
IDRA (IDeal Resource Allocation): Computing
Ideal Speedups in Parallel Logic Programming*

M . J . Ferne lndez M. C a r r o M. Hermenegildo
{mj f , mcar ro , herme}�9 f i . upm. es

School of Computer Science
Technical University of Madrid

Abst rac t . We present a technique to estimate accurate speedups for
parallel logic programs with relative independence from characteristics
of a given implementation or underlying parallel hardware. The proposed
technique is based on gathering accurate data describing one execution
at run-time, which is fed to a simulator. Alternative schedulings are
then simulated and estimates computed for the corresponding speedups.
A tool implementing the aforementioned techniques is presented, and its
predictions are compared to the performance of real systems, showing
good correlation.
Keywords: Parallel Logic Programming; Simulation; Parallelism; Con-
currency; Performance Evaluation.

1 I n t r o d u c t i o n

In recent years a number of parallel implementations of logic programming lan-
guages, and, in particular, of Prolog, have been proposed (some examples are
[HG91, AK90, SCWY90, She92, Lus90]). Relatively extensive studies have been
performed regarding the performance of these systems. However, these studies
generally report only the absolute data obtained in the experiments, including at
most a comparison with other actual systems implementing the same paradigm.
This is understandable and appropriate in that usually what these studies t ry
to asses is the effectiveness of a given implementation against s ta te -of - the-ar t
sequential Prolog implementations or against similar parallel systems.

In this paper we t ry to find techniques to answer different questions, and in a
relatively architecture-independent way: given a (parallel) execution paradigm,
what is the maximum benefit that can be obtained from executing a program
in parallel following that paradigm? What are the resources (for example, pro-
cessors) needed to exploit all parallelism available in a program? How much
parallelism can be ideally exploited for a given set of resources (e.g. a fixed num-
ber of processors)? The answers to these questions can be very useful in order
to evaluate actual implementations, or even parts of them, such as, for example,
parallelizing compilers. However, such answers cannot be obtained from an ac-
tual implementation, either because of limitations of the implementation itself
or because of limitations of the underlying machinery. It appears that any ap-
proach for obtaining such answers has to resort to a greater or lesser extent to
simulations.

* The research presented in this paper has been supported in part by ESPRIT project
6707 "PARFORCE" and CICYT project "IPL-D."

725

There has been some previous work in the area of ideal parallel performance
determination through simulation in logic programs, in particular [SH91] and
[SK92]. These approaches are similar in spirit and objective to ours, but differ
in the approach (and the results).

In [SH91] programs are executed by a high-level meta-interpreter/simulator
which computes ideal speedups for different numbers of processors. This work is
interesting in that it proposed the idea of comparing the ideal performance ob-
tained simulations with that of actual systems. However, the simulator proposed
does suffer from some drawbacks. Resolution steps are used as time units, thus
causing some lack of accuracy in certain benchmarks (extra time can be added
to the start and end of tasks, to somewhat compensate for that, and to allow
simulating machine overheads). Also, the size of the executions is limited by the
time and memory consumption of the interpretive method.

In [SK92] Prolog programs are instrumented to count the number of WAM
[AK91] instructions executed, assuming a constant cost for each WAM instruc-
tion. Speedups are calculated by comparing the critical path for the parallel
execution with the sequential execution length. Although this method can be
more accurate than that of [SH91], it also has some drawbacks: only maximum
speedups are computed, the type of instrumentation performed on the code does
not allow taking control instructions into account, and the different amount of
time that many WAM instructions may need at run-time is not taken into ac-
count. Finally, the problem of simulating large executions is only partially solved
by this approach.

Our approach tries to overcome the precision and execution size limitations
of previous approaches. We achieve both goals by placing the splitting point
between execution and simulation at a different point: programs are executed
directly in (instrumented) real systems. Simplified execution traces which con-
tain accurate task timing and dependency information are generated during the
program execution (even on only one processor).

Space limitations only allow a concise and rather informal presentation. A full
version of this paper can be obtained from h t tp ://www. c l i p . alia. ~ • upm. es/ .

2 P a r a l l e l i s m in L o g i c P r o g r a m m i n g

The parallel execution models which we will deal with in this paper stem natu-
rally from the view of logic programming as a process-oriented computation. The
two main types of parallelism available in a logic program are and-pa ra l l e l i sm
and or -para l le l i sm [Con83]. We will briefly review some related concepts in
the following sections.

Restricted And-parallelism: Restricted and-parallelism (RAP) [DeG84, HG91]
refers to the execution of independent goals using a fork and join paradigm.
Independent goals are those that meet some "independence conditions" at run-
time (for example, variables are not shared, thus avoiding all possible Read-
Write and Write-Write conflict). The only dependencies existing in RAP appear
among the conjunction of goals executed in parallel and the goals before and after
the parallel execution. Consider the &-Prolog [HG91] program below, where the

726

d

STARTGOAL

j START_GOAL

f b

C

/] "r FINISH_GOAL

JOIN g
\

FINISH_GOAL

5TART GOAL

FFART G~ y O R K

/ FtNISH_C, OAL .,X l

Fig. 1. And-parallel execution Fig. 2. Or-parallel execution

"&" operator , in place of the comma operator , stands for and-paral lel execution
(d, e and f assumed to be sequential):

m a i n : - a , c & b , g .
c : - d ~ e & f .

A (simplified) dependency graph for this program is depicted in Figure 1. In the
RAP model JOINs close FORKS in reverse order, and tasks are started either by
START_GOAL or by JOIN ad finished either by FINISH_GOAL or by FORK. Under
these conditions, a RAP execution can be depicted by a directed acyclic planar
graph, where and-paral lel executions appear nested.

Or-parallelism: Or-paral lel ism corresponds to the parallel execution of different
alternatives of a given predicate. Since each branch belongs conceptually to a
different "universe" there are (in principle) no dependencies among alternatives.
However, each alternative does depend on the FORK tha t creates it. As an ex-
ample, consider the following program, which has alternatives for predicates b,
p and q:

main:- a, b.

b:- p. p:- ...

b:- q. p:- ...

q : - . . . p : - . . .
q : - . . .

Assuming tha t p and q have no or-parallel ism inside, a possible graph depict-
ing an execution of this predicate is shown in Figure 2. Note that the rightmost
branch in the execution is suspended at some point and then restarted. This
suspension is probably caused by a side-effect predicate or a cut, which would
impose a serialization of the execution (such suspensions also appear in and-
parallel traces). In terms of dependencies among events, FORKS are not balanced
by JOINS. The resulting graph is thus a tree. 2

2 Although all-solutions predicates can be depicted using this paradigm, the resulting
representation is not natural. A visualization closer to the user's intuition for these
predicates needs structures similar to those of restricted and-parallelism.

727

3 Replaying the Essential Parallel Execution

To simulate alternative schedulings of a parallel execution we need a description
of that execution, which must contain, at least, the length of each task and the
relationships and dependencies which hold among the tasks. Such a description
can be produced by executing programs in actual implementations instrumented
to generate execution logs, or, with less accuracy, even using high-level simula-
tors.

The descriptions of the executions are stored in the form of traces, which are
series of events, gathered at run- t ime by the system~under study, and carrying
the necessary information with them. The events reflect observables (interest-
ing points in the execution), and allow the reconstruction of a skeleton of the
parallel execution. Figures 1 and 2 represent two parallel executions, in which
some events have been marked at the point where they occur. The length of the
vertical segments is intended to reflect the actual t ime taken by the sequential
tasks and the scheduling delays.

3.1 F r o m T r a c e s to G r a p h s

From a practical point of view, the format of the traces may depend on the
system that created them: traces may have information that is not necessary,
or be structured in an undesirable way, perhaps because they may serve other
purposes as well. 3 This, and the fact that scheduling algorithms are usually
formulated in terms of job graphs (see, e.g., [Hu61, HB88]), in which only tasks
and their relationships are reflected (scheduling delays do not appear - -o r are
assumed to be a part of the tasks themselves), makes it desirable to separate
the simulation from the actual traces. Job graphs are obtained from traces in
our system by using an intermediate representation (execution graphs) which
allows making such transformations easily, and independently from the initial
trace format. This translation can be parameterized to take into account actual
or minimum scheduling delays, incrementing the usefulness of the tool.

3.2 M a x i m u m P a r a l l e l i s m

The term maximum parallelism denotes the parallelism obtained with an un-
bound number of processors assuming no scheduling overheads, so that newly
generated tasks can be started without any delay. Maximum parallelism is useful
in order to determine the minimum time in which a program could have been
executed while respecting the dependencies among tasks. Alternative paralleliza-
tions/sequentializations of a given program can thus be studied [D J94, BGH94],
as well as different algorithms for a given task, independently of machine limi-
tations.

Two interesting results we can obtain from a simulation with these char-
acteristics are the maximum speedup attainable and the minimum number of
processors needed to achieve it. Unfortunately, obtaining both these numbers

3 This is the case for the actual parallel systems that we study--see Section 4--where
the traces used by our simulation were originally designed for visualization.

728

is an NP-complete problem [GJ79]. However, we can find out the maximum
speedup simply by removing all scheduling times and "flattening" the trace. An
upper bound on the minimum number of processors can also bee obtained from
the maximum number of tasks active at a time. This gives an estimation of the
best performance that can be expected from the program(s) under study. It can
serve to compare alternative parallelizations of a program, without the possible
biases and limitations that actual executions impose.

3.3 Ideal Parallelism

Ideal parallelism corresponds to the speedup ideally attainable with a fixed num-
ber of processors. The task to processor mapping determines the actual speedups
attained. Ideal parallelism can be used to test the absolute performance of a
given scheduling algorithm for a fixed number of processors, and also to test the
efficiency of an implementation, by comparing the actual speedups with those
predicted by the simulator using the same scheduling algorithm as the imple-
mentation. Studying how the performance of a program evolves for a number of
processors as large as desired gives also interesting information about the po-
tential parallelism in a program. Another interesting issue which can be studied
is the variation of inherent parallelism with problem size: frequently one wants
to solve existing problems faster, but also to be able to tackle larger problems
in a reasonable amount of time. In non-trivial examples the number of parallel
tasks and the expected attainable speedups may not be easy to estimate, and
problems in which the available parallelism does not increase with the problem
size would not benefit from larger machines. Section 4 has illustrating examples.

As in 3.2, obtaining an optimal task to processor allocation is, in general, an
NP-complete problem [GJ79]. To be able to deal with non-trivial executions,
we will resort to non-optimal scheduling algorithms which give an adequate (able
to compute a reasonable answer for a typical input), but not appropriate (every
processor is attached to a sequential task until this task is finished) scheduling.

We have implemented and tested two scheduling algorithms: the subsets al-
gorithm [HB88], which groups the tasks into disjoint subsets which are scheduled
(almost) independently, and the andp algorithm, which mimics the behavior of
one of the &-Prolog schedulers. This scheduler tries to favor locality by assigning
to a given processor the work which was created by itself. It also tries to increase
the speed at which parallel tasks are created in recursive clauses [HC96].

4 IDRA: A n I m p l e m e n t a t i o n and Its U s e

A tool, named IDRA (IDeal Resource Allocation), has been implemented using
the ideas sketched before. The traces used by IDRA are the same as those used
by the visualization tool VisAndOr [CGH93]. The tool itself has been completely
implemented in Prolog. Besides computing maximum and ideal speedups, IDRA
can generate new trace files for ideal parallelism, which can in turn be visualized
using VisAndOr and compared to the original ones.

The traces used with IDRA (and with VisAndOr) need not be generated by
a real parallel system. It is possible to generate them with a sequential system
augmented to dump information about concurrency (or even with a high-level

729

Table 1. Maximum and-parallelism

HProgram[Speedup[Procs. lEft. [I
deriv 100.97
occur 31.65
tak 44.16
boyer 3.49
matrix-10 26.86
matrix-25 161.68
qsort-400 3.93
qsort-750 4.28
bpebpf-30 23.21

378 0.26
49 0.64
315 0.14
11 0.31
80 0.33

462 0.34
15 0.26
19 0.22

260 0.08

Table 2. Maximum or-parallelism

I IPr~
domino 32]'01
queens 18.14
lanfordl 19.72
lanford2 114.87

Procs. lEft. II
59 0.54
40 0.45
44 0.44
475 0.24

simulation of the execution paradigm under study). The only requirement is
that the dependencies among tasks be properly reflected, and that the timings
be accurate.

In our case, timing data is gathered by a modified Prolog implementation
which ensures that the timing information is realistic. The implicit control of
Prolog makes identifying the "interesting places" in the execution, and generat-
ing the corresponding events, automatic. The overhead of gathering the traces
depends ultimately on the system executing the program being traced. For the
&-Prolog/Muse systems, it typically falls in the range 0% - 30% - - usually less
than 20% - - of the total execution time.

In the following sections we will show examples of the use of IDRA on real
execution traces. These traces have been generated by the &:-Prolog system for
and-parallelism, and by Muse and a slightly modified version of &-Prolog for
or-parallelism. This modification was needed in order to obtain or-parallel traces
with all possible or-parallel tasks: the Muse scheduler does not make all possible
or-parallel tasks available for granularity reasons, 4 thus disallowing the correct
simulation of ideal or maximum speedups. The &-Prologmodified version dumps
traces which contain all or-parallel tasks available; therefore, &-Prolog or traces
contain many more, smaller tasks than Muse traces.

4.1 M a x i m u m P a r a l l e l i s m Performance

Tables 1 and 2 show the maximum speedup attainable according to the simu-
lation, an upper bound on the number of processors required to achieve this
speedup, and the relative efficiency (Eft.) with respect to a linear speedup, i.e.,
E f t = s p e e d u p

processors"
Clearly, short executions which require a large number of processors usually

have small tasks. This suggests that a parallel system would need some sort of
granularity control to execute them efficiently (see, e.g. [LHD94]). This turns out
not to be always the case for real executions on shared memory multiprocessors
with a small number of processors, 5 as we will see in Section 4.2 and Table 3,
but would certainly be an issue in larger or distributed memory machines.

4 This is common in schedulers for or-parallelism.
5 In addition, &-Prolog concept of local work allows speeding up programs with small

granularity, since stealing local tasks is much cheaper than stealing foreign tasks.

730

f ~ r "
f

f / f
/

f /
/

/ /
Fig. 3. Computation of e Fig. 4. 25 x 25 matrix multiplication

In programs with a regular structure (e.g., ma t r i x - - square matrix multi-
plications), potential speedups grow accordingly with the size (and the number
of tasks) of the problem: the efficiency remains approximately constant. How-
ever, in programs with a non-homogeneous execution structure (i.e., qsort - -
Hoare's QuickSort algorithm), the expected maximum speedup achievable grows
slowly with the size of the problem, and the efficiency tends to decrease with the
problem size. In the case of qsort, the sequential parts of the program would
finally dominate the whole execution, preventing further speedups (Amdhal's
law).

4.2 Ideal P a r a l l e l i s m P e r f o r m a n c e

For each benchmark we have determined the ideal parallelism and the actual
speedups on one to nine processors (Tables 3 and 4). The rows marked real cor-
respond to actual executions in &-Prolog (for the and-parallel benchmarks) and
Muse (for the or-parallel ones). Two additional subdivisions for each benchmark
in the or-parallel case, under the column "Tracing System" reflect in which sys-
tem the traces were gathered.

~:-Prolog actual traces were gathered with a low-overhead version of the
&:-Prolog scheduler with reduced capabilities, so that the andp simulation and
the actual execution be as close as possible. The remarkable similarity of the
simulated and the actual speedups supports our thesis that the simulation re-
sults are accurate. The subsets scheduling algorithm performs slightly better,
but due to its non optimality, it is surpassed sometimes by the andp algorithm
and by ,~-Prolog itself (e.g., in the qsort-750 benchmark). Sometimes the ac-
tual &-Prolog speedups are slightly better than the andp simulation: this is
understandable, given the heuristic nature of these algorithms.

Benchmarks with good performance in Tables 1 and 2 show good speedups
here also. But the inverse is not true: benchmarks with low efficiency in max-
imum parallelism can perform well in actual executions: for example the sim-
ulated speedups for the benchmark bpebpf (Figure 3), are quite good for a
reduced number of processors (see Table 3). As expected, more regular bench-
marks display a good, predictable behavior; for example, ma t r ix -25 has a larger

731

Table 3. Ideal and-parallelism

Program

deriv
real

Scheduling Processors
Algor i thm I 1 I 2 ~ 3] 4 ~ 5] 6 I 7 I 8 I 9
subsets 1.00 1.992.99 3.97 4.95 5.93 6.90 7.86 8.82
andp 1.00 1.9912.97 3.94 4.86 5.77 6.79 7.56 8.40

1.00 2.00!3.00 4.00 4.80 4.80 6.00 8.0018.00
subsets 1.00 1.9912.97 3.97 4.49 5.14 5.96i7.10 8.73

occur andp 1.00 1.99 2.55!3.28 3.97 4.45 5.12 i.92 7.08
real 1.00 1.96 2.96 3.97 4.48 5.83 5.83 7.00 8.75
subsets 1.00 1.99 2.973.93 4.86 5.77 6.65 7.51 8.33

tak andp 1.00 1.97 2.95 3.91 4.85 5.76 6.57 7.54 8.30
real 1.00 1.90 2.65 3.58 4.35 5.08 5.54 6.09 6.77
subsets 1.00 1.78 2.34 2.65 2.84 2.94 3.05 3.09 3.13

boyer andp 1.00 1.79 2.37 2.76 3.02 3.15 3.253.30 3.31
real 1.00 1.57 1.83 2.2(2.20 2.20 2.202.20 2.20
subsets 1.00 1.98 2.91 3.86 4.74 5.57 6.41 7.26 8.02

matrix-10 andl~.'.i'.' 1.00 1.97 2.70 3.59 4.59 5.21 6.09 6.86 7.54
real 1.00 1.88 2.83 3.39 4.25 5.66 5.66 6.80 8.50
mbsets 1.00 1.99 2.98 3.98 4.97 5.94 6.92 7.91 8.88

matrix-25 andp 1.00 1.97 2.73 3.51 4.44 5.54 6.41 7.34 7.98
real 1.00 1.98 2.96 3.96 4.91 5.85 6.83 7.93 8.78
subsets 1.00 1.76 2.32 2.69 2.95 3.15 3.28 3.35 3.40

qsort-400 andp 1.00 1.76 2.26 2.66 3.00 3.23 3.68 3.60 3.60
real 1.00 1.73 2.26 2.68 3.10 3.27 3.47 3.47 3.47
subsets 1.00 1.78 2.36 2.75 3.04 3.25 3.38 3.47 3.53

qsort-750 andp 1.00 1.71 2.42 2.60 3.13 3.55 3.66 3.75 3.67
real 1.00 1.82 2.41 2.88 3.40 3.65 3.94 4.05 4.16
subsets 1.00 1.96 2.88 3.74 4.60 5.41 5.41 5.41 5.41

bpebpf-30 andp 1.00 1.93 2.81 3.69 4.30 5.16 5.60 6.32 6.98
real 1.00 1.83 2.44 3.66 4.40 4.40 5.50 5.50 7.33

granularity and shows almost linear speedups with respect to the number of pro-
cessors (Figure 4). When the number of processors increases beyond a limit, the
expected sawtooth effect appears due to the regularity of the tasks and their
more or less homogeneous distribution among the available processors.

Concerning the data for or-parallelism, Muse performs somewhat worse than
the prediction given by the simulation when &-Prolog or traces are used. This
is not surprising, given the already mentioned differences between Muse traces
and &-Prolog or traces. Simulations which use Muse traces show more accurate
predictions, but they reflect the parallelism exploited by Muse instead of the
parallelism available in the benchmark.

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have reported on a technique and a tool to compute ideal speedups using
simulations which use as input data information about executions gathered us-
ing real systems, or even high-level simulations. We have applied it to o r - and
independent and-parallel benchmarks, and compared the results with those from
actual executions. In general, the results show the simulation to be highly ac-

732

Table 4. Ideal or-parallelism

Program Tracing Scheduling
Sys t em Algorithm

subsets
Muse andp

domino subsets
&-Prolog andp

real
subsets

Muse andp
subsets queens &-Prolog andp

real
subsets

Muse andp
subsets lanfordl &-Prolog andp

real
subsets

Muse andp
subsets lanford2 &-Prolog andp

real

Processors
1 1 2 1 3 1 4 1 5 1 6 1 7 ' 1 8 1 9

1.00 1.95 2.88 3.75 3.92 3.92 3.92 3.92 3.92
1.00 1.89 2.74 3.56 3.92 3.92 3.92 3.92 3.92
1.00 1.98 2.94 3.86 4.75 5.61 6.42 7.20i7.97
1.0(1.98 2.92 3.86 4.78 5.61 6.54 7.32 8.26
1.00 1.62 2.16 2.6(3.25 3.25 3.25 3.25:4.33
1.00 1.91 2.72 3.41 3.41 3.41 3.41 3.41i3.41
1.00il.87 2.54 3.41 3.41 3.41 3.41 3.41 3.41
1.00:1.97 2.92!3.824.70 5.48 6.22 6.93 7.55
1.001.95 2.7713.77 4.72 5.33 5.89 6.30 6.48
1.001.75 2.33!2.33 3.50 3.50 3.50 3.50 3.50
1.00!1.95 2.83!3.624.20 4.62 4.62 4.62 4.62
1.001.89 2.67 3.374.32 4.62 4.62 4.62 4.62
1.0011.98 2.91 3.79 4.59 5.34 6.04 6.67 7.45
1.00~1.97 2.92 3.82 4.73 5.53 6.27 7.29 8.09
1.00 1.77 2.28 3.20 4.00 4.00 4.00 4.00 5.33
1.00!1.85 2.5513.153.73 4.30 4.77 5.12 5.50
1.00 1.91 2.50 2.94 4.02 4.51 5.51 5.85 5.88
1.00 1.99 2.99 3.98 4.97 5.95 6.92 7.88 8.85
1.00 1.99 2.98 3.97 4.96 5.91 6.88 7.87 8.85
1.00 1.97 2.86 3.66 4.54 5.35 6.33 6.96 7.74

curate and reliable, and its results match quite well those obtained from actual
systems (in particular, those obtained from the &-Prolog system). In fact, the
system has been used successfully in several studies of parallelizing transforma-
tions [DJ94] and parallelizing compilers [BGH94].

We believe that both the core idea and the actual tool developed can be
applied to any parallel execution paradigm (not only logic programming) whose
task structure conforms to any of those in our initial assumptions, provided that
the data which models the execution can be gathered accurately enough.

We plan to modify the simulator in order to support other execution
paradigms with more complex task structures (e.g., Andor ra - I [SCWY90], ACE
[GHPC94], AKL [JH91], etc.) and to s tudy other scheduling algorithms. Fi-
nally, we believe the same approach can be used to s tudy issues other than ideal
speedup, such as memory consumption and copying overhead.

References

[AK90]

[AK91]

[BGH94]

K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its
Performance. In 1990 North American Conference on Logic Programming,
pages 757-776. MIT Press, October 1990.
Hassan Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction.
MIT Press, 1991.
F. Bueno, M. Garcla de la Banda, and M. Hermenegildo. Effectiveness of
Global Analysis in Strict Independence-Based Automatic Program Paral-
lelization. In International Symposium on Logic Programming, pages 320-
336. MIT Press, November 1994.

733

[CGH931

[Con83]

[DeC84]

[D J94]

[GHPC94]

[G J79]

[HB88]

[HC961

[HG91]

[Hu61]

[JH91]

[LHD94]

[Lus90]

[SCWY90]

[SH91]

[She92]

[SK921

M. Carro, L. G6mez, and M. Hermenegildo. Some Paradigms for Visualiz-
ing Parallel Execution of Logic Programs. In 1993 International Conference
on Logic Programming, pages 184-201. MIT Press, June 1993.
J. S. Conery. The And/Or Process Model for Parallel Interpretation of
Logic Programs. PhD thesis, The University of California At Irvine, 1983.
Technical Report 204.
D. DeGroot. Restricted AND-Parallelism. In International Conference
on Fifth Generation Computer Systems, pages 471-478. Tokyo, November
1984.
S. K. Debray and M. Jain. A Simple Program Transformation for Paral-
lelism. In International Symposium on Logic Programming, pages 320-336.
MIT Press, November 1994.
G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos Costa. ACE:
And/Or-parallel Copying-based Execution of Logic Programs. In Interna-
tional Conference on Logic Programming, pages 93-110. MIT Press, June
1994.
Michael R. Garey and David S. Johnson. Computers and Intractability.
W.H. Freeman and Company, 1979.
Kai Hwang and Fay6 Briggs. Computer Architecture and Parallel Process-
ing. McGraw-Hill, 1988.
M. Hermenegildo and M. Carro. Relating Data-Paralllelism and (And-)
Parallelism in Logic Programs. Computer Languages, 1996. Accepted for
publication in the special issue on Parallel Logic Programming.
M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting In-
dependent And-Parallelism. New Generation Computing, 9(3,4):233-257,
1991.
T.C. Hu. Parallel sequencing and assembly line problems. Operating Re-
search, 9(6):841-848, November 1961.
S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel
Language. In 1991 International Logic Programming Symposium, pages
167-183. MIT Press, 1991.
P. L6pez Garcla, M. Hermenegildo, and S.K. Debray. Towards Granularity
Based Control of Parallelism in Logic Programs. In Proc. of First Inter-
national Symposium on Parallel Symbolic Computation, PASCO'94, pages
133-144. World Scientific Publishing Company, September 1994.
E. Lusk et. al. The Aurora Or-Parallel Prolog System. New Generation
Computing, 7(2,3), 1990.
V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Pro-

log System that Transparently Exploits both And- and Or-parallelism. In
Proceedings of the 3rd. A CM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming. ACM, April 1990.
K. Shen and M. Hermenegildo. A Simulation Study of Or- and Indepen-
dent And-parallelism. In 1991 International Logic Programming Sympo-
sium. MIT Press, October 1991.
K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic,
Dependent And-Parallel Scheme. In Proe. Joint Int'l. Conf. and Syrup. on
Logic Prog. MIT Press, 1992.
D.C. Sehr and L.V. Kal6. Estimating the Inherent Parallelism in Logic
Programs. In Proceedings of the Fifth Generation Computer Systems, pages
783-790. Tokio, ICOT, June 1992.

