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Abstract .  To design a good two-level predictor, we found that a low 
interference among branches and an even utilization of the entries in 
the pattern table are two key factors. In order to arrive at a balanced 
design and achieve the above two goals simultaneously, we first introduce 
the concept of branch pattern locality. Then, a new predictor design, 
called the Global PAttern Locality predictor (G-PAL), is introduced. The 
predictor is developed based on pattern locality and employs a cache- 
like pattern table to keep only those patterns that are referenced most 
frequently and recently. In this way, not only the interference among 
branches can be reduced, but the entries in the pattern table can be 
fully utilized. 

1 I n t r o d u c t i o n  

Dynamic predictors based on the Two-level Branch Prediction scheme [5] have 
been shown to achieve a substantially higher accuracy than previous predictors 
[3]. Two tables are used to maintain history information: branch history table and 
branch pattern table. With enough hardware support, the prediction accuracy 
can be as high as 97%. In [5], nine variations of the Two-level Adaptive Branch 
Prediction were identified. According to the simulation results, GAs (Global 
Adaptive Branch Prediction using per-set patterri history tables) is a good choice 
when 1K bytes are available to implement the predictor. 

A good branch predictor should keep a long branch history, have low interfer- 
ence among branches, and achieve full utilization of the entries in the history and 
pattern tables. We say that a branch interference occurs when the counter that 
keeps track of the branch history of a particular branch is altered by the history 
of another branch. With a fixed hardware budget, the three goals listed above 
can seldom be reached simultaneously. In [1] a clever scheme, called Gshare, was 
proposed to maintain a longer branch history with limited hardware. The idea 
is to index into the pattern table with a certain combination of the history and 
the branch address. In this way, not only a longer history can be used but the 
table entries can be utilized better. It has been shown that Gshare has a higher 
prediction accuracy than previously proposed schemes. 

Unfortunately although Gshare can better utilize the table entries, it spreads 
out the accesses to the pattern table with a pure mechanical scheme. It follows 

* This work was supported in part by the National Science Council under grants NSC- 
85-2221-E-007-031 and NSC-85-2213-E-007-049. 



758 

that  Gshare has the problem of high interference among branches, as will be 
shown shortly. To achieve an even better  performance for a given amount  of 
prediction hardware, we need to go back to the essential and examine branch 
behaviors more closely. One factor which has been overlooked in most previous 
works is the temporal  locality of branch patterns. By pattern locality we mean 
that ,  if a history pat tern is referenced by a branch, it is likely to be referenced 
again soon by this branch. As a result, accesses to the pat tern table tend to 
concentrate on a few entries. This leads to an uneven utilization of the table and 
a large portion of the pat tern table is seldom used for branch prediction. 

In this paper a new mechanism for dynamic Two-level Branch Prediction is 
proposed, which is developed from the perspective of pat tern locality. The key is 
to focus on those patterns which are referenced frequently and recently. A very 
nature design strategy is thus to configure the pat tern table as a set-associative 
cache. We will describe the design of such a predictor, called the pattern lo- 
cality predictor. Experimental  results show that  given a fixed hardware budget, 
our scheme can better  reduce the interference among branches and fully utilize 
hardware resources. As a result, a prediction accuracy higher than previously 
proposed schemes can be achieved. 

2 Branch Interference and Table Uti l ization 

Table ut i l izat ion:  the  number  of  accesses to  each entry  in th e  pa t tern  
table  
Fig. 1 shows the distribution of the accesses to the pat, tern table entries for four 
different predictor configurations. These configurations use roughly the same 
amount  of hardware. The SPECint92 benchmark 008.espresso was chosen for 
our study. The experimental environment will be described in detail in Section 4. 
In this experiment,  we assumed that  there were a total  of 8192 entries in the 
pat tern table. During execution, the number of accesses to each entry in the 
table was recorded. The entries were then sorted in a decreasing order according 
to the recorded numbers and plotted in the figure. 

From the figure we can see that  a large portion of pat tern table entries in 
GAs(m, n) are seldom used for branch prediction, especially when n is large. 
For example, near half of entries are accessed fewer than 256 times in GAs(11,4) 
and GAs(13,1), while that  number drops to 100 in GAs(9,16). For GAs(9,16), 
about  1350 entries are never even referenced at all, which is a waste of precious 
silicon resources. Gshare, on the other hand, has more even accesses to the table 
entries. For example, exceeding 6500 entries are accessed more than 100 times 
for Gshare, compared with 4000 entries for GAs(9,16). This is one reason why 
Gshare outperforms GAs. 

Branch  interference:  the  n u m b e r  of  branches  which  share an entry  in 
t h e  pa t tern  table  
Fig. 2 shows the number  of branches that  share individual pat tern table entries. 
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Fig. 1. The number of accesses to 
the entries in the pattern table for 
008.espresso 
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Fig. 2. The number of branches which 
share an entry of the pattern table for 
008.espresso 

Again, 008.espresso was used and the entries were sorted in a decreasing order 
according to the number of sharing branches. 

From the figure we can see that  table entries in Gshare are shared by more 
branches than in other predictors. This is due to the exclusive-OR operat ion be- 
tween branch history and branch address in Gshare. As a result the interference 
among branches increases, which in turn influences the correctness of branch 
prediction [6]. 

From the above discussions we can see that  Gshare suffers from the problem 
of branch interference while GAs cannot fully utilize hardware resources. In the 
next section, we will present a new predictor, called the pattern locality predictor, 
which utilizes available hardware better  and reduces branch interference. The key 
to such a predictor is pat tern locality. 

3 T h e  P a t t e r n  L o c a l i t y  P r e d i c t o r  

3.1 The Concept of  Pattern Locality 

The concept of branch pat tern locality is similar to that  of locality of memory  
references: if a history pat tern is referenced by a branch, it is likely to be ref- 
erenced again soon by this branch. For example, a pat tern with a "taken" in 
every bit is likely to happen frequently, especially in loops. Note that  branch 
pat terns  are defined by the length of the history register in the predictor. Thus, 
pat tern  locality is a function of both the application program and the predictor 
architecture. A high pat tern locality means that  accesses to the pat tern  table 
tend to concentrate on a few entries. This leads to an uneven utilization of the 
table and it is not desirable. 

To observe pat tern locality of programs quantitatively, we define the concept 
of coverage percentage. Let the length of the history register be m. Then ,  there 
are 2 m different history patterns. Let B1, B2,..., Bt be the static branches in the 
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given program. For each branch Bi, 1 < i < t, the number of times that  a history 
pat tern is referenced during the execution of the program can be recorded. Let it 
be cj(Bi)  for 1 < j _< 2 m. Without  loss of generality, assume that  the reference 
counts of the history patterns are sorted in such a way that  cj(Bi) > ck(B~) if 
j < k. Define the coverage percentage for "n-pattern" to be the percentage of the 
top n reference counts in the overall counts, averaged across all static branches, 
i.e.} 

~=1 ck(B,)] 
coverage percentage for "n-pattern" = 

t 

The coverage percentage serves as a measure of pat tern locality. For a given n, 
a high coverage percentage indicates that  a large portion of pa t tern  references 
"hit" one of those n patterns. Thus, the pat tern locality is high. 

Fig. 3 shows the coverage percentage of several SPEC92 benchmarks.  In this 
experiment, the history register was assumed to have a length of 12 bits. In other 
words, the re  were 4096 different patterns. It can be observed tha t  the coverage 
percentage for 8-pattern is over 92% and that  for 16-pattern over 97%. When 
64-pattern is considered, the coverage percentage exceeds 99.8%. This implies 
that  entries in the pat tern table which do not correspond to these 64 patterns 
are hardly used. 

Fig. 3. The locality of branch history Fig. 4. The organization of a G-PAL pre- 
patterns dictor 

From this experiment, we can conclude that  branch pat terns in typical pro- 
grams exhibit high locality. Eliminating those entries in the pat tern  table that  
are seldom referenced should have a negligible effect on the prediction accuracy. 
A predictor designed based on pat tern locality should have an even utilization 
of the pat tern table. 

We call the predictor t ha t  uses the pat tern locality of the execution history 
as the PAttern Locality Predictor (PAL predictor). We will only consider the 
PAL predictor that  uses a global history scheme. Such a predictor is called the 
G-PAL predictor and will be introduced in the next subsection. 
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3.2 T h e  G - P A L  P r e d i c t o r  

Our predictor design takes into account of both branch interference and table 
utilization. Fig. 4 shows our design of a G-PAL(m, n, i, h) predictor. In the pre- 
dictor the pattern table is configured similar to an / -way  set-associative cache. 
There are n sets in the table. Each set has i entries, each of which contains a 
2-bit saturating counter and an m-bit tag, where m is the length of the history 
register. There is also a miss-service table, in which there are 2 h entries, each 
contains a 2-bit saturating counter. 

Operations of the predictor are as follows. When a branch is encountered 
during program execution, the log n lower-order bits of the program counter is 
used to select one set from the n sets in the pattern table. The content in the 
global history register is compared simultaneously with the tags of all the entries 
in the selected set. If there is a match, then the branch is predicted according 
to the corresponding 2-bit counter. When the direction of the branch is finally 
resolved, the counter is updated accordingly. 

If the global history cannot find a match with the tags of the selected set, 
a miss occurs. As cache misses, the fetch unit fetches the actual status bits of 
the branch from a mapping table maintained in the main memory. The mapping 
table consists of n sets, each of which has 2 m entries. Each entry is a 2-bit field. 
Again, the log n lower-order bits of the program counter selects the target set in 
the mapping table and the global history register indexes into an entry of the 
set. 

One problem with the above design is that the memory access during a miss 
will take a very long time. It is unrealistic to have CPU wait for the comple- 
tion of the access. The predictor, in Fig. 4 uses the miss-service table to help 
the prediction in the case of misses. If a miss occurs, the h lower-order bits of 
the global history will be combined with the h lower-order bits of the program 
counter with an exclusive-OR. The resultant bits are indexed into one entry 
of the miss-service table, and the branch is predicted according to the selected 
entry. 

When the requested data is finally returned from the main memory, the 2- 
bit counter in the entry which is least recently used in the corresponding set 
will be replaced by the data. Furthermore the replaced counter is written back 
to the main memory. When the branch is resolved, the 2-bit counters in the 
corresponding entries in the pattern table and in the miss-service table should 
be updated accordingly. 

3.3 C h a r a c t e r i s t i c s  o f  t h e  G - P A L  P r e d i c t o r  

In this subsection, we examine the G-PAL predictor in terms of branch inter- 
ference and table utilization. Fig. 5 and 6 show the distribution of the accesses 
to the pattern table entries and the number of branches that  share an entry, 
respectively. In the experiments, there were a total of 8192 entries in the pattern 
table. Three configurations, G-PAL(12,512,16,10), G-PAL(12,128,64,10), and G- 
PAL(12,32,256,10) were evaluated. 
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Fig. 5. The number of accesses to 
the entries in the pattern table in 
008.espresso 
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Fig. 6. The number of branches which 
share an entry of the pattern table in 
008.espresso 

From Fig. 5, it can be observed that G-PAL(12,512,16,10) and G-PAL(12,128, 
64,10) have a utilization distribution close to that in GAs(9,16) and Gshare(13), 
respectively. However, G-PAL(12,512,16,10) and G-PAL(12,128,64,10) have much 
lower branch interference than GAs(9,16) and Gshare(13), as shown in' Fig. 6. 
For G-PAL(12,32,256,10), the interference is slightly lower than Gshare(13), but 
it has more even table utilization. 

The above observations can be explained as follows. For the G-PAL predic- 
tors, entries in set i are only used by those branches which have their addresses 
modulo by n being i. However, for Gshare each entry of the pattern table may 
be used by all the branches. Therefore, G-PAL potentially has a lower branch 
interference than Gshare. On the other hand, by taking the advantage of pattern 
locality, the G-PAL predictor can get rid of those seldom referenced entries in 
the pattern table. Given a fixed history register, G-PAL can use a smaller pat- 
tern table than GAs to achieve the same performance. These factors translate 
into performance, as is shown in Fig. 7. 

4 P e r f o r m a n c e  E v a l u a t i o n  

In this section, we compare the G-PAL predictor with previously proposed pre- 
dictors, including Profiling [2], 2bC [3], GAs, and Gshare. We evaluated the 
performance of predictors using the benchmarks in the SPEC92. In the experi- 
ments, each benchmark was executed for 30 million branches or until completion. 

4.1 The Experimental  Environments and Assumpt ions  

The experiments were conducted on a DEC 3000 workstation running OSF/1 
version 3.2. The object code generated by the compiler was instrumented by 
ATOM [4]. We implemented the G-PAL predictor as an analysis procedure which 
was inserted before the conditional branch. During program execution, statistics 
information about branch prediction were collected and reported. 
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Profiling(n) 
2bC(n) 

GAs(m, n) 
Gshare(n) 

G-PAL(m, n, i, h) 
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Table 1. The estimated costs for different predictors 

History I # of ] # of Entries Estimated Cost 
Register [Pattern I in Each (bits) 
Length ] Tables IPattern Table 

N/A N/A N/A n 
N/A 1 n 2 x n 

m n 2 m m + 2  x n  x2  m 
n 1 2 = n +  2 x 2 n 
m n i m + n x ( 2 i T m x i + i l o g 2 i ) + 2  h+l 

4 . 2  E x p e r i m e n t a l  R e s u l t s  

We compare the performance of various branch predictors for a fixed hardware 
budget. We use a simple cost model to estimate the hardware costs for various 
branch predictors, which is shown in Table 1. For the Profiling(n) predictor, 
only one prediction bit is needed, which is set by the compiler. Thus, the cost of 
the predictor is n bits, where n is the number of static branches. The costs for 
2bC(n), GAs(m, n) and Gshare(n) predictors can be computed easily from their 
organization. For the G-PAL(m, n, i, h) predictor, each entry in the miss-service 
table is a 2-bit counter, while each entry in the pattern table contains a 2-bit 
counter, an m-bit tag, and a log 2 i counter for the LRU replacement algorithm. 
It follows that  the predictor requires m + n • (2i + m • i + ilog 2 i) + 2 h+l bits. 

For predictors such as GAs and G-PAL, more than one configuration can 
be chosen under a specific budget. For example, if 8K bytes are available, then 
GAs(15,1), GAs(14,2), GAs(13,4), ..., are all viable configurations. In such a 
case, we select the one with the highest prediction accuracy for comparison. 

Fig. 8 shows the experimental results of the comparison. The prediction ac- 
curacies of Profiling and 2bC are bounded above by 93%. They cannot compete 
with GAs, Gshare, or G-PAL. Gshare is the best choice for predictor designs 
when the hardware budget is limited to 256 bytes. As more hardware is available 
for predictors, its prediction accuracy can reach 96.5%. For GAs, the prediction 
accuracy is slightly lower than that of Gshare. As the hardware budget increases, 
the difference between GAs and Gshare decreases. Thus Gshare is a good design 
choice, especially when the allocated hardware budget is small. 

For G-PAL, we use the configurations G-PAL(7,16,8,8), G-PAL(10,16,16,11), 
G-PAL(15,16,64,12) and G-PAL(21,16,256,11), if the allocated hardware is 256 
bytes, 1K bytes, 4K bytes and 16K bytes,  respectively. In G-PAL the tags con- 
sume the most hardware, and only a small fraction is needed for the 2-bit coun- 
ters. For example, in G-PAL(7,16,8,8) the tags require 112 bytes, the 2-bit coun- 
ters 32 bytes, the LRU counters 48 bytes, and the miss-service table 64 bytes. 

Compared with Gshare, G-PAL surpasses Gshare in terms of prediction ac- 
curacy when more than 1K bytes are available for predictors. As the hardware 
budget increases, the difference between the prediction accuracies of G-PAL and 
Gshare increases. The prediction accuracy of G-PAL(21,16,256,11) reaches 96.9% 
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8. Comparisons of various predictors 

for the  tes ted  SPEC92 benchmarks .  I t  should  be no ted  t h a t  G - P A L  has fewer 
2-bi t  counters  t han  G A s  and Gshare  - -  under  the  same a m o u n t  of  ha rdware .  
However,  G - P A L  sti l l  ou tpe r fo rms  them.  

5 Concluding  Remarks  

This  p a p e r  presents  a new approach  to des igning  dyna mic  two-level  branch pre- 
dictors .  The  technique is based  on the t e m p o r a l  loca l i ty  of  b ranch  pa t t e rns .  A 
cache-l ike p a t t e r n  tab le  is used to  keep only those  pa t t e rn s  t h a t  are referenced 
mos t  f requent ly  and recently.  E x p e r i m e n t a l  resul ts  show tha t  the  resu l tan t  G- 
PAL p red ic to r  achieves a h igher  pred ic t ion  accuracy  than  prev ious ly  p roposed  
two-level  b ranch  predic tors ,  when the ha rdware  budge t  is more  t h a n  1K bytes.  
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