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Abst rac t .  We present a technique to estimate accurate speedups for 
parallel logic programs with relative independence from characteristics 
of a given implementation or underlying parallel hardware. The proposed 
technique is based on gathering accurate data describing one execution 
at run-time, which is fed to a simulator. Alternative schedulings are 
then simulated and estimates computed for the corresponding speedups. 
A tool implementing the aforementioned techniques is presented, and its 
predictions are compared to the performance of real systems, showing 
good correlation. 
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1 I n t r o d u c t i o n  

In recent years a number of parallel implementations of logic programming lan- 
guages, and, in particular, of Prolog, have been proposed (some examples are 
[HG91, AK90, SCWY90, She92, Lus90]). Relatively extensive studies have been 
performed regarding the performance of these systems. However, these studies 
generally report only the absolute data  obtained in the experiments, including at 
most a comparison with other actual systems implementing the same paradigm. 
This is understandable and appropriate in that  usually what these studies t ry  
to asses is the effectiveness of a given implementation against s ta te -of - the-ar t  
sequential Prolog implementations or against similar parallel systems. 

In this paper we t ry  to find techniques to answer different questions, and in a 
relatively architecture-independent way: given a (parallel) execution paradigm, 
what is the maximum benefit that  can be obtained from executing a program 
in parallel following that  paradigm? What  are the resources (for example, pro- 
cessors) needed to exploit all parallelism available in a program? How much 
parallelism can be ideally exploited for a given set of resources (e.g. a fixed num- 
ber of processors)? The answers to these questions can be very useful in order 
to evaluate actual implementations, or even parts of them, such as, for example, 
parallelizing compilers. However, such answers cannot be obtained from an ac- 
tual implementation, either because of limitations of the implementation itself 
or because of limitations of the underlying machinery. It appears that  any ap- 
proach for obtaining such answers has to resort to a greater or lesser extent to 
simulations. 

* The research presented in this paper has been supported in part by ESPRIT project 
6707 "PARFORCE" and CICYT project "IPL-D." 



725 

There has been some previous work in the area of ideal parallel performance 
determination through simulation in logic programs, in particular [SH91] and 
[SK92]. These approaches are similar in spirit and objective to ours, but differ 
in the approach (and the results). 

In [SH91] programs are executed by a high-level meta-interpreter/simulator 
which computes ideal speedups for different numbers of processors. This work is 
interesting in that it proposed the idea of comparing the ideal performance ob- 
tained simulations with that of actual systems. However, the simulator proposed 
does suffer from some drawbacks. Resolution steps are used as time units, thus 
causing some lack of accuracy in certain benchmarks (extra time can be added 
to the start and end of tasks, to somewhat compensate for that, and to allow 
simulating machine overheads). Also, the size of the executions is limited by the 
time and memory consumption of the interpretive method. 

In [SK92] Prolog programs are instrumented to count the number of WAM 
[AK91] instructions executed, assuming a constant cost for each WAM instruc- 
tion. Speedups are calculated by comparing the critical path for the parallel 
execution with the sequential execution length. Although this method can be 
more accurate than that of [SH91], it also has some drawbacks: only maximum 
speedups are computed, the type of instrumentation performed on the code does 
not allow taking control instructions into account, and the different amount of 
time that many WAM instructions may need at run-time is not taken into ac- 
count. Finally, the problem of simulating large executions is only partially solved 
by this approach. 

Our approach tries to overcome the precision and execution size limitations 
of previous approaches. We achieve both goals by placing the splitting point 
between execution and simulation at a different point: programs are executed 
directly in (instrumented) real systems. Simplified execution traces which con- 
tain accurate task timing and dependency information are generated during the 
program execution (even on only one processor). 

Space limitations only allow a concise and rather informal presentation. A full 
version of this paper can be obtained from h t tp  ://www. c l i p .  alia. ~ • upm. es/ .  

2 P a r a l l e l i s m  in  L o g i c  P r o g r a m m i n g  

The parallel execution models which we will deal with in this paper stem natu- 
rally from the view of logic programming as a process-oriented computation. The 
two main types of parallelism available in a logic program are and-pa ra l l e l i sm 
and or -para l le l i sm [Con83]. We will briefly review some related concepts in 
the following sections. 

Restricted And-parallelism: Restricted and-parallelism (RAP) [DeG84, HG91] 
refers to the execution of independent goals using a fork and join paradigm. 
Independent goals are those that meet some "independence conditions" at run- 
time (for example, variables are not shared, thus avoiding all possible Read- 
Write and Write-Write conflict). The only dependencies existing in RAP appear 
among the conjunction of goals executed in parallel and the goals before and after 
the parallel execution. Consider the &-Prolog [HG91] program below, where the 
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"&" operator ,  in place of the comma operator ,  stands for and-paral lel  execution 
(d, e and f assumed to be sequential): 

m a i n : -  a ,  c & b ,  g .  
c : - d ~ e & f .  

A (simplified) dependency graph for this program is depicted in Figure 1. In the 
RAP model JOINs close FORKS in reverse order, and tasks are started either by 
START_GOAL or by JOIN ad finished either by FINISH_GOAL or by FORK. Under 
these conditions, a RAP execution can be depicted by a directed acyclic planar 
graph, where and-paral lel  executions appear  nested. 

Or-parallelism: Or-paral lel ism corresponds to the parallel execution of different 
alternatives of a given predicate. Since each branch belongs conceptually to a 
different "universe" there are (in principle) no dependencies among alternatives. 
However, each alternative does depend on the FORK tha t  creates it. As an ex- 
ample, consider the following program, which has alternatives for predicates b, 
p and q: 

main:- a, b. 

b:- p. p:- ... 

b:- q. p:- ... 

q : -  . . .  p : -  . . .  
q : -  . . .  

Assuming tha t  p and q have no or-parallel ism inside, a possible graph depict- 
ing an execution of this predicate is shown in Figure 2. Note that  the rightmost 
branch in the execution is suspended at some point and then restarted. This 
suspension is probably caused by a side-effect predicate or a cut, which would 
impose a serialization of the execution (such suspensions also appear  in and- 
parallel traces). In terms of dependencies among events, FORKS are not balanced 
by JOINS. The resulting graph is thus a tree. 2 

2 Although all-solutions predicates can be depicted using this paradigm, the resulting 
representation is not natural. A visualization closer to the user's intuition for these 
predicates needs structures similar to those of restricted and-parallelism. 
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3 Replaying the Essential Parallel Execution 

To simulate alternative schedulings of a parallel execution we need a description 
of that  execution, which must contain, at least, the length of each task and the 
relationships and dependencies which hold among the tasks. Such a description 
can be produced by executing programs in actual implementations instrumented 
to generate execution logs, or, with less accuracy, even using high-level simula- 
tors. 

The descriptions of the executions are stored in the form of traces, which are 
series of events, gathered at run- t ime by the system~under study, and carrying 
the necessary information with them. The events reflect observables (interest- 
ing points in the execution), and allow the reconstruction of a skeleton of the 
parallel execution. Figures 1 and 2 represent two parallel executions, in which 
some events have been marked at the point where they occur. The length of the 
vertical segments is intended to reflect the actual t ime taken by the sequential 
tasks and the scheduling delays. 

3.1 F r o m  T r a c e s  to  G r a p h s  

From a practical point of view, the format of the traces may depend on the 
system that  created them: traces may have information that  is not necessary, 
or be structured in an undesirable way, perhaps because they may serve other 
purposes as well. 3 This, and the fact that  scheduling algorithms are usually 
formulated in terms of job graphs (see, e.g., [Hu61, HB88]), in which only tasks 
and their relationships are reflected (scheduling delays do not appear - -o r  are 
assumed to be a part  of the tasks themselves), makes it desirable to separate 
the simulation from the actual traces. Job graphs are obtained from traces in 
our system by using an intermediate representation (execution graphs) which 
allows making such transformations easily, and independently from the initial 
trace format. This translation can be parameterized to take into account actual 
or minimum scheduling delays, incrementing the usefulness of the tool. 

3.2 M a x i m u m  P a r a l l e l i s m  

The term maximum parallelism denotes the parallelism obtained with an un- 
bound number of processors assuming no scheduling overheads, so that  newly 
generated tasks can be started without any delay. Maximum parallelism is useful 
in order to determine the minimum time in which a program could have been 
executed while respecting the dependencies among tasks. Alternative paralleliza- 
tions/sequentializations of a given program can thus be studied [D J94, BGH94], 
as well as different algorithms for a given task, independently of machine limi- 
tations. 

Two interesting results we can obtain from a simulation with these char- 
acteristics are the maximum speedup attainable and the minimum number of 
processors needed to achieve it. Unfortunately, obtaining both these numbers 

3 This is the case for the actual parallel systems that we study--see Section 4--where 
the traces used by our simulation were originally designed for visualization. 
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is an NP-complete problem [GJ79]. However, we can find out the maximum 
speedup simply by removing all scheduling times and "flattening" the trace. An 
upper bound on the minimum number of processors can also bee obtained from 
the maximum number of tasks active at a time. This gives an estimation of the 
best performance that can be expected from the program(s) under study. It can 
serve to compare alternative parallelizations of a program, without the possible 
biases and limitations that actual executions impose. 

3.3 Ideal Parallelism 

Ideal parallelism corresponds to the speedup ideally attainable with a fixed num- 
ber of processors. The task to processor mapping determines the actual speedups 
attained. Ideal parallelism can be used to test the absolute performance of a 
given scheduling algorithm for a fixed number of processors, and also to test the 
efficiency of an implementation, by comparing the actual speedups with those 
predicted by the simulator using the same scheduling algorithm as the imple- 
mentation. Studying how the performance of a program evolves for a number of 
processors as large as desired gives also interesting information about the po- 
tential parallelism in a program. Another interesting issue which can be studied 
is the variation of inherent parallelism with problem size: frequently one wants 
to solve existing problems faster, but also to be able to tackle larger problems 
in a reasonable amount of time. In non-trivial examples the number of parallel 
tasks and the expected attainable speedups may not be easy to estimate, and 
problems in which the available parallelism does not increase with the problem 
size would not benefit from larger machines. Section 4 has illustrating examples. 

As in 3.2, obtaining an optimal task to processor allocation is, in general, an 
NP-complete problem [GJ79]. To be able to deal with non-trivial executions, 
we will resort to non-optimal scheduling algorithms which give an adequate (able 
to compute a reasonable answer for a typical input), but not appropriate (every 
processor is attached to a sequential task until this task is finished) scheduling. 

We have implemented and tested two scheduling algorithms: the subsets  al- 
gorithm [HB88], which groups the tasks into disjoint subsets which are scheduled 
(almost) independently, and the andp  algorithm, which mimics the behavior of 
one of the &-Prolog schedulers. This scheduler tries to favor locality by assigning 
to a given processor the work which was created by itself. It also tries to increase 
the speed at which parallel tasks are created in recursive clauses [HC96]. 

4 IDRA:  A n  I m p l e m e n t a t i o n  and Its U s e  

A tool, named IDRA (IDeal Resource Allocation), has been implemented using 
the ideas sketched before. The traces used by IDRA are the same as those used 
by the visualization tool VisAndOr [CGH93]. The tool itself has been completely 
implemented in Prolog. Besides computing maximum and ideal speedups, IDRA 
can generate new trace files for ideal parallelism, which can in turn be visualized 
using VisAndOr and compared to the original ones. 

The traces used with IDRA (and with VisAndOr) need not be generated by 
a real parallel system. It is possible to generate them with a sequential system 
augmented to dump information about concurrency (or even with a high-level 
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Table 1. Maximum and-parallelism 

HProgram[Speedup[ Procs. lEft. [I 
deriv 100.97 
occur 31.65 
tak 44.16 
boyer 3.49 
matrix-10 26.86 
matrix-25 161.68 
qsort-400 3.93 
qsort-750 4.28 
bpebpf-30 23.21 

378 0.26 
49 0.64 
315 0.14 
11 0.31 
80 0.33 

462 0.34 
15 0.26 
19 0.22 

260 0.08 

Table 2. Maximum or-parallelism 

I IPr~ 
domino 32]'01 
queens 18.14 
lanfordl 19.72 
lanford2 114.87 

Procs. lEft. II 
59 0.54 
40 0.45 
44 0.44 
475 0.24 

simulation of the execution paradigm under study). The only requirement is 
that  the dependencies among tasks be properly reflected, and that  the timings 
be accurate. 

In our case, timing data  is gathered by a modified Prolog implementation 
which ensures that  the timing information is realistic. The implicit control of 
Prolog makes identifying the "interesting places" in the execution, and generat- 
ing the corresponding events, automatic. The overhead of gathering the traces 
depends ultimately on the system executing the program being traced. For the 
&-Prolog/Muse systems, it typically falls in the range 0% - 30% - -  usually less 
than 20% - -  of the total  execution time. 

In the following sections we will show examples of the use of IDRA on real 
execution traces. These traces have been generated by the &:-Prolog system for 
and-parallelism, and by Muse and a slightly modified version of &-Prolog for 
or-parallelism. This modification was needed in order to obtain or-parallel traces 
with all possible or-parallel tasks: the Muse scheduler does not make all possible 
or-parallel tasks available for granularity reasons, 4 thus disallowing the correct 
simulation of ideal or maximum speedups. The &-Prologmodified version dumps 
traces which contain all or-parallel tasks available; therefore, &-Prolog or traces 
contain many more, smaller tasks than Muse traces. 

4.1 M a x i m u m  P a r a l l e l i s m  Performance 

Tables 1 and 2 show the maximum speedup attainable according to the simu- 
lation, an upper bound on the number of processors required to achieve this 
speedup, and the relative efficiency (Eft.) with respect to a linear speedup, i.e., 
E f t  = s p e e d u p  

processors" 
Clearly, short executions which require a large number of processors usually 

have small tasks. This suggests that  a parallel system would need some sort of 
granularity control to execute them efficiently (see, e.g. [LHD94]). This turns out 
not to be always the case for real executions on shared memory multiprocessors 
with a small number of processors, 5 as we will see in Section 4.2 and Table 3, 
but  would certainly be an issue in larger or distributed memory machines. 

4 This is common in schedulers for or-parallelism. 
5 In addition, &-Prolog concept of local work allows speeding up programs with small 

granularity, since stealing local tasks is much cheaper than stealing foreign tasks. 
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In programs with a regular structure (e.g., ma t r i x  - -  square matrix multi- 
plications), potential speedups grow accordingly with the size (and the number 
of tasks) of the problem: the efficiency remains approximately constant. How- 
ever, in programs with a non-homogeneous execution structure (i.e., qsort - -  
Hoare's QuickSort algorithm), the expected maximum speedup achievable grows 
slowly with the size of the problem, and the efficiency tends to decrease with the 
problem size. In the case of qsort,  the sequential parts of the program would 
finally dominate the whole execution, preventing further speedups (Amdhal's 
law). 

4.2 Ideal  P a r a l l e l i s m  P e r f o r m a n c e  

For each benchmark we have determined the ideal parallelism and the actual 
speedups on one to nine processors (Tables 3 and 4). The rows marked real cor- 
respond to actual executions in &-Prolog (for the and-parallel benchmarks) and 
Muse (for the or-parallel ones). Two additional subdivisions for each benchmark 
in the or-parallel case, under the column "Tracing System" reflect in which sys- 
tem the traces were gathered. 

~:-Prolog actual traces were gathered with a low-overhead version of the 
&:-Prolog scheduler with reduced capabilities, so that the andp  simulation and 
the actual execution be as close as possible. The remarkable similarity of the 
simulated and the actual speedups supports our thesis that the simulation re- 
sults are accurate. The subsets  scheduling algorithm performs slightly better, 
but due to its non optimality, it is surpassed sometimes by the andp  algorithm 
and by ,~-Prolog itself (e.g., in the qsort-750 benchmark). Sometimes the ac- 
tual &-Prolog speedups are slightly better than the andp simulation: this is 
understandable, given the heuristic nature of these algorithms. 

Benchmarks with good performance in Tables 1 and 2 show good speedups 
here also. But the inverse is not true: benchmarks with low efficiency in max- 
imum parallelism can perform well in actual executions: for example the sim- 
ulated speedups for the benchmark bpebpf  (Figure 3), are quite good for a 
reduced number of processors (see Table 3). As expected, more regular bench- 
marks display a good, predictable behavior; for example, ma t r ix -25  has a larger 
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Table 3. Ideal and-parallelism 

Program 

deriv 
real 

Scheduling Processors  
Algor i thm I 1 I 2 ~ 3 ] 4 ~ 5 ]  6 I 7 I 8 I 9 
subsets 1.00 1.992.99 3.97 4.95 5.93 6.90 7.86 8.82 
andp 1.00 1.9912.97 3.94 4.86 5.77 6.79 7.56 8.40 

1.00 2.00!3.00 4.00 4.80 4.80 6.00 8.0018.00 
subsets 1.00 1.9912.97 3.97 4.49 5.14 5.96i7.10 8.73 

occur andp 1.00 1.99 2.55!3.28 3.97 4.45 5.12 i.92 7.08 
real 1.00 1.96 2.96 3.97 4.48 5.83 5.83 7.00 8.75 
subsets 1.00 1.99 2.973.93 4.86 5.77 6.65 7.51 8.33 

tak andp 1.00 1.97 2.95 3.91 4.85 5.76 6.57 7.54 8.30 
real 1.00 1.90 2.65 3.58 4.35 5.08 5.54 6.09 6.77 
subsets 1.00 1.78 2.34 2.65 2.84 2.94 3.05 3.09 3.13 

boyer andp 1.00 1.79 2.37 2.76 3.02 3.15 3.253.30 3.31 
real 1.00 1.57 1.83 2.2( 2.20 2.20 2.202.20 2.20 
subsets 1.00 1.98 2.91 3.86 4.74 5.57 6.41 7.26 8.02 

matrix-10 andl~.'.i'.' 1.00 1.97 2.70 3.59 4.59 5.21 6.09 6.86 7.54 
real 1.00 1.88 2.83 3.39 4.25 5.66 5.66 6.80 8.50 
mbsets 1.00 1.99 2.98 3.98 4.97 5.94 6.92 7.91 8.88 

matrix-25 andp 1.00 1.97 2.73 3.51 4.44 5.54 6.41 7.34 7.98 
real 1.00 1.98 2.96 3.96 4.91 5.85 6.83 7.93 8.78 
subsets 1.00 1.76 2.32 2.69 2.95 3.15 3.28 3.35 3.40 

qsort-400 andp 1.00 1.76 2.26 2.66 3.00 3.23 3.68 3.60 3.60 
real 1.00 1.73 2.26 2.68 3.10 3.27 3.47 3.47 3.47 
subsets 1.00 1.78 2.36 2.75 3.04 3.25 3.38 3.47 3.53 

qsort-750 andp 1.00 1.71 2.42 2.60 3.13 3.55 3.66 3.75 3.67 
real 1.00 1.82 2.41 2.88 3.40 3.65 3.94 4.05 4.16 
subsets 1.00 1.96 2.88 3.74 4.60 5.41 5.41 5.41 5.41 

bpebpf-30 andp 1.00 1.93 2.81 3.69 4.30 5.16 5.60 6.32 6.98 
real 1.00 1.83 2.44 3.66 4.40 4.40 5.50 5.50 7.33 

granularity and shows almost linear speedups with respect to the number of pro- 
cessors (Figure 4). When the number of processors increases beyond a limit, the 
expected sawtooth effect appears due to the regularity of the tasks and their 
more or less homogeneous distribution among the available processors. 

Concerning the data for or-parallelism, Muse performs somewhat worse than 
the prediction given by the simulation when &-Prolog or traces are used. This 
is not surprising, given the already mentioned differences between Muse traces 
and &-Prolog or traces. Simulations which use Muse traces show more accurate 
predictions, but they reflect the parallelism exploited by Muse instead of the 
parallelism available in the benchmark. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have reported on a technique and a tool to compute ideal speedups using 
simulations which use as input data information about executions gathered us- 
ing real systems, or even high-level simulations. We have applied it to o r -  and 
independent and-parallel benchmarks, and compared the results with those from 
actual executions. In general, the results show the simulation to be highly ac- 
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Table  4. Ideal or-parallelism 

Program Tracing Scheduling 
Sys t em  Algorithm 

subsets 
Muse andp 

domino subsets 
&-Prolog andp 

real 
subsets 

Muse andp 
subsets queens &-Prolog andp 

real 
subsets 

Muse andp 
subsets lanfordl &-Prolog andp 

real 
subsets 

Muse andp 
subsets lanford2 &-Prolog andp 

real 

Processors 
1 1 2 1 3 1 4 1 5 1 6 1 7 ' 1 8 1 9  

1.00 1.95 2.88 3.75 3.92 3.92 3.92 3.92 3.92 
1.00 1.89 2.74 3.56 3.92 3.92 3.92 3.92 3.92 
1.00 1.98 2.94 3.86 4.75 5.61 6.42 7.20i7.97 
1.0( 1.98 2.92 3.86 4.78 5.61 6.54 7.32 8.26 
1.00 1.62 2.16 2.6( 3.25 3.25 3.25 3.25:4.33 
1.00 1.91 2.72 3.41 3.41 3.41 3.41 3.41i3.41 
1.00il.87 2.54 3.41 3.41 3.41 3.41 3.41 3.41 
1.00:1.97 2.92!3.824.70 5.48 6.22 6.93 7.55 
1.001.95 2.7713.77 4.72 5.33 5.89 6.30 6.48 
1.001.75 2.33!2.33 3.50 3.50 3.50 3.50 3.50 
1.00!1.95 2.83!3.624.20 4.62 4.62 4.62 4.62 
1.001.89 2.67 3.374.32 4.62 4.62 4.62 4.62 
1.0011.98 2.91 3.79 4.59 5.34 6.04 6.67 7.45 
1.00~1.97 2.92 3.82 4.73 5.53 6.27 7.29 8.09 
1.00 1.77 2.28 3.20 4.00 4.00 4.00 4.00 5.33 
1.00!1.85 2.5513.153.73 4.30 4.77 5.12 5.50 
1.00 1.91 2.50 2.94 4.02 4.51 5.51 5.85 5.88 
1.00 1.99 2.99 3.98 4.97 5.95 6.92 7.88 8.85 
1.00 1.99 2.98 3.97 4.96 5.91 6.88 7.87 8.85 
1.00 1.97 2.86 3.66 4.54 5.35 6.33 6.96 7.74 

curate and reliable, and its results match  quite well those obtained from actual 
systems (in particular,  those obtained from the &-Prolog system). In fact, the 
system has been used successfully in several studies of parallelizing transforma- 
tions [DJ94] and parallelizing compilers [BGH94]. 

We believe that  both  the core idea and the actual tool developed can be 
applied to any parallel execution paradigm (not only logic programming) whose 
task structure conforms to any of those in our initial assumptions,  provided that  
the data  which models the execution can be gathered accurately enough. 

We plan to modify the simulator in order to support  other execution 
paradigms with more complex task structures (e.g., Andor ra - I  [SCWY90], ACE 
[GHPC94], AKL [JH91], etc.) and to s tudy other scheduling algorithms. Fi- 
nally, we believe the same approach can be used to s tudy issues other than ideal 
speedup, such as memory  consumption and copying overhead. 
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