
G l o b a l I n s t r u c t i o n S c h e d u l i n g - -
A p p r o a c h

a P r a c t i c a l

Sebastian Schmidt

Computer Science Department
Friedrich-Schiller-University, D-07740 Jena, Germany

sc~iaxp01.inf.uni-jena.de

Abstract . The subject of this paper is the design and implementation of
a framework, implementing a method for global instruction scheduling. It
is based on the Program Dependence Graph as a central data structure.
In contrast to other global scheduling methods, like Trace Scheduling, it
does not rely on regular structures in the program. It has therefore the
potential to be useful for control intensive programs, too. First results of
the exploration of this method are presented and ideas for enhancement
are derived from the experience.

1 I n t r o d u c t i o n

In the last years extensions of the Reduced Instruction Set Computer (RISC)
architecture have evolved to enhance performance by increasing parallel process-
ing. Typical examples of such architectures are superscalar [9], superpipelined
and Very Long Instruction Word (VLIW)[3] processors.

For these machines with their increased parallelism instruction scheduling
at the basic block level is no longer sufficient to utilize machine resources[4].
Instructions have to be moved across basic block boundaries. Beside other ap-
proaches like Trace scheduling[2] or Enhanced percolation scheduling[5], Bernstein
and Rodeh[1] proposed a method which uses the Program Dependence Graph
(PDG) to perform global instruction scheduling.

2 D e s i g n a n d I m p l e m e n t a t i o n o f t h e S c h e d u l e r

The GNU C compiler GCC[6] was chosen as starting point for our experiments.
It implements traditional optimizations like common subexpression elimination
and loop optimizations as well as local instruction scheduling [7][8]. To achieve
portability all informations needed by the code generator and machine specific
optimizations are encapsulated in machine description files.

The global scheduler was split into the following modules:

1. Control flow analysis and construction of the CSPDG.
2. Data dependence analysis.
3. Instruction Scheduling.
4. Instrumentation and Configuration.

816

Global scheduling is done by the same algorithm which is used for the lo-
cal scheduler. Since all restrictions imposed by global data dependencies are
considered by data dependence analysis, there are only minor changes in the
implementation of this algorithm. Instead of a single basic block it works on
linear sequences of basic blocks now.

While useful scheduling is always done on the longest possible sequence of
equivalent blocks, we currently experiment with three different variants of spec-
ulative scheduling:

1. The sequences are formed by pairs of basic blocks for which speculative
scheduling is allowed according to the PDG.

2. The set of pairs from the first variant is restricted by using branch prediction.
Only if the probability of a branch to be taken is higher than a given thresh-
old, the corresponding edge in the PDG is selected for speculative scheduling.
Currently this probability information is achieved by branch profiling.

3. Longer sequences of basic blocks are formed by branches with high proba-
bility.

There are some extensions made to the compiler to gather additional infor-
mation at compile and runtime of the program:

- Branch profiling.
- A simple way to measure Instruction Level Parallelism.

To get some flexibility while experimenting with different scheduling vari-
ants, the scheduler reads a file that allows to configure it's behavior at compiler
runtime.

3 R e s u l t s

The following numbers are preliminary results of first tests for three different
variants of global scheduling. Since the work concentrates on control intensive in-
teger programs, only this type of programs was tested, qsor t , bubsort , rainmax,
knight are short programs implementing simple algorithms. GCC (C compiler},
go fe r (interpreter for a functional language) and gzip (data compression) are
real world applications. They were run on a DEC 3000 model 600 (processor
alpha 21064 / 175 MHz). All other optimizations except loop unrolling were
turned on (switch -02). Table 1 shows the improvement in runtime for useful
scheduling only and for speculative scheduling according to the first two variants
as mentioned in section 2.

The bad results for q so r t may result from the recursive nature of this pro-
gram. Obtaining better results in this case would require transformations on an
interprocedural level. These results match with the results published in [1].

Our current effort is to find out why the scheduler fails at large programs
like gcc and gzip. To do so, they were analyzed with a profiling tool, to locate
the places in the code where they spend most of their time. For this purpose we
included some additional control intensive tools in our test suite: Bison (a parser

817

program improvement in %
u s e f u l ~ -

Ivariant 1 [variant
qsort -0.2 -0.8 0.0
bubsort 7.0 15.1 15.1
minmax 4.1 4.0 4.0
knight -0.7 2.3 2.6
gcc -1.7 -0.5 -0;1
gofer 4.9 6.8 7.9
gzip 0.2 -0.1 3.51

Table 1. Improvement in Runtime

generator), grep (searching a file for regular expressions) and diff (compare two
files for differences).

With one notable exception it was found that the "hot spots" in all programs
were while-loops with small bodies (only few source code instructions). The only
exception mentioned above was the gofer system which spent most of the time
in two functions: the intermediate code interpreter and the expression evaluator.
Both of them consist of loops with large bodies and allow to form big regions.

Therefore the next task will be to collect these loops in a benchmark suite
similar to the Livermore Loops for numeric programs. This way it will be easier
to study the effects of different optimization variants on the sample programs.

4 F u t u r e W o r k

Loop handling: Since the scheduler fails on the input code mentioned above
(while-loops with small bodies) the enhancements planned for the near future
will concentrate on methods to handle this kind of loops.

The simplest way to enlarge the number of basic blocks available to the
scheduler is loop unrolling, i.e. to multiply the code of the loop body. While
unrolling for-loops may lead to larger basic blocks, unrolling while-loops only
increases the number of basic blocks in the loop body. But this is exactly what
we want.

Branch Prediction: One crucial thing when doing speculative scheduling is to
find the "right" branch, i.e., the branch that is taken with the greatest proba-
bility. The easiest way to find this information is to use profile information from
sample runs of the input program. This is the way we currently follow. Another
way is to do static branch prediction at compile time using heuristics.

818

Other Enhancements:

- The heuristics currently used by the list scheduler are designed for local
scheduling. It should give better results if at least their parameters are tuned.

- The current implementation uses useful and speculative scheduling only.
With the information provided by the PDG it should also be possible to
perform code duplication.

5 Conc lus ion

This paper describes design and implementation of a method for global instruc-
tion scheduling for control intensive programs. It is centered on the Program
Dependence Graph (PDG) as the central da ta structure. The implementation is
based on the GNU C compiler (GCC) and has been tested on a machine with
the superscalar Alpha Architecture. First experiences, using small algorithms as
well as large real world programs as samples, are presented. The results show
that it is possible to improve the performance even of control intensive programs,
using global instruction scheduling. They promise the possibility for further en-
hancements of this method. The reason why this optimization fails for some
programs, is it 's lack of ability to handle while loops with small bodies. Possi-
bilities to overcome these disadvantages are shown and will be the subject of
future work.

References

1. D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar machines.
SIGPLAN Notices, 26(6):241-255, June 1991. Proceedings of the ACM SIGPLAN
'91 Conference on Programming Language Design arid Implementation.

2. J.A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers, 30(7):478-490, July 1981.

3. J.A. Fisher. The VLIW machine: A multiprocessor for compiling scientific code.
IEEE Computer, pages 45-53, July 1984.

4. N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar
and superpipelined machines. SIGPLAN Notices, 24(5):272-282, April 1989.

5. T. Nakatani K. Ebcioglu. A new compilation technique for parallelizing regions
with unpredictable branches on a VLIW architecture. In Proc. of the Workshop on
Languages and Compilers for Parallel Computing, August 1989.

6. R.M. Stallman. Using and Porting GNU CC. Free Software Foundation, Cam-
bridge MA, 02139, June 1989.

7. M. D. Tiemann. The GNU instruction scheduler, course report CS343, Stanford
University, June 1989.

8. A. Unger, S. Schmidt, and E. Zehendner. Anordnung yon Instruktionen. Berichte
zur Rechnerarchitektur Vol. 2, No. 4, Fi-iedrich-Schiller-University Jena, 1996.

9. T. Ungerer. Mikroprozessortechnik: Architektur und Funktionsweise superskalarer
Mikroprozessoren. Number ISBN 3-8266-0130 in Thomson's aktuelle Tutorien. In-
ternat. Thomson Publ., Bonn, 1995.

