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Abstract .  The subject of this paper is the design and implementation of 
a framework, implementing a method for global instruction scheduling. It 
is based on the Program Dependence Graph as a central data structure. 
In contrast to other global scheduling methods, like Trace Scheduling, it 
does not rely on regular structures in the program. It has therefore the 
potential to be useful for control intensive programs, too. First results of 
the exploration of this method are presented and ideas for enhancement 
are derived from the experience. 

1 I n t r o d u c t i o n  

In the last years extensions of the Reduced Instruction Set Computer (RISC) 
architecture have evolved to enhance performance by increasing parallel process- 
ing. Typical examples of such architectures are superscalar [9], superpipelined 
and Very Long Instruction Word (VLIW)[3] processors. 

For these machines with their increased parallelism instruction scheduling 
at the basic block level is no longer sufficient to utilize machine resources[4]. 
Instructions have to be moved across basic block boundaries. Beside other ap- 
proaches like Trace scheduling[2] or Enhanced percolation scheduling[5], Bernstein 
and Rodeh[1] proposed a method which uses the Program Dependence Graph 
(PDG) to perform global instruction scheduling. 

2 D e s i g n  a n d  I m p l e m e n t a t i o n  o f  t h e  S c h e d u l e r  

The GNU C compiler GCC[6] was chosen as starting point for our experiments. 
It implements traditional optimizations like common subexpression elimination 
and loop optimizations as well as local instruction scheduling [7][8]. To achieve 
portability all informations needed by the code generator and machine specific 
optimizations are encapsulated in machine description files. 

The global scheduler was split into the following modules: 

1. Control flow analysis and construction of the CSPDG. 
2. Data dependence analysis. 
3. Instruction Scheduling. 
4. Instrumentation and Configuration. 
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Global scheduling is done by the same algorithm which is used for the lo- 
cal scheduler. Since all restrictions imposed by global data dependencies are 
considered by data dependence analysis, there are only minor changes in the 
implementation of this algorithm. Instead of a single basic block it works on 
linear sequences of basic blocks now. 

While useful scheduling is always done on the longest possible sequence of 
equivalent blocks, we currently experiment with three different variants of spec- 
ulative scheduling: 

1. The sequences are formed by pairs of basic blocks for which speculative 
scheduling is allowed according to the PDG. 

2. The set of pairs from the first variant is restricted by using branch prediction. 
Only if the probability of a branch to be taken is higher than a given thresh- 
old, the corresponding edge in the PDG is selected for speculative scheduling. 
Currently this probability information is achieved by branch profiling. 

3. Longer sequences of basic blocks are formed by branches with high proba- 
bility. 

There are some extensions made to the compiler to gather additional infor- 
mation at compile and runtime of the program: 

- Branch profiling. 
- A simple way to measure Instruction Level Parallelism. 

To get some flexibility while experimenting with different scheduling vari- 
ants, the scheduler reads a file that allows to configure it's behavior at compiler 
runtime. 

3 R e s u l t s  

The following numbers are preliminary results of first tests for three different 
variants of global scheduling. Since the work concentrates on control intensive in- 
teger programs, only this type of programs was tested, qsor t ,  bubsort ,  rainmax, 
knight  are short programs implementing simple algorithms. GCC (C compiler}, 
go fe r  (interpreter for a functional language) and gzip (data compression) are 
real world applications. They were run on a DEC 3000 model 600 (processor 
alpha 21064 / 175 MHz). All other optimizations except loop unrolling were 
turned on (switch -02). Table 1 shows the improvement in runtime for useful 
scheduling only and for speculative scheduling according to the first two variants 
as mentioned in section 2. 

The bad results for q so r t  may result from the recursive nature of this pro- 
gram. Obtaining better results in this case would require transformations on an 
interprocedural level. These results match with the results published in [1]. 

Our current effort is to find out why the scheduler fails at large programs 
like gcc and gzip. To do so, they were analyzed with a profiling tool, to locate 
the places in the code where they spend most of their time. For this purpose we 
included some additional control intensive tools in our test suite: Bison (a parser 
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program improvement in % 
u s e f u l ~  - 

Ivariant 1 [variant 
qsort -0.2 -0.8 0.0 
bubsort 7.0 15.1 15.1 
minmax 4.1 4.0 4.0 
knight -0.7 2.3 2.6 
gcc -1.7 -0.5 -0;1 
gofer 4.9 6.8 7.9 
gzip 0.2 -0.1 3.51 

Table 1. Improvement in Runtime 

generator), grep (searching a file for regular expressions) and diff (compare two 
files for differences). 

With one notable exception it was found that the "hot spots" in all programs 
were while-loops with small bodies (only few source code instructions). The only 
exception mentioned above was the gofer system which spent most of the time 
in two functions: the intermediate code interpreter and the expression evaluator. 
Both of them consist of loops with large bodies and allow to form big regions. 

Therefore the next task will be to collect these loops in a benchmark suite 
similar to the Livermore Loops for numeric programs. This way it will be easier 
to study the effects of different optimization variants on the sample programs. 

4 F u t u r e  W o r k  

Loop handling: Since the scheduler fails on the input code mentioned above 
(while-loops with small bodies) the enhancements planned for the near future 
will concentrate on methods to handle this kind of loops. 

The simplest way to enlarge the number of basic blocks available to the 
scheduler is loop unrolling, i.e. to multiply the code of the loop body. While 
unrolling for-loops may lead to larger basic blocks, unrolling while-loops only 
increases the number of basic blocks in the loop body. But this is exactly what 
we want. 

Branch Prediction: One crucial thing when doing speculative scheduling is to 
find the "right" branch, i.e., the branch that is taken with the greatest proba- 
bility. The easiest way to find this information is to use profile information from 
sample runs of the input program. This is the way we currently follow. Another 
way is to do static branch prediction at compile time using heuristics. 
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Other Enhancements: 

- The heuristics currently used by the list scheduler are designed for local 
scheduling. It should give better  results if at least their parameters are tuned. 

- The current implementation uses useful and speculative scheduling only. 
With the information provided by the PDG it should also be possible to 
perform code duplication. 

5 Conc lus ion  

This paper describes design and implementation of a method for global instruc- 
tion scheduling for control intensive programs. It is centered on the Program 
Dependence Graph (PDG) as the central da ta  structure. The implementation is 
based on the GNU C compiler (GCC) and has been tested on a machine with 
the superscalar Alpha Architecture. First experiences, using small algorithms as 
well as large real world programs as samples, are presented. The results show 
that  it is possible to improve the performance even of control intensive programs, 
using global instruction scheduling. They promise the possibility for further en- 
hancements of this method. The reason why this optimization fails for some 
programs, is it 's lack of ability to handle while loops with small bodies. Possi- 
bilities to overcome these disadvantages are shown and will be the subject of 
future work. 
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