
On-Chip Multiprocessing

Bernard Goossens and Duc Thang Vu

IBP-LITP, Universit6 Paris 7 Denis Diderot, 2 place Jussieu
75251 Paris cedex 05, France

emaih bg@litp.ibp.fr, vu@litp.ibp.fr

Abstract . This paper describes a processor design and gives its estimated
performance through trace-driven simulation. The processor runs four threads
in parallel and issues up to four instructions per thread per cycle. In order
execution is assumed to keep the pipeline stages simple enough to have a
very short cycle width. Moreover, all the arithmetic operators -adders, in-
crementers, shifters, multiplier and divider- have been sliced and pipelined
with no execute stage including more than the equivalent of a 16 bits adder
in its critical path. The first simulation results show a sustained rate of 5
instructions per cycle.

1 I n t r o d u c t i o n

To improve processor performance, there are actually two tendencies. Either the CPI
is favoured or it is the cycle width, as illustrated by the recent processors designs:
The DEC 21164 [3] is the last tenent of the second choice, while the MIPS R8000
and the Power2 [8] adopted the first one. By simply taking a look at the SPECint92
and SPECfp92 performances of these three processors [8], it seems that the short
cycle choice is better than the low CPI one: 126 and 260 for the Power2, 100 and
310 for the R8000 and 330 and 500 for the 21164. Roughly twice better! However,
it is known that there is far from the benchmark performance to the real one. The
partisans of the low CPI assert that the technology limitates the ability to lower the
cycle indefinitely. And the advocates of the short cycle answer that the lack of fine
grain parallelism restricts the CPI decrease. Undoubtedly both arguments are right.
Thus, improving performance requires decreasing both the CPI and the cycle.

What about the cycle width? Independently from the technology, architecture
can do much on this side. Prom the first 2 pipeline stages RISC-I microprocessor
to the actual 7 to 12 pipeline stages DEC 21164, many architectural improvements
concerned the cycle width. In the first generation, the instruction and data fetches
were performed off chip, which was by far the most costly operation, fixing the cycle.
By integrating caches on chip and pipelining their accesses in todays processors,
fetches and load-stores are no more critical events. The arithmetic operators have
taken this place, one reason being the enlarging of the data path from 32 bits to
64 bits. As the DEC 21064 [2] design has shown, a 64 bits adder was very difficult
to fit in a 5ns cycle. To space out stage design, we propose to slice these operators,
computing an addition via 16 bits slices. This provides a potential 50% cycle width
reduction over an actual 300Mhz rated processor as the DEC 21164. In a preceding
paper [4] we have described such sliced operators, for integer computation and for
competitive floating point emulation, including a multiplier and a divider.

790

Can the CPI be improved while keeping a very short cycle? Issuing and running
more than one instruction per cycle requires a lot of hardware. Not that much from
1 to 2 instructions per cycle however as the DEC 21064 shows. But for more, out of
order execution is essential, which implies reservation stations, registers renaming
and so on. This is costly, both in space and time. The time cost explains the large
cycle width of superscalar processors. To allow multiple instructions to be run per
cycle, while keeping an in order execution and thus a simple enough architecture
not to sacrifice the cycle width, we propose to have a multiprocessor on chip. Four
threads will be handled simultaneously, each having up to four instructions issued
and run per cycle. The operators will be shared and dynamically allocated to the
requesting instructions. The compiler will be responsible for code ordering to reduce
the dependencies in a single thread. In a certain sense, because we note there is not
enough fine grain parallelism in an instruction flow for our architecture, so we get
more by interleaving threads executions. We have measured a 0.2 sustained CPI on
a trace driven simulation. This result must be compared to the 0.8 PowerPC 620
CPI [1].

~ l l s e n and al. [9] have made some experiments on a simulated multithreaded
superscalar processor architecture derived from the DEC 21164. They show that
this type of architecture has a potential to achieve four times the throughput of a
superscalar single-threaded processor. They have measured a potential 0.24 CPI with
4 threads and 16 functional units. Hirata et al. [5] present a multithreaded design
and estimate its performance both with single and multiple issue techniques. Because
they use multithreading for latency hiding, their conclusion is that their design is
most suited to single issue. Their results for single issue are probably optimistic
because they did not simulate the memory hierarchy. Prasadh and Wu [7] describe a
multithreaded RISC processor design replacing single thread superscalar execution
with thread interleaving. Their simulation gave a 0.13 CPI with 4 threads and 10
functional units. However, the architecture is poorly pipelined (3 stageS; this lowers
the dependencies and highers the single thread CPI) and thus its cycle width should
be large.

2 A n O v e r v i e w o f t h e P r o c e s s o r

2.1 T h e FIFO

Fetched opcodes are kept in a FIFO until they are issued. Four such FIFOs -one
per thread- are provided. For each FIFO, the tail pointer designates where the newly
fetched opcodes are written. The issue pointer separates non issued opcodes from
issued ones up to the head pointer that delimits the FIFO free portion. Opcodes
in the [issue, head[FIFO portion are issued but might still have to be restarted in
case of a data cache load miss, while opcodes after the head pointer are definitely
out of the FIFO. The tail pointer runs after the head one and when they meet, the
FIFO is full. Fetch is suspended until new places have been freed. The issue pointer
is moved down to the head one when re-issue is activated by a load miss (restart
issue from the instructions following the load). The tail pointer is moved down to
the head one -FIFO is emptied- after a control flow bad prediction has been detected
(restart fetch from the new address). The fetch operation can be viewed as an opcode

791

free ,.~ re-issuableiSSued ,~n~ issued ,4 free ,

t head tissue I tail

out'of FIFO issue fet c]a
re-issue (load miss)
re-fetch (bad prediction)

Fig. 1. The FIFO.

producer while the execution pipeline is an opcode consumer. The FIFO decouples
the producer pipeline from the consumer one.

2.2 T h e P r o d u c e r P i pe l i ne

The producer gets its opcodes from the instruction cache. A full 8 words cache block
(32 bytes) is fetched per cycle per thread.

Next program counter is speculatively determined in order to allow a new full
cache block fetch every cycle. The speculation is based on a branch target cache
(BTC). If no valid entry matches the actual PC value, predicted next PC simply
points to the next cache block. Otherwise, the BTC gives the prediction. BTC access
occurs during the first stage (while the PC-pointed block is being read) and next-
PC choice is made at the end of the same stage, among the prediction, the actual
PC after incrementation and a possible previous bad prediction correction. The PC
incrementer must be especially designed to avoid a full 64 bits carry propagation m
a single cycle. All addresses in the processor are 64 bits wide (virtual space), divided
into four 16 bits slices. The single cycle incrementation process is restricted to the
lowest slice. In case a carry out would be set, fetch would be suspended for one cycle
to leave time for propagation.

In the second stage, runnable instructions are selected from the fetched block
(see Fig. 2). First, according to the program counter lower bits, the left prefix of the
fetched block not pointed to by PC is discarded. Second, if a valid prediction has
been read, it matches one of the fetch block entries containing a control flow opcode.
The entries on its right are also discarded (control flow break). If no valid prediction
was obtained, all the opcodes except the left prefix are kept.

The third stage is devoted to immediate jump resolution. The decoded absolute
target address is compared to the predicted one. If they do not match, bad fetches
are cancelled -two cache blocks- and target address is passed to the first stage. Such
control flow instructions, if they do not save a link address, are removed from run
flow. Remaining instructions are registered in the FIFO during the fourth stage if
enough empty places are available. Otherwise, the producer pipeline remains frozen
These four fetch steps are handled for the four threads simultaneously, which implies
four separate fetch paths.

792

PC[4:2]=010

read cache blockl

"discarded *
prefix

read prediction block

] j u m p ~

�9 discarded '
SUffiX

];:, pred. pred. pred. pred. pred.

discarded invalid entries leftrnost
or bad tags prediction

Fig. 2. Runnable Instructions Selection.

2.3 T h e C o n s u m e r P i p e l i n e

FIFO non-issued part issue stage

thread 01 , issue 0
I

thread l i , issue 1

thread 2i , issue 2

thread 3 . , issue 3

tail head

operators pipelines

.t I IIIIt
I I I I

Fig. 3. Multithread Issue.

T h e I s sue P a r t The consumer pipeline is separated in two parts: the issue and the
execution. Head FIFO opcodes are selected to enter one of the execution pipelines,
each associated to an operator (see Fig. 3). The four threads compete for free oper-
ator attr ibution and for each thread, the four FIFO head entries participate to the
issue selection which is performed in four cycles. Each cycle is devoted to a single
thread and the threads are priority ordered. The least priority one will only gain
access to the still free resources.

Here are the six conditions an instruction must satisfy to be issued:

1. The preceding instruction in the FIFO must have been selected for issue (in
order issue).

793

2. The source registers must not be locked (they may have been locked by a pre-
ceding instruction of the same thread; this concerns long latency operators like
the multiplier and the divider; by-pass is provided so that ordinary operators
don't lock their destination register).

3. Enough register read and write ports must be available, according to the instruc-
tion needs (e.g. no read ports for instruction using immediate values; no write
ports for instruction writing in R0 register; ports are dynamically allocated dur-
ing issue; simulations have helped to fix the number of provided ports: three
read ports and two write ports are enough).

4. One copy of the requested operator type must be available.
5. For load instructions, neither previous load nor store must have been issued in

the same cycle, for the same thread.
8. For store instructions, no previous store instruction must have been issued in

the same cycle for the same thread, and a free store buffer must be available for
the thread.

T h e E x e c u t i o n P a r t Issued instructions enter their execution pipeline which are
all of the same length, corresponding to the longest path, i.e. seven stages for the
multiplier and the divider. All results are registered in the last stage. This limits
Write-After-Write hazards to opcodes issued in the same cycle. Their issue number
(0 < = n < = 3) is used to solve the case. By-pass paths are provided between stages
-but not for instructions issued in the same cycle- which helps to lower the operations
latency.

Dependent instructions in a thread must be separated by the compiler with as
many useful independent instructions as possible. However, no NOPs are inserted.
A lock mechanism prevents dependent instructions to be issued too early (a 3 bits
opcode field contains a delay constant that serves as the destination register lock
when the instruction is issued). In the mean time, other instructions from the other
threads have more chance to gain access to the operators they need. The static NOP
insertion is replaced by a dynamic thread interleaving.

2.4 T h e Caches

Two cache levels axe provided on chip, for instructions as for data. The first level
is private to each thread and the second level is shared. Moreover, the first level
caches are directly mapped and virtually addressed (with a full address including the
context number to prevent synonyms problems). The second level caches are 4-way
set associative and physically addressed. Both levels respect a MESI-like protocol
for coherence.

The instruction cache is accessed during the first fetch stage. Tags are checked
during the second fetch stage. If a miss is signaled (see Fig. 4), the thread producer
pipeline is frozen (but not the consumer one if FIFO is not empty) and access to the
shared second level cache is requested. Second level misses are handled off chip: As
soon as a hit is detected, caches are updated and fetch pipeline is restarted. A first
level cache miss followed by a second level cache hit gives a 4 cycles penalty.

The two levels of data caches are organized the same way. First level cache access
occurs during the second execute stage with the low part of the computed address.

794

Tag check is performed during the fifth execute stage, when the full address has been
computed by a sliced adder. If a load miss is detected, all instructions issued two or
more cycles after the load are restarted (the locking feature ensures that instructions
issued in the same cycle and in the next one are surely independent from the loaded
datum). Their re-issue is obtained by moving the FIFO issue pointer down to the
head one. The producer pipeline is not affected by such events.

Accesses to the shared second level data cache are handled exactly the same way
as for the instruction cache. For stores, buffers are used. No thread suspension occurs
unless all buffers are busy. In this case, the locking mechanism prevents a new store
for the same thread to be issued.

2.5 Cond i t iona l Branches and Indi rec t J u m p s

miss i-cache level 2
* read set

fetch; [tag
next p~ check ~ ~

fetch - - - -

search
set

canceUed

zen

frozen

frozen

FIFO end of
write miss

Fig. 4. First Level Instruction Cache Miss Handling.

These control flow instructions, because they need computation, have to cross the
execution pipeline. The target address is computed in four cycles through a sliced
adder. Then, the prediction is checked and if a bad one is detected, the instructions
following the offending branch and yet executed are cancelled and the FIFO is emp-
tied. The prediction cache is updated if the branch is taken and the prediction was
incorrect.

3 T h e S i m u l a t o r

In order to estimate the design performance, we have built a trace-driven simulator.
It includes the whole pipeline, with the four stages fetch part, the FIFOs, the four

795

stages issue part and the seven stages execution pipelines. All the caches have been
simulated (except the virtual-physical TLBs) Level two misses have been simulated
as accesses to a shared output bus (4 words per cycle) and 4 cycles latency external
SRAMs.

thread 0 1458092 68503 4.7~ 342557 23.5~ 128674
thread 1 1396411 66508 4.8% 327335 23.4~ 122458
thread 2 1238596 58533 4.7% 290776 23.5~ 108961
thread 3 958790 45199 4.7% 225444 23.5% 84140
total 5051889 238743 4.7% 1186112 23.5% 444233

run c. flow rate loads rate stores

8.8% 91835863%
8.8% 88011C 63%
s.8% 78032c 63%
18.8%1 604007163%
8.8% 3182801'63%
rate misc. rate

Table 1. Simulation Results for 1 Million Cycles.

For now, we have just started measurements, thus our results (see Table 1) must
be considered application-specific. The program trace was run for one million cycles
corresponding to the middle execution of the simulator itself. The executed trace
contains 4.7% of control flow instructions (this is a very low value, specific to the
application), 23.5% of loads, 8.8% of stores and 63% of inter-register instructions
(high application-specific rate). Table 2 gives the caches miss rates with 16%, for
the prediction cache wich is comparable to known rates [6]. The simulation consisted
in the same program run for the four threads, but started at different addresses.

th 0 ~75488 10985 3.83% 445216 26016 5.52%240658 45815 16%
th 1 264811 10902 3.95% 423238 26555 5.90%233471 42242 15.32%
th 2 233907 9324 3.83% 373428 26309 6.58~ 204723 38508 15.83~
th 3 180438 7077 3.77~ 284006 25579 8.26%155377 32138 17.14~
total954644 38288 3.86%1525888 104459 6.41%834229 158703 15.98~

i h i t lmiss i ra te d hit d missdrate p hit lpmiss p ra te

Table 2. Caches Hits and Misses.

The simulated processor contained 8KB first level instruction caches, 16KB first
level data caches, a 64KB second level instruction cache, a 128KB second level da ta
cache (for a total of 288KB of caches: 4*(8KB + 16KB) + 64KB + 128KB), four 1024
entries branch target caches, six adders, three control flow operators (for conditional
branches, indirect jumps and calls), three logic units, one left shifter, one right one,
one multiplier and one divider (16 operators altogether). The FIFOs were fixed to
24 entries each. Two write ports and three read ports were provided for each register
file access and eight store buffers per thread for da ta cache access. Such a processor
is estimated at 35M transistors. We obtained a CPI of 0.198, i.e. a little more than
5 instructions per cycle (1.26 instructions per thread per cycle).

796

4 C o n c l u s i o n

We have presented a design intended to be an implementa t ion of a mult i-processor
in a single chip. The different par ts of the processor have been investigated, from the
fetch d a t a pa th to the execution one and including the internal memory hierarchy.
We did not describe the floating point computa t ion model. This has been presented
in [4]. The first s imulat ions of our design shows tha t a sustained ra te of more than
5 instruct ions per cycle can be achieved without the need of out of order execution,
thus allowing a shorter cycle.

R e f e r e n c e s

1. T.A. Diep, C. Nelson and J.P. Shen: Performance Evaluation of the PowerPC 620 Mi-
croarchitecture. 22nd AISCA, 1994

2. D.W. Dobberpuhl et al.: A 200 Mhz 64 Bits Dual Issue CMOS Microprocessor. IEEE
Journal of Solid State Circuits, vol. 27-11, 1992

3. J.H. Edmondson, P. Rubinfeld, R. Preston and V. Rajagopalan: Superscalar Instruction
Execution in the 21164 Alpha Microprocessor. IEEE Micro, april 1995

4. B. Goossens and D.T. Vu: Une Unique Unit~ de Calcul RISC pour les Entiers et les
Flottants. 2nd Real Number and Computers Conference, 1996

5. H. Hirata et al.: An Elementary Processor Architecture with Simultaneous Instruction
Issuing from Multiple Threads. 19th AISCA, 1992

6. J.K.F. Lee and A. J. Smith: Branch Prediction Strategies and Branch Target Buffer
Design. Computer, 1984-01

7. R.G. Prasadh and C.L. Wu: A Benchmark Evaluation of a Multithreaded RISC Proces-
sor Architecture. ICPP, 1991

8. A. Seznec, Y. M~vel: Etude des Architectures des Microprocesseurs DEC 21164, IBM
POWER2 et MIPS RS000. Rapport de Recherche INRIA 2553, 1995

9. D.M. Tullsen, S.J. Eggers and H.M. Levy: Simultaneous Multithreading: Maximizing
On-Chip Parallelism. 22nd AISCA, 1995

