYC95].

Here, we present a performance prediction method which accurately pre-
dicts the runtime of a parallel application using the message-passing model and
asynchronous task programming paradigm. We focus on a distributed memory
architecture with shared memory nodes. Our prediction method combines the
features of (1) distributed memory models, (2) shared memory models, and (3)
models of memory limited computation.

2 T h e P r e d i c t i o n M e t h o d

The different levels of a parallel system are modeled by several techniques: The
concurrency of the algorithm is described by its task graph. Communication is
modeled by functions depending on the message size and distance. Multipvocess-
ing on an SMP node is modeled by an abstract scheduler with zero task switching
time, fixed time-slices and a single priority level. The resource-contention on an
SMP-node is estimated by a simple closed queuing network. An abstract model
of a processor and the connection to the memory hierarchy is used to predict
the sequential computation phases.

2.1 Task Graph

A parallel program can be seen as a collection of concurrent tasks with a cer-
tain control flow (Fig. 1). A task graph represents tasks and communication
dependencies as nodes and edges which are labeled with computation and com-
munication loads. A complete graph contains all tasks of a program which are
spawned at execution time. We assume that the mapping of tasks to processors
can be predetermined and does not change during the program runtime. A task
is created and lives on a fixed processor until its termination. The load and lo-
cation of a task frequently depends on the input data of a program (e.g. amount
of work in computation-phases, the distance in communications). Estimations
provided by mean-value analysis are substituted for problem dependent control
flow.

Note that the size of the task graphs increases with the degree of concurrency,
machine size, and problem size. The number of tasks in high performance imple-
mentations often exceeds the number of processors by a large factor [SW96b].

677

Creating such large graphs is quite effort-intensive and can be error-prone. Only
for toy-problems on small parallel machines it is possible to generate and eval-
uate the complete task graph. For performance prediction of relevant problem
and machine sizes, we need to reduce the task graph.

i i
s

- - - - f ,., Lp_..r - - - - f , W - % ; ~att~g" ;, _ _~_ : gathering"

computation

(a) (b)

Fig. 1. Example task graphs.

2.2 Re laxed Task G r a p h

A first approach to reduce the size of the task graph is to express the regulari-
ties in the graph by loops. The resulting cyclic task graphs have been studied by
several authors [KME92, MST94]. Loops are represented by labeling loop edges
with two parameters, the loop counter and the limit. Figure 2(a) shows a cyclic
representation of Figure l(a). The loop counter of loop edge ! is i and the loop
limit is n. Similar to a loop edge, a forward edge is labeled with a counter and a
limit. Forward edges represent dependencies between tasks of different iterations.
In our example f is such a forward edge. The size of task graphs becomes inde-
pendent of the problem size with the introduction of loops, nevertheless it still
depends on program size and machine size. A further graph reduction method
is to group similar tasks on different nodes together [MNT93].

In our performance prediction method, we use a relaxed task graph for rep-
resenting parallel programs. The large number of tasks of a massively parallel
machine is reduced by eliminating negligible edges. Only the edges with high
finishing times have to be considered in the set of incoming edges because of the
maximum operation. Therefore, incoming edges with earlier finishing times can
be omitted. Typically, this kind of edge reduction is possible within global com-
munication operations and also in regular communication patterns on groups
of processors. Figure l(b) shows a typical global communication operation. Let
us assume that only the labeled edges resp. nodes represent the relevant loads.
It is obvious that the execution time of the graph is determined by the longest
path (bottom). The resulting graph is depicted in Figure 2(b). This technique
also works for a variable number of nodes. The number of nodes may depend
on a probability function due to problem dependent control flow. In this case,
the resulting load can be expressed by the mean-value. While these relaxations

6 7 8

potentially underestimate the runtime, our examinations in Section 4 show this
to be negligible.

Simple paths (subsequent nodes without branches) of the resulting graph can
be reduced further by replacing them by a single edge with empty nodes. The
load of this new edge is the composition of functions of the eliminated nodes and
edges. The resulting relaxed task graph is typically independent of the machine
size (Fig. 2(c)). In the following, nodes and edges of the task graph are called
states and transitions.

. . . . l i

�9 * " " " i + + " " " " " - .

/ x ',.
~, . ~ i ~ n ~ . 1 l<n ,. 1++ /

10

(a)

s s c g g

(b)

i 2s+c+2g _1
-I

(c)

Fig. 2. Cyclic task graph (a) and relaxed task graphs (b,c).

2.3 Transitions in the Graph

The main part of the evaluation of the performance model is the determination of
the computation and communication time functions. These functions character-
ize the architecture of the machine and the arguments specify the computational
effort of the analyzed algorithm.

Communica t ion : The communication time is a function of the message size
and the communication distance represented by its source and target.

rcomm (size, dist) = Ttat (dist) + s ize . vgap (cont, dist) (1)

Message size and communication distance have to be determined by an anal-
ysis of the algorithm. Low-level benchmarks are used to determine the hardware
dependent functions startup time (lat) and the time interval between consec-
utive transmissions of words (gap). The reciprocal of rg~p corresponds to the
available communication bandwidth. Phases of intensive communication lead to
contention of network resources (links, switchs, etc.). Communication contention
is estimated during the evaluation of the task graph.

Computat ion: High performance implementations require an efficient utiliza-
tion of the memory hierarchy of each node of the parallel machine. Usually
arithmetic pipelines can process data in local memory faster than data can be

679

transferred between the different levels of the memory hierarchy. In order to
design a simple model of memory-limited computation, we consider a single
arithmetic pipeline connected to each level of the memory hierarchy (Fig. 3).

The execution time of scientific applications primarily depends on instruc-
tions on floating-point data including arithmetic and memory accesses. Here,
we focus on algorithms allowing to hide integer instructions by floating-point
instructions. The model includes three classes of floating-point instructions .~:
arithmetic operations and load and store instructions (| ld(l), and st(l)). Mem-
ory accesses are distinguished with respect to the level l of the memory hierarchy
of the data. Level 0 corresponds to the register file. The cost of each instruction
is independent of its execution context. The instruction stream I = i(1), . . . ,
/(k) of an algorithm is transformed into a stream of instructions I of the model.
I must be determined by an analysis of the algorithm. The arithmetic operation
A = B | C, for example, is modeled by the stream ld(lB), ld(1c), | and st(IA).
lx specifies the level of the memory hierarchy of data X. In the following the
frequency of such instructions is defined as Pinstr.

k

7 (• = =

j = l ins t rE~

(2)

r (I) defines the execution time in the model which The function approxi-
mates the execution time of I.

0 1 2 m

Fig. 3. Abstract model of processor
and memory hierarchy.

ocessors Memory

Fig. 4. Queuing model of an SMP-node.

S h a r e d - M e m o r y M o d e l : Frequent simultaneous accesses to the shared mem-
ory lead to heavy contention on the memory bus in multi-processor systems.
Mean value analysis of closed queuing networks gives an estimation on the in-
creased response time [Lay83]. A node of the parallel machine is described by
a single FCFS 1 queuing center. Apart from the memory queue and the cor-
responding server, the model contains p delay servers representing the proces-
sors (Fig. 4).

The time needed to execute of an arbitrary task T in the parallel system is
given by r(p) = Rproc(p) + Rmem(P), where Rmem and Rproc are the response

1 FCFS: first-come first-serve

680

times of the memory system resp. processors. At first a one processor system
is considered (r(1), no contention). The execution time is divided into demands
on the processor (7-p~oc) and demands on the memory module (r,~e,n). These
correspond to the delay times of the servers. We assume that at any time the
queuing network contains p tasks of the same type. This leads to a constant
response time Rpro~(p) = Rv~o~(t) = rv~oc of the processors. The response time
of the memory module of a system with p processors can be described by the
following recursion:

R,n~m(p + 1) -- [1 + _p: Rm~m (p)]
+ Rme (p)/ (3)

The previously described processor and memory hierarchy model defines the
service demands. The delay time of the processors includes accesses to local
memory levels and accesses to the shared memory define the delay time of the
memory module.

2.4 Microbenchmarks

We devised a simple set of low-level benchmarks to determine the system param-
eters of the performance prediction model. The benchmarks aim at measuring
performance parameters that characterize the basic architecture of the system
and the used compiler software.

Computation parameters are benchmarked with various synthetic algorithms
whose execution patterns reflect real algorithms. These programs consist of mixes
of load, store, and arithmetic operations on vectors of various lengths and investi-
gate all levels of the memory hierarchy (register, caches, main memory, etc.). For
example, in technical documentations of processors only the maximum pipeline
through-put is reported. This peak performance is very often not realized in al-
gorithms because data cannot be transferred to and from memory as fast as it
is needed. The memory bottleneck and the stalls of pipelines are approximately
modeled by a microbenchmark by considering different computational intensities
(ratio of arithmetic operations to memory references).

The basic communication properties of the message-passing MIMD computer
are measured by ping-pong and message-exchange benchmarks. Messages of vari-
able length are transmitted between nodes to determine the communication pa-
rameters latency and bandwidth (resp. gap). The parameters are measured with
respect to communication distance and network contention.

2.5 The Evaluat ion Algorithm

An evaluation of the relaxed task graph is necessary for the execution time
forecast of the algorithm. The following scheme uses a transition based internal
task graph representation. Starting with the activation of the initial state, our
evaluation algorithm performs the following steps: Each active state becomes

681

inactive and all computation and communication functions of its transitions are
computed according to the actual parameters. The flow control is carried out
through updating the parameters of the loop edges and propagating time stamps
to subsequent nodes. A time stamp is the sum of the activation time of its state
and the execution times of the considered transition. The activation time of a
state is determined by the maximum time stamp of its incoming edges.

3 A n E x a m p l e

In this section we apply the previously described performance prediction method
to a parallel benchmark program. For our studies we choose the parallel Linpack
program. A lot of algorithm research and performance analyses have focused on
this popular benchmark. Runtimes of the program are measured on a parallel
machine with distributed memory.

3.1 T h e Para l le l Sys t em

The considered computer architecture is a massively parallel distributed mem-
ory system with multi-processor nodes. Each node of the system consists of two
RISC microprocessors, local shared-memory, and communication engines con-
nected to the global communication network. The communication network is a
two-dimensional mesh. Measurements are done on the Parsytec GC/PowerPlus
system with 192 PowerPC-601 processors. The peak floating-point performance
per node is 160 MFLOPS while the communication network provides moder-
ate 3.3 MByte/s unidirectional communication bandwidth per link. The two-
processor node architecture enforce multi-threaded programming to achieve most
efficient programs.

H a r d w a r e P a r a m e t e r s : The performance prediction model uses the following
hardware parameters of the GC/PowerPlus. Some parameters are given by the
architecture while others are obtained by running benchmark programs.

The architecture parameters are the number of processors per node (two),
a description of the memory hierarchy (32 fp-register and 32 kByte cache per
processor and 64 MByte main memory per node), and the cycle time of the
machine (12.5 ns). The size of a user partition of the machine is specified by the
parameters X and Y. The largest user partition is 12 x 8.

The set of low level benchmarks described in Section 2.4 was executed on
the machine. Table 1 shows the hardware parameters which are determined by
the microbenchmarks. Note that the arithmetic operations also include memory
accesses to the register file (memory level 0). Memory level 1 is the cache (ldc,
stc) and memory level 2 is the shared memory (ldm, stm).

682

instruction Tinstruction remarks
(cycles)

add
m a d d
ld_c
st_c
ld_m

s t_m
gap

la t
ts

1
2

0.46
3

2.5
8.5

220
16800

800000

floating-point addition
floating-point multiply&add, multiplication
register load from cache
register store in cache
register load from main memory (full cache line)
register store in main memory (full cache line)
communication time per double (bidirectional)
communication latency
scheduler time-slice

Table 1. Hardware parameters of a Parsytec GC/PowerPlus as determined by our
microbenchmarks

3.2 T h e P a r a l l e l A p p l i c a t i o n

The Linpack program solves a system of linear equations which is an important
task in scientific computing. The main part of the Linpack program is the LU-
decomposition algorithm. The coefficient matr ix of size N x N is factorized into
two permuted-triangular matrices. Numerical instability is avoided by partial
pivoting based on the search in the column of an entry of largest magnitude.
Operations on submatrices of size B x B allows efficient utilization of the memory
hierarchy. In the following, the performance relevant features of our algorithm
are outlined.

�9 load balancing:

- static on machine level (two-dimensional block-cyclic matr ix distribution)
- dynamic on node level (scheduling of two computing tasks)

�9 communication hiding:

- concurrent pivoting
- pendent row communication
- pendent blocked elimination

For a detailed description of the high performance implementation of the
parallel LU-decomposition we refer to [SW96b].

Task G r a p h : The relaxed task graph of the parallel LU-decomposition algo-
r i thm resulting from the relaxations is depicted in Figure 5. The graph shows
three main paths of pivoting, row communication and blocked elimination. Piv-
oting consists of the two parts node-level pivoting and global pivoting. Row
communication includes the elimination and broadcast of the pivot row and the
communication of the exchange row. The update of the submatrix is represented
by the blocked elimination path. The outer loop iterates the blocked operations.
The inner loop iterates pivoting and row communication of a block. A forward
edge shows the dependencies between two iterations.

683

p i v o t i n g

. ~ r o w c o m m u n i c a t i o n

b l o c k e d e l i m i n a t i o n

:4 .L j , 8owcon o,

, . i+ ----------- . _ _ i<Nfi

Fig. 5. Relaxed task graph of blocked LU-decomposition.

T r a n s i t i o n s : As an example we describe the transition e of Figure 5. The edge
represents two subparts of the LU-algorithm. The first te rm of the m a x i m u m
operation of function 4 is the update of the block row which includes the pivot,
the copy of the pivot row in a communicat ion buffer and j - 1 eliminations of
the pivot row. The second term is the copy of the first part of the pivot row in
a buffer and the sending of the buffer.

e = M a x { a . u p d a t e _ r o w + copy2 + r o w _ d i m , c o p y l + s e n d _ r o w } (4)

At first a detailed description of the function u p d a t e _ r o w is given. Due to the
pending block elimination we need a to describe the probabil i ty that the consid-
ered row is not yet computed. In the following N , and N y represent the size of

[N - B . (i - 1)] the submatr ix which must be updated on a node. In this case N~ = ~ X B

and N y is equal to one. Table 2 includes all necessary implementat ion details
of the blocked elimination routine of the LU-decomposition (register blocking of
size 2 x 12, 12 x 2, 2 x 2 resp.).

proc
type of op. number of operations remarks

m a d d
ld_c
st_c

B "2 �9 N u �9 N~ �9 B arithmetic op.
B 2. g y . (r f l g = - 1 + (r@l - 1). N=) cache loads
B 2 . N~. (([B] _ 1). Nx) cache stores

m e m ld_m B 2 �9 Nu �9 (2. N~ + 1) memory loads
s t_m B 2 �9 Ny �9 N~ memory stores

Table 2. Number of operations occurring in the block elimination routine

1
rp,.or = ~ �9 (Pma,~d " r . ~ , d d + Ptd_~ " nd_~ + ~U,t_~ �9 r~t_~)

1

u p d a t e _ r o w = r p , . o ~ + [l + _rm~m_ '] "rmem
Tproc -}- Trnern J

(5)

(6)

(7)

684

Function 5 specifies the number of cycles of arithmetic operations and cache
accesses on a single processor. The number of cycles needed for data movement
between memory and processors can be determined with function 6. The update
of a block row on a two processor node is described by function 7. The increased
response time of the memory module derived from bus contention is estimated
by the queuing model described in Section 2.3.

Function send_row is the time for the communication of the first part of the
pivot row which needs no further update.

send_row = rgap" ~f- + nat" 3-----~ § fl" Y (8)

The last term is the average waiting time of a communication thread being exe-
cuted on one of the two processors under the assumption that two computation
threads are active (fi = 1). If no computation task is active,/9 is equal to zero.
The factor of vlat is the average distance between any two processor rows.

4 M o d e l V a l i d a t i o n

The performance prediction model developed in Section 3 is validated by com-
paring the predicted numbers with already reported performance results [SW96b].
Several numbers of processors and problem sizes are considered. We use system
sizes between 2 and 192 processors and problem sizes from 352 to 26400 vari-
ables. The overall runtimes lie in the wide range of 0.6 to 1700 seconds. In
particular, applications with small problem sizes are hard to analyze because
of their short runtimes. Figure 6 depicts the measured and predicted runtimes
implicitly expressed by the performance per node. Four classes of problem sizes

l 'x' ~
-~ ~ 6x6 9x6 simulated ~---

i

2 0

0 i i i i i i i J i

4 6 16 24 36 54 64 96
number of nodes

Fig. 6. Comparison of measured and predicted performance for different processor
numbers and problem sizes (top to bottom: 100%, 25%, 6%, and < 2% mere. util.).

685

+7.5%

+5%

+2.5%

~ o

-2.5%

-5%

-7.5%

number of nodes

24~ [
36~ I

.... I L I - , i I [...............

100% 25% 6% < 2%
memory utilization

Fig. 7. Relative error of simulation for different processor numbers and problem sizes

are considered, leading to 100%, 25%, 6%, and 2% memory utilization. The di-
agram shows that our predicted results conform well with the experimentally
obtained results. Also on small problem sizes the absolute difference between
the two values is negligibly small.

A closer look at the quality of the model is shown in Figure 7. The relative
error, of the prediction is presented relative to the measured values. Problem
sizes which utilize more than 25 percent of the memory lead to relative errors
between -4-2 percent for all machine sizes. This is a very accurate result. Also the
prediction of runtimes of very small problems on large machines is quite good
(+6.5 percent).

5 A p p l i c a t i o n s

In this section we present two applications of our performance prediction method:
optimizing parallel algorithms and evaluation of alternative designs for parallel
computer architectures. The first one is useful in early stages of algorithm design
and implementation while the second application is important for architecture
designers interested in the influence of improved hardware parameters on the
runtime of real parallel programs.

5.1 Optimizing Algorithms

When prediction tools allow to model precisely, successful program tuning is
more likely to be achieved. Exact performance prediction may avoid the t ime
consuming and error-prone process of implementation of different program ver-
sions. Furthermore the modeling and simulation prevent usage of expensive re-
sources of large parallel machines.

In the following the optimization of the block size of the LU-decomposition is
considered. Standard prediction methods assume a constant number of cycles for
arithmetic operations regardless of the hierarchical memory system. The results
of our performance prediction and a standard prediction method are compared

686

100

95

90

~ 8s

80

75

standard "~""
accurate

~ lxl
Q m ~ ~ o

4x4

~ 8x8

i i i i I i

16 20 22 24 28 32
blocksize

Fig. 8. Simulated performance of LU-decomposition on different machine sizes versus
block size.

for different machine sizes (Fig. 8). The standard prediction is not able to show
the expected behavior of the performance curve. In contrast, our method yields
the same dependency between block size and performance as the experimental
results [SW96b]. For all machine sizes our prediction conforms well with the
measured performance.

5.2 Valuat ion of Arch i t ec tu re Designs

A further application of our performance prediction method is the valuation of
architecture designs. During system development this technique can be used to
compare a number of alternative designs to find the best one without realizing
all different variants. In the following experiment, we study how the four main
classes of machine parameters influence the runtime of the example application.

The parameter classes are computation (add, madd, ld_c and st_c), communi-
cation (gap and lat), load&store (ld_m and st_m) and the general data movement
(lat, gap, Id_m and st_m). A parameter class is improved by the factor of two
realized by halving the cycle numbers of all hardware parameters.

Figure 9 shows the obtained speedups resulted from the individual improve-
ment of each parameter class in relation to the machine size. Here, the problem
size scales with the machine size. With larger machines the node performance
becomes less important while the influence of communication performance in-
creases. Additionally to these already known tendencies our prediction method
allows to determine real speedup numbers to quantify this behavior. The im-
provement of the memory bandwidth has the least effect on the speedup of all
considered parameter classes (from +13% to +4%). This relative low speedup
is due to the optimal utilization of the memory hierarchy of a node derived
by the blocked algorithm. Its influence on the runtime decreases slowly with
the machine size. For large machines a similar behavior can also be observed

687

150%

140%

130%

120%

110%

100%

data movement

/x / u ~.... . computat ion

~ ' + " ~ + load & store

i i t

50 I00 150
number of nodes

200

Fig. 9. Speedup in relation to the number of nodes of the machine (mere. util. of 25%).

if the computation parameters are improved. A doubled processor clock speed
(faster pipelines and cache memory) improves the program execution time on
a single node by 46%. But on a four node system the profit drops dramati-
cally to 30%. The improvement of the communication leads up to 37% on the
largest machine. This curve compared to the data movement (communication
+ load&store) shows the effect of the complex concurrencies in the considered
application. The resulted function is not the sum of the two underlying curves.
These complex relations between hardware characteristics and runtimes of par-
allel programs can only be analyzed with such an accurate prediction model.

A similar complex behavior occurs if the speedup is related to the problem
size [SW96a]. Smaller problem sizes lead to an increasing of the influence of the
communication parameters on the runtime. On the other hand, the influence of
the computation parameters decreases.

6 C o n c l u s i o n

We presented a performance prediction model that is appropriate for distributed
memory architectures with multi-processor nodes. The underlying programming
paradigms are message-passing and multi-threading. The complex memory hier-
archy of nodes is described by a special processor model and a queuing model.
We introduced several techniques to reduce the large task graphs of real parallel
programs. As shown, mean-value analysis can result in accurate representations
of problem dependent applications. The relaxed task graphs and the efficient
evaluation algorithm give quick runtime forecasts. Both features, accuracy and
fast evaluation of our method, open new applications of performance prediction
of parallel programs.

688

References

[ACFS94]

[BCKL94]

[CKP+93]

IF J78]

[HK95]

[KME92]

[Lav83]

[MB92]

[MNT931

[MST94]

[RR95]

[SW96a]

[SW96b]

[Val90]

[Zha91]

[ZYC95]

B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy
model of computation. Algorithmica, 12:72-109, 1994.
R. Bianchini, M.E. Crovella, L. Kontothanassis, and T.J. LeBlanc. Alle-

viating memory contention in matrix computations on large-scale shared-
memory multiprocessors. Proceedings o] the Sixth IEEE Symposium on Par-
allel and Distributed Processing, pages 56 - 65, October 1994.
D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,

R. Subramonian, and T. van Eicken. LogP: Towards a realistic model of
parallel computation. Proceedings o] the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, May 1993.
S. Fortune and J.Wyllie. Parallism in random access machines. Proceedings
of the lOth Annual Symosium on Theory of Computing, pages 114-118, 1978.
S.E. Hambrush and A.A. Khokhar. C3: A parallel model for coarse-grained
machines. Technical report, Purdue, University, January 1995.
A. Kapelnikov, R.R. Muntz, and M.D. Ercegevac. A methodology for per-
formance analysis of parallel computations with looping constructs. Journal
o] Parallel and Distributed Computing, 14(2), February 1992.
S.S. Lavenberg. Computer Performance Modeling Handbook. Academic
Press, New York, 1983.
D.A. Menasce and L.A. Barroso. A methodology for performance evalua-
tion of parallel applications in shared memory multiprocessors. Journal o]
Parallel and Distributed Computing, 14(1), January 1992.
D.A. Menasce, S.H. Noh, and S.K. Tripath. A methodology for performance
prediction of massively parallel applications. Proc. o] the 5th IEEE Sympo-
sium on Parallel and Distributed Processing, pages 250-257, 1993.
Hermann Mierendorff, Helmut Schwanborn, and Maurizio Tazza. Perfor-
mance modelling of grid problems - a case study on the SUPRENUM sys-
tem. Parallel Computing 20, pages 1527-1546, 1994.
T. Rauber and G. R/inger. A computation model for the parallel solution
of differential equations. Proceedings of the 5th Workshop on Compilers]or
Parallel Computers, pages 294-306, June 1995.
J. Simon and J.-M. Wierum. On accurate performance prediction for mas-
sively parallel systems and its applications. Technical report, Paderborn
Center for Parallel Computing, April 1996.
J. Simon and J.-M. Wierum. Sequential performance versus scalability: Op-
timizing parallel LU-decomposition. Proc. o] HPCN'96 in Lecture Notes in
Computer Science 1067, pages 627 - 632, 1996.
L.G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111, 1990.
X. Zhang. Performance measurement and modeling to evaluate various ef-
fects on a shared memory multiprocessor. IEEE Transactions on Software
Engineering, 17(1):87-93, 1991.
X. Zhang, Y. Yan, and R. Castaneda. Comparative performance evaluation
of hot spot contention between min-based and ring-based shared-memory
architectures. IEEE Transactions on Parallel and Distributed Systems,
6(8):872 - 886, 1995.

