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Abs t r ac t .  We consider circuit switching in a hypercube network where 
each session has to establish a dedicated connection (or circuit) to a des- 
tination node for a random length of time. We first obtain an expression 
for the steady-state probability that a session successfully establishes a 
circuit, and then obtain analytic expressions for various delay parame- 
ters, such as the time between the arrival of a session and the time it is 
completed (including input queueing delays). The analytic expressions 
allow the delay parameters to be calculated without performing costly 
fixed-point iterations, and show how these parameters depend on the 
session arrival rate and the hypercube dimension. 

1 I n t r o d u c t i o n  

In this paper  we consider circuit switching in a hypercube network of proces- 

sors. In previous analytical and simulation approaches ([Gea88], [GeR89],[BrS91] 

[CGK91]), queueing at the input played no role and the total delay of a session 

was not calculated. Furthermore,  approximations such as the independence of 

link acquisitions were used, the solutions obtained were of a numerical or recur- 

sive nature,  and the delay parameters  were not obtained in a closed-form. 

In our model, connection requests are generated at each node of a 2d-node 

hypercube according to a Poisson process with rate ~ independently of other 

nodes, and session destinations are uniformly distributed over the remaining 

nodes. In our routing scheme, the setup packet that  is sent to the destination 

to establish a connection crosses the hypercube dimensions in a random order. 

A source node has d link-input queues, each which has infinite buffer space and 

uses a FIFO queueing discipline. When all sessions ahead of a session have been 

served, the session advances to the head of the queue, and a set-up packet is 

sent to establish a circuit. If  the set-up packet is successful in establishing a con- 

nection, the links required by the circuit are reserved for the session duration, 

and the session is served without interruptions. If the circuit cannot be estab- 
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lished, a retrial is made after a random time, and this process is repeated until 

a connection for the session is finally established. 

We first obtain an analytic expression for the steady-state probabili ty Ps~r 

that  a new session arriving at a random t ime successfully establishes a connec- 

tion. In our case, this calculation, which has so far required the iterative solution 

of an approximate  Markov chain, is simplified through the characterization of a 

network link by a small number  of mutual ly  exclusive states, whose probabilities 

can be calculated explicitly (under the model assumed, which is more complete 

than tha t  of others, since it allows for input queueing). We then derive analytical 

results for the average queueing delay, the average connection delay, the average 

waiting time, and the average total  delay required to serve a connection request 

in a d-dimensional hypercube. 

2 Probabil ity of Successfully Establishing a Circuit 

We define a continuing circuit at a node s as a circuit for which node s is an 

intermediate node on the path,  and a starting circuit at a node s as a circuit 

for which node 8 is the origin. A network link L is at any t ime in one of three 

states: s ta te  0, which corresponds to L being idle, s tate 1, which corresponds 

to L being used by a continuing circuit at node s (and has d -  1 substates, 

depending on the dimension from which the circuit turns into node s), and state 

3, which corresponds to L being used by a start ing circuit at node s. We denote 

by qi, i = 0, 1, 2, the steady-state probabil i ty that  link L is in state i, where 

q o + q l + q 2 =  1. 

By using Litt le 's  Theorem and taking into account the routing scheme used, 

we obtain, after some analysis, tha t  

~2d- l X 
q0 = 1 2 d -- 1 ' (1) 

and 

m 

)~X 
ql - d ( ~ - -  1) [ ( d -  2)2 ~-1 + 1], (2) 

m 

~X 
6 '  (3) 

where )~ is the session arrival rate per node, and X is the mean session holding 

time. 
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For u n i f o r m l y  d i s t r i b u t e d  d e s t i n a t i o n s ,  t he  p r o b a b i l i t y  of  successful ly es tab-  

l i sh ing  a c o n n e c t i o n  can  be  f o u n d  to  be [ShV96] 

P.~r - a ( 2 ~ - -  1) (1 + c~) a - 1 , where  (4) 

qo (5) a = P r ( L  ava i l ab le  [ L n o t  in  a g iven  s u b s t a t e  of  s t a t e  1) - 1 - d-~_~l " 
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F i g u r e  1:  Ana ly t i ca l  (solid, + )  a n d  s i m u l a t i o n  (dashed ,  x ) r e su l t s  ob ta ined  for Psucc~s~ 
as a f u n c t i o n  of  t he  arr ival  r a t e  A of sessions,  for h y p e r c u b e s  of d i m e n s i o n s  r ang ing  f rom d = 3 
to d = 9. T h e  curves  c o r r e s p o n d  to exponen t i a l ly  d i s t r i bu t ed  ho ld ing  t imes  wi th  m e a n  X = 1. 

3 Queuing Analysis at Link Input-buffer 

I n  our  m o d e l  each h y p e r c u b e  n o d e  is a c ross -bar  swi tch  a n d  has  d l ink  en t ry -  

buffers,  one  for each o u t g o i n g  l ink.  T h e  h o l d i n g  t i m e  of  session i, deno ted  by  

X i ,  c an  be  a n y  r a n d o m  va r i ab l e  whose m e a n  X a n d  second a n d  th i rd  m o m e n t s  

X - ' ~  a n d  X ----g are k n o w n .  T h e  de lay  i n c u r r e d  by  the  session consis ts  of  several  

c o m p o n e n t s :  t he  residual time Ri ,  which  is the  t i m e  i t  t akes  for the  the  session 

c u r r e n t l y  a t  t he  head  of  the  queue  to f inish,  a n d  d e p a r t  f rom the  sys tem;  the  

conneclion delay C~, which  is the  t i m e  t h a t  sess ion i m u s t  wa i t  un t i l  the  connec-  

t i o n  to  i t s  d e s t i n a t i o n  is e s tab l i shed ,  s ince  m o r e  t h a n  one  t r ia ls  ( the de ta i l s  of  

which  a p p e a r  in  [ShV96]) m a y  be  r equ i r ed  to e s t ab l i sh  the  connec t ion ;  a n d  the  

queueing delay 
i - 1  

Q~ = n~ + ~ (x~. + cj) ,  (6) 
j = i - N ,  
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which is the time it takes to serve the Ni sessions (excluding the session in 

service) found in queue by session i upon its arrival plus the residual time Ri. 

The total waiting lime of session i at the queue includes its own connection delay, 

and is Wi = Qi + Ci, while the tolal delay is the time that  elapses between the 

arrival of the session and the time it is completed, and is given by ~ = Xi + Wi. 

We assume that  when a session in the input-buffer queue of a link tries to 

establish a connection, it finds the network in steady-state, except that  the first 

link on its path is not used by a session starting at that  link. The probability Ph 

that  a session at the head of a link input-buffer successfully establishes a circuit 

can then be found to be 
PSUCCeB$ 

Ph - - -  (7) 
1 - q~  

Modulo our approximating assumption A1, the mean connection delay works 

out to be 
_ (1 - Ph) X 2 V 

Ph 2X + ~hh" (S) 

Taking expectations in Eq. (6), and taking the limit as i --~ c~, we obtain 

Q = R + NQ CX + C-- ) . (9) 

where NQ is the mean number of sessions in queue, and R is the mean residual 

time. Using Little's Theorem, we have NQ = (A/d)Q. Letting p = A (-X + C ) / d ,  

and substituting into Eq. (9), we obtain Q = R + pQ, or equivalently, 

R 
(10) 

Q = l - p "  

The mean residual time R can be calculated using well-known graphical argu- 

ments (see [BEG92], Chap. 3) to be equal to 

= ~ , ( X  + C) 2. (11) R 
~ a  

Finally, the mean queueing delay is given by 

A(X2+V2+2XV)4d(1-p)Ph ,, A ( I - P h )  ( ~,1 ~,,~h ~----~-~) Q= + V V+ 
(12) 

)~(1 - Ph) 2 (~_~)2 ~(1 -- Ph) 

The average waiting time W of a session is given by W = Q + C, where C is 

given by Eq. (8), and the average total delay is T = Q + C + X. 
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We simulated both the analytical model and a model of the physical system 

in which we accounted for the overhead incurred by the setup packets during the 

reservation phase. Figure 2 presents the main results of our simulations, where 

we have assumed tha t  the session holding times and times between retrials are 

both  exponential  with means X = 1 and V = 0.5, respectively. 
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Figure  2: The queueing delay Q versus the arrival rate per node ~, for a hypercube of 
dimension d = 8. The first plot shows the analytically predicted values of the queueing delay Q 
and the corresponding values obtained through simulations when the setup overhead is equal 
to zero. The second plot shows the simulation results when the setup overhe~cl is accounted 
for and is is equal to 0%, 1% and 2%, respectively, of the mean session holding time. 
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