
Designing Dynamic Two-Level Branch Predictors Based
on Pattern Locality*

Chien-Ming Chen and Chung-Ta King

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract . To design a good two-level predictor, we found that a low
interference among branches and an even utilization of the entries in
the pattern table are two key factors. In order to arrive at a balanced
design and achieve the above two goals simultaneously, we first introduce
the concept of branch pattern locality. Then, a new predictor design,
called the Global PAttern Locality predictor (G-PAL), is introduced. The
predictor is developed based on pattern locality and employs a cache-
like pattern table to keep only those patterns that are referenced most
frequently and recently. In this way, not only the interference among
branches can be reduced, but the entries in the pattern table can be
fully utilized.

1 I n t r o d u c t i o n

Dynamic predictors based on the Two-level Branch Prediction scheme [5] have
been shown to achieve a substantially higher accuracy than previous predictors
[3]. Two tables are used to maintain history information: branch history table and
branch pattern table. With enough hardware support, the prediction accuracy
can be as high as 97%. In [5], nine variations of the Two-level Adaptive Branch
Prediction were identified. According to the simulation results, GAs (Global
Adaptive Branch Prediction using per-set patterri history tables) is a good choice
when 1K bytes are available to implement the predictor.

A good branch predictor should keep a long branch history, have low interfer-
ence among branches, and achieve full utilization of the entries in the history and
pattern tables. We say that a branch interference occurs when the counter that
keeps track of the branch history of a particular branch is altered by the history
of another branch. With a fixed hardware budget, the three goals listed above
can seldom be reached simultaneously. In [1] a clever scheme, called Gshare, was
proposed to maintain a longer branch history with limited hardware. The idea
is to index into the pattern table with a certain combination of the history and
the branch address. In this way, not only a longer history can be used but the
table entries can be utilized better. It has been shown that Gshare has a higher
prediction accuracy than previously proposed schemes.

Unfortunately although Gshare can better utilize the table entries, it spreads
out the accesses to the pattern table with a pure mechanical scheme. It follows

* This work was supported in part by the National Science Council under grants NSC-
85-2221-E-007-031 and NSC-85-2213-E-007-049.

758

that Gshare has the problem of high interference among branches, as will be
shown shortly. To achieve an even better performance for a given amount of
prediction hardware, we need to go back to the essential and examine branch
behaviors more closely. One factor which has been overlooked in most previous
works is the temporal locality of branch patterns. By pattern locality we mean
that , if a history pat tern is referenced by a branch, it is likely to be referenced
again soon by this branch. As a result, accesses to the pat tern table tend to
concentrate on a few entries. This leads to an uneven utilization of the table and
a large portion of the pat tern table is seldom used for branch prediction.

In this paper a new mechanism for dynamic Two-level Branch Prediction is
proposed, which is developed from the perspective of pat tern locality. The key is
to focus on those patterns which are referenced frequently and recently. A very
nature design strategy is thus to configure the pat tern table as a set-associative
cache. We will describe the design of such a predictor, called the pattern lo-
cality predictor. Experimental results show that given a fixed hardware budget,
our scheme can better reduce the interference among branches and fully utilize
hardware resources. As a result, a prediction accuracy higher than previously
proposed schemes can be achieved.

2 Branch Interference and Table Uti l ization

Table ut i l izat ion: the number of accesses to each entry in th e pa t tern
table
Fig. 1 shows the distribution of the accesses to the pat, tern table entries for four
different predictor configurations. These configurations use roughly the same
amount of hardware. The SPECint92 benchmark 008.espresso was chosen for
our study. The experimental environment will be described in detail in Section 4.
In this experiment, we assumed that there were a total of 8192 entries in the
pat tern table. During execution, the number of accesses to each entry in the
table was recorded. The entries were then sorted in a decreasing order according
to the recorded numbers and plotted in the figure.

From the figure we can see that a large portion of pat tern table entries in
GAs(m, n) are seldom used for branch prediction, especially when n is large.
For example, near half of entries are accessed fewer than 256 times in GAs(11,4)
and GAs(13,1), while that number drops to 100 in GAs(9,16). For GAs(9,16),
about 1350 entries are never even referenced at all, which is a waste of precious
silicon resources. Gshare, on the other hand, has more even accesses to the table
entries. For example, exceeding 6500 entries are accessed more than 100 times
for Gshare, compared with 4000 entries for GAs(9,16). This is one reason why
Gshare outperforms GAs.

Branch interference: the n u m b e r of branches which share an entry in
t h e pa t tern table
Fig. 2 shows the number of branches that share individual pat tern table entries.

759

f m

1 + ~ 6

le

Fig. 1. The number of accesses to
the entries in the pattern table for
008.espresso

!
P r o m T ~ E ~ P ~ ~ E ~

Fig. 2. The number of branches which
share an entry of the pattern table for
008.espresso

Again, 008.espresso was used and the entries were sorted in a decreasing order
according to the number of sharing branches.

From the figure we can see that table entries in Gshare are shared by more
branches than in other predictors. This is due to the exclusive-OR operat ion be-
tween branch history and branch address in Gshare. As a result the interference
among branches increases, which in turn influences the correctness of branch
prediction [6].

From the above discussions we can see that Gshare suffers from the problem
of branch interference while GAs cannot fully utilize hardware resources. In the
next section, we will present a new predictor, called the pattern locality predictor,
which utilizes available hardware better and reduces branch interference. The key
to such a predictor is pat tern locality.

3 T h e P a t t e r n L o c a l i t y P r e d i c t o r

3.1 The Concept of Pattern Locality

The concept of branch pat tern locality is similar to that of locality of memory
references: if a history pat tern is referenced by a branch, it is likely to be ref-
erenced again soon by this branch. For example, a pat tern with a "taken" in
every bit is likely to happen frequently, especially in loops. Note that branch
pat terns are defined by the length of the history register in the predictor. Thus,
pat tern locality is a function of both the application program and the predictor
architecture. A high pat tern locality means that accesses to the pat tern table
tend to concentrate on a few entries. This leads to an uneven utilization of the
table and it is not desirable.

To observe pat tern locality of programs quantitatively, we define the concept
of coverage percentage. Let the length of the history register be m. Then , there
are 2 m different history patterns. Let B1, B2,..., Bt be the static branches in the

760

given program. For each branch Bi, 1 < i < t, the number of times that a history
pat tern is referenced during the execution of the program can be recorded. Let it
be cj(Bi) for 1 < j _< 2 m. Without loss of generality, assume that the reference
counts of the history patterns are sorted in such a way that cj(Bi) > ck(B~) if
j < k. Define the coverage percentage for "n-pattern" to be the percentage of the
top n reference counts in the overall counts, averaged across all static branches,
i.e.}

~=1 ck(B,)]
coverage percentage for "n-pattern" =

t

The coverage percentage serves as a measure of pat tern locality. For a given n,
a high coverage percentage indicates that a large portion of pa t tern references
"hit" one of those n patterns. Thus, the pat tern locality is high.

Fig. 3 shows the coverage percentage of several SPEC92 benchmarks. In this
experiment, the history register was assumed to have a length of 12 bits. In other
words, the re were 4096 different patterns. It can be observed tha t the coverage
percentage for 8-pattern is over 92% and that for 16-pattern over 97%. When
64-pattern is considered, the coverage percentage exceeds 99.8%. This implies
that entries in the pat tern table which do not correspond to these 64 patterns
are hardly used.

Fig. 3. The locality of branch history Fig. 4. The organization of a G-PAL pre-
patterns dictor

From this experiment, we can conclude that branch pat terns in typical pro-
grams exhibit high locality. Eliminating those entries in the pat tern table that
are seldom referenced should have a negligible effect on the prediction accuracy.
A predictor designed based on pat tern locality should have an even utilization
of the pat tern table.

We call the predictor t ha t uses the pat tern locality of the execution history
as the PAttern Locality Predictor (PAL predictor). We will only consider the
PAL predictor that uses a global history scheme. Such a predictor is called the
G-PAL predictor and will be introduced in the next subsection.

761

3.2 T h e G - P A L P r e d i c t o r

Our predictor design takes into account of both branch interference and table
utilization. Fig. 4 shows our design of a G-PAL(m, n, i, h) predictor. In the pre-
dictor the pattern table is configured similar to an / -way set-associative cache.
There are n sets in the table. Each set has i entries, each of which contains a
2-bit saturating counter and an m-bit tag, where m is the length of the history
register. There is also a miss-service table, in which there are 2 h entries, each
contains a 2-bit saturating counter.

Operations of the predictor are as follows. When a branch is encountered
during program execution, the log n lower-order bits of the program counter is
used to select one set from the n sets in the pattern table. The content in the
global history register is compared simultaneously with the tags of all the entries
in the selected set. If there is a match, then the branch is predicted according
to the corresponding 2-bit counter. When the direction of the branch is finally
resolved, the counter is updated accordingly.

If the global history cannot find a match with the tags of the selected set,
a miss occurs. As cache misses, the fetch unit fetches the actual status bits of
the branch from a mapping table maintained in the main memory. The mapping
table consists of n sets, each of which has 2 m entries. Each entry is a 2-bit field.
Again, the log n lower-order bits of the program counter selects the target set in
the mapping table and the global history register indexes into an entry of the
set.

One problem with the above design is that the memory access during a miss
will take a very long time. It is unrealistic to have CPU wait for the comple-
tion of the access. The predictor, in Fig. 4 uses the miss-service table to help
the prediction in the case of misses. If a miss occurs, the h lower-order bits of
the global history will be combined with the h lower-order bits of the program
counter with an exclusive-OR. The resultant bits are indexed into one entry
of the miss-service table, and the branch is predicted according to the selected
entry.

When the requested data is finally returned from the main memory, the 2-
bit counter in the entry which is least recently used in the corresponding set
will be replaced by the data. Furthermore the replaced counter is written back
to the main memory. When the branch is resolved, the 2-bit counters in the
corresponding entries in the pattern table and in the miss-service table should
be updated accordingly.

3.3 C h a r a c t e r i s t i c s o f t h e G - P A L P r e d i c t o r

In this subsection, we examine the G-PAL predictor in terms of branch inter-
ference and table utilization. Fig. 5 and 6 show the distribution of the accesses
to the pattern table entries and the number of branches that share an entry,
respectively. In the experiments, there were a total of 8192 entries in the pattern
table. Three configurations, G-PAL(12,512,16,10), G-PAL(12,128,64,10), and G-
PAL(12,32,256,10) were evaluated.

762

G ~ 9 , 1 G)

G . p ~ l , 2 . 5 1 2 . 1 s . 1 0 ~

l e . .

i i i m i ,

Fig. 5. The number of accesses to
the entries in the pattern table in
008.espresso

e, , ,1~ ,3}

a . P ~ o 2 . s l z l e . , o)

i G . e ~ 1 2 . ~ . ~ . l m - - -

e i : L - - - : ~

, . . . , i i : k

o l , , , , ,
o

Fig. 6. The number of branches which
share an entry of the pattern table in
008.espresso

From Fig. 5, it can be observed that G-PAL(12,512,16,10) and G-PAL(12,128,
64,10) have a utilization distribution close to that in GAs(9,16) and Gshare(13),
respectively. However, G-PAL(12,512,16,10) and G-PAL(12,128,64,10) have much
lower branch interference than GAs(9,16) and Gshare(13), as shown in' Fig. 6.
For G-PAL(12,32,256,10), the interference is slightly lower than Gshare(13), but
it has more even table utilization.

The above observations can be explained as follows. For the G-PAL predic-
tors, entries in set i are only used by those branches which have their addresses
modulo by n being i. However, for Gshare each entry of the pattern table may
be used by all the branches. Therefore, G-PAL potentially has a lower branch
interference than Gshare. On the other hand, by taking the advantage of pattern
locality, the G-PAL predictor can get rid of those seldom referenced entries in
the pattern table. Given a fixed history register, G-PAL can use a smaller pat-
tern table than GAs to achieve the same performance. These factors translate
into performance, as is shown in Fig. 7.

4 P e r f o r m a n c e E v a l u a t i o n

In this section, we compare the G-PAL predictor with previously proposed pre-
dictors, including Profiling [2], 2bC [3], GAs, and Gshare. We evaluated the
performance of predictors using the benchmarks in the SPEC92. In the experi-
ments, each benchmark was executed for 30 million branches or until completion.

4.1 The Experimental Environments and Assumpt ions

The experiments were conducted on a DEC 3000 workstation running OSF/1
version 3.2. The object code generated by the compiler was instrumented by
ATOM [4]. We implemented the G-PAL predictor as an analysis procedure which
was inserted before the conditional branch. During program execution, statistics
information about branch prediction were collected and reported.

Predictor

Profiling(n)
2bC(n)

GAs(m, n)
Gshare(n)

G-PAL(m, n, i, h)

763

Table 1. The estimated costs for different predictors

History I # of] # of Entries Estimated Cost
Register [Pattern I in Each (bits)
Length] Tables IPattern Table

N/A N/A N/A n
N/A 1 n 2 x n

m n 2 m m + 2 x n x2 m
n 1 2 = n + 2 x 2 n
m n i m + n x (2 i T m x i + i l o g 2 i) + 2 h+l

4 . 2 E x p e r i m e n t a l R e s u l t s

We compare the performance of various branch predictors for a fixed hardware
budget. We use a simple cost model to estimate the hardware costs for various
branch predictors, which is shown in Table 1. For the Profiling(n) predictor,
only one prediction bit is needed, which is set by the compiler. Thus, the cost of
the predictor is n bits, where n is the number of static branches. The costs for
2bC(n), GAs(m, n) and Gshare(n) predictors can be computed easily from their
organization. For the G-PAL(m, n, i, h) predictor, each entry in the miss-service
table is a 2-bit counter, while each entry in the pattern table contains a 2-bit
counter, an m-bit tag, and a log 2 i counter for the LRU replacement algorithm.
It follows that the predictor requires m + n • (2i + m • i + ilog 2 i) + 2 h+l bits.

For predictors such as GAs and G-PAL, more than one configuration can
be chosen under a specific budget. For example, if 8K bytes are available, then
GAs(15,1), GAs(14,2), GAs(13,4), ..., are all viable configurations. In such a
case, we select the one with the highest prediction accuracy for comparison.

Fig. 8 shows the experimental results of the comparison. The prediction ac-
curacies of Profiling and 2bC are bounded above by 93%. They cannot compete
with GAs, Gshare, or G-PAL. Gshare is the best choice for predictor designs
when the hardware budget is limited to 256 bytes. As more hardware is available
for predictors, its prediction accuracy can reach 96.5%. For GAs, the prediction
accuracy is slightly lower than that of Gshare. As the hardware budget increases,
the difference between GAs and Gshare decreases. Thus Gshare is a good design
choice, especially when the allocated hardware budget is small.

For G-PAL, we use the configurations G-PAL(7,16,8,8), G-PAL(10,16,16,11),
G-PAL(15,16,64,12) and G-PAL(21,16,256,11), if the allocated hardware is 256
bytes, 1K bytes, 4K bytes and 16K bytes, respectively. In G-PAL the tags con-
sume the most hardware, and only a small fraction is needed for the 2-bit coun-
ters. For example, in G-PAL(7,16,8,8) the tags require 112 bytes, the 2-bit coun-
ters 32 bytes, the LRU counters 48 bytes, and the miss-service table 64 bytes.

Compared with Gshare, G-PAL surpasses Gshare in terms of prediction ac-
curacy when more than 1K bytes are available for predictors. As the hardware
budget increases, the difference between the prediction accuracies of G-PAL and
Gshare increases. The prediction accuracy of G-PAL(21,16,256,11) reaches 96.9%

764

-'~ ~):~y~-f 0:~r4r77 iIII

95',~ .

. /!ii!iii !!iiiiil 9 3 % -

9 2 %

GAs(9.16) G-PAL{12,512.16,10) G-PAIXIZ.3Z.256A0)
Gsha~13) G-PAL(12,128,64.10)

F ig . 7. The prediction accuracy of var-
ious predictors on O08.espresso

0 . 9 7

0 . 9 6 5

0 . 9 6

0 . 9 5 5

0 . 9 5

0 . 9 4 5

0 . 9 4

0 . 9 3 5

0 . 9 9

0 . 9 2 5 "

0 . 9 2
2 5 6

F i g .

' ' ' ' _ _ _ 2

...... : :::::::::::::::::::::--*-- F j : : j . i j - : . J

.... ;.~:-::2:::::::-

~:;=;:: 2b~- P r o f i l i n ~ -

GAs - s - - -
G s h a r e ~ (.....
G-PAL ~ - - .

' ' '9 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 81 2 1 6 3 8 4
H a r d w a r e Cost(Bytes)

8. Comparisons of various predictors

for the tes ted SPEC92 benchmarks . I t should be no ted t h a t G - P A L has fewer
2-bi t counters t han G A s and Gshare - - under the same a m o u n t of ha rdware .
However, G - P A L sti l l ou tpe r fo rms them.

5 Concluding Remarks

This p a p e r presents a new approach to des igning dyna mic two-level branch pre-
dictors . The technique is based on the t e m p o r a l loca l i ty of b ranch pa t t e rns . A
cache-l ike p a t t e r n tab le is used to keep only those pa t t e rn s t h a t are referenced
mos t f requent ly and recently. E x p e r i m e n t a l resul ts show tha t the resu l tan t G-
PAL p red ic to r achieves a h igher pred ic t ion accuracy than prev ious ly p roposed
two-level b ranch predic tors , when the ha rdware budge t is more t h a n 1K bytes.

References
1. Mcfarling, S.: Combining Branch Predictors. WRL Technical Note TN-36.

Digital Equipment Corp. (1993)
2. McFarling, S., Hennessy, J.: Reducing the cost of branches. Proc. of the

13th Annual International Symposium on Computer Architecture. (1986)
3. Smith, J.: A Study of Branch Prediction Strategies. Proc. of the 8th Annual

International Symposium on Computer Architecture. (1981)
4. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Pro-

gram Analysis Tools. Proc. of the SIGPLAN'94 Conference on Programming
Languages Design and Implementation. (1994)

5. Yeh T., Pat t Y.: A Comparison of Dynamic Branch Predictors that use Two
Levels of Branch History. Proc. of the 20th Annual International Symposium
on Computer Architecture. (1993)

6. Young, C., Gloy, N., Smith, M.: A Comparative Analysis of Schemes for
Correlated Branch Prediction. Proc. of the 22th Annual International Sym-
posium on Computer Architecture. (1995)

