
RESIS: A N e w M e t h o d o l o g y for Register
Opt imizat ion in Software Pipe l in ing *

Fermln Ss and Jordi Cortadella

Departament d'Arquitectura de Computadors
Universitat Polit~cnica de Catalunya

e-mail: {fermin,jordic}@ac.upc.es
http://www.ac.upc.es/homes/{fermin,jordic}

Abst rac t . This paper presents a new technique to reduce the regis-
ter pressure in pipehned schedules. A two-step approach is proposed:
minimizing the SPAN of the loop and rearranging operations within a
basic block. Experimental results show that further improvements on the
schedules found by the best existing techniques can be obtained at the
expense of a negligible computational cost.

1 I n t r o d u c t i o n

In parallel architectures, a loop is usually executed by means of software pipelin-
ing techniques. These techniques at tempt to find a schedule that contains in-
structions belonging to different iterations. The number of registers required to
execute the schedule may be reduced by adding spill code [1] (storing some vari-
ables in memory). When there are not enough registers to execute the schedule,
some techniques increase the expected number of cycles (initiation interval or
H) and schedule the loop again [2]. Recent experiments have demonstrated that
this approach may never converge [3].

Scheduling followed by register allocation may require much spill code [4]. On
the contrary, register allocation followed by scheduling may reduce the potential
parallelism [5]. In this paper, we will show that scheduling followed by register
allocation may obtain optimal results in most cases.

The rest of the paper is organized as follows: Section 2 presents the formal-
ism to represent a loop and a schedule. Section 3 shows three different lower
bounds on the number of registers required to execute a loop. Section 4 presents
an overview of RESIS, the approach presented in this paper, and an example.
Sections 5 and 6 present the two main steps of RESIS: SPAN reduction and
incremental scheduling. Some results are reported in Section 7.

2 O b t a i n i n g a D G f r o m a s c h e d u l e

A loop can be represented as a labelled directed dependence graph, DG(V, E).
Each vertex u E V represents an instruction of the loop body. Each edge e E E

* This work was supported by the Ministry of Education and Science of Spain, under
contract CICYT TIC-95-0419

825

ID, IA,+,

(a) (b) (c)

Fig. 1. Obtaining a DG from a schedule (a) Initial DG (b) Pipelined schedule by
assuming 1 adder and 1 multiplier (c) Equivalent DG associated to the schedule

corresponds to a data dependence between two instructions. Labels of the DG
are defined by two mappings as follows:

- A(u), defined on vertices, denotes the iteration index of u (~(u) _> 0). A(u) =
i will be denoted by ui in the DG. Initially, Vu E V, ~(u) = 0.

- ~(u, v), defined on edges, denotes the number of iterations traversed by the
dependence. ~(u,v) = 0 corresponds to an intra-loop dependence (ILD).
~(u, v) > 0 corresponds to a loop-carried dependence (LCD).

In general, a schedule of a loop can be represented by a matrix containing
the instructions of the loop. Each row of the matrix represents a cycle of the
schedule. The schedule contains instructions that may belong to different loop
iterations. Thus, placing instruction ui at row j indicates that instruction u from
iteration i + k is executed at cycle j in the kth iteration. Figures l(a) and l(b)
show an example of loop and schedule representation.

A schedule obtained by means of software pipelining is in general associated
to a DG different from the initial one, but equivalent to it (representing the same
loop). Such a equivalence is described by means of the rules of retiming. Reliming
[6] transforms a DG in a way such that the index of the nodes (A's) and the
distance of the dependences (~'s) may be different in both DGs. A DG = (V, E)
is equivalent to another one DG' = (V, E) if the following condition holds:

V(u, v) E E : A(v) - ;~(u) + ~(u, v) = A'(v) - A'(u) + ~'(u, v) (1)

To build the DG associated to the schedule, the value of ~ for each instruction
is taken from the schedule, and the value of ~ for each dependence is computed
by using Equation (1). Since initially ~(u) = 0 for each u E V, we conclude that:

v) = - + v) (2)

As an example, DGs from Figures l(a) and l(c) are equivalent, since equation
(1) holds for each dependence. The schedule from Figure l(b) can be easily
obtained from the DG in Figure l(a) by using any software pipelining approach.
However, note that it can also be obtained from the DG in Figure l(c) by using
any algorithm for scheduling basic blocks. This idea has been used in [7, 8] to
perform software pipelining with resource and timing constraints.

826

(a)

, l d s t - * l d s t - A B C

(b) (c)

Fig. 2. Example of register optimization

A B C

3 L o w e r b o u n d s o n r e g i s t e r s

A tight lower bound on the number of registers required by a schedule is the
maximum number of variables whose lifetimes overlap at any cycle (MaxLive).
[9]. Such a lower bound may not be reached, since a register assignment with
such requirements may not exist (see [10] for an example).

The number of registers required when all variables have the minimum life-
time and their overlapping is minimized is also a lower bound, that can be

] minimum_variable_l i f et ime(e) / I I (3)
le6E I

An absolute lower bound (ALB) on the number of registers can be computed
by using Equation (3) in a DG in which A(u) = 0 for each u E V . ALB might
be considered as a lower bound for any schedule of the loop [10].

A relative lower bound (RLB) on the number of registers can be computed
by using Equation (3) with the DG associated to a schedule.

In general, ALB < RLB g MaxLive. Note that ALB is calculated by using
the initial loop, MaxLive is calculated by using the final schedule and RLB is
calculated by using the DG associated to the schedule.

4 R E S I S : s t r a t e g y o v e r v i e w

This paper proposes RESIS (REduce Span and Incremental Scheduling), an
approach aiming at reducing the register requirements of a schedule. RESIS
works in two separate steps:

1. SPAN reduction: First, the DG associated to the schedule is built. Variable
lifetimes are shortened by reducing the iteration index of some instructions
and scheduling the new DG again.

2. Incremental scheduling: Variable lifetimes are reduced by moving some in-
structions within the schedule, attempting to reduce MaxLive.

As a single example, Figure 2(a) shows the SPEC-SPICE loop 10. We assume
a result latency of one cycle for subtract and store, two cycles for multiply
and load and an architecture with one FU (functional unit) fully pipelined of
each type. Figure 2(b) presents the schedule found by HRMS [12], requiring 3
registers. Figure 2(c) shows the improvement achieved by RESIS. The index of
instruction C has been reduced, and instructions A and C have been moved to
a different cycle. As a result, the number of registers required is decreased by
one.

827

A 1 C O (~ % ~

(a)

Fig. 3. Example of SPAN reduction (a)
associated (b) DG after SPAN reduction

5 S P A N r e d u c t i o n

 ~
0 0 0 reg

A 1 D 1
. 2 reg

- B ~ F ~ . 2 reg

(b)

Schedule example (MaxLive = 3) and DG
and scheduling with MaxLive = 2

5.1 S t r a t e g y o v e r v i e w

The SPAN of a DG is defined as A,~a~ - Ar~i~ + 1, where Ama~ and Amin are the
m a x i m u m and minimum values for A. In general, a reduction of the SPAN in a
DG leads to a reduction in the variable lifetimes in any associated schedule.

The SPAN reduction phase works as follows. First of all, the DG associated
to the given schedule, DG' , is built by using Equation (2) for each dependence
(we assume the initial DG is known). Following this, the m a x i m u m value for
(A,~a~) is computed by exploring all nodes in DG' . Then, this value is i teratively
decreased while the following three conditions hold:

- a DG with min imum SPAN is not found (minimum SPAN=l)
- the critical path (CP) of the current DG is not longer than the expected H
- the number of registers estimate for the current schedule is greater than the

absolute lower bound (MaxLive >ALB)

DG ~ Select node u and ~ Reduce scheduling ~ _ l ~ p , ACNP~I~.~h/p ~ _ ~ Reduce local ~ OUTPUT
11 ~ Reduce index of u I v I depend I r ~ ~ maxima [SCHEDULE

% f

Fig. 4. Flow diagram of SPAN reduction

Figure 3 shows an example of the effectiveness of reducing the SPAN in an
architecture with 2 FUs. Figure 4 shows a flow diagram of the algori thm used to
reduce the SPAN. The execution t ime of the algorithm 2 is O(V3E + VE 2) [13].
The following sections explain in detail each one of the steps in the diagram.

5 . 2 S e l e c t i n g a n o d e t o r e d u c e t h e S P A N

In order to reduce the SPAN, two different approaches may be used: reducing
/~rnax o r increasing Amen. A transformation called reduce_index is used 3 to reduce

2 V and E are the number of nodes and edges in a DG respectively.
3 A similar transformation is used to increase Am~.

828

A,~a,. Reduce_index(u) is based on retiming, and it is only applied to nodes so
that the transformed DG has non-negative dependences. Among all the nodes in
the DG, the node which will produce the DG with the shortest CP is selected.
Reduce_index(u) decreases A(u) by also transforming 8(e) for the incoming and
outgoing edges of u as follows:

- = - 1

- V (u , v) e E , 8 ' (u , v) = 6 (u , v) - 1

- V (v , u) �9 E , 8'(v,u) = 8(v,u) + 1

5.3 R e d u c i n g t h e n u m b e r of s chedu l ing d e p e n d e n c e s

Let Lu be the execution time for an instruction u. As shown in Figure 5, for an
e x p e c t e d / / o f the schedule, data dependences can be classified as follows [13]:

- Positive Scheduling Dependences (PSDs): 6(u, v) < ~ /
- Negative Scheduling Dependences (NSDs): L,,+H-11I > 6(U, 1)) >_ ~II
- Free Scheduling Dependences (FSDs): 8(u, v) > L,+II-1 -- I I

L u Lu+//-1
0

H H

PSD NSD FSD
(u,v)

Fig. 5. Types of scheduling dependences according to the value of 6(u, v)

PSDs constrain the scheduling process more than NSDs, and FSDs do not
constrain the schedule. In fact, some NSDs do neither constrain the scheduling
process [13]. The SPAN reduction algorithm attempts to reduce the number of
PSDs and NSDs without increasing the SPAN by transforming them into FSDs.
Function reduce_sched_depend performs such a task (see Figure 6).

DGs containing fewer PSDs are considered better for scheduling. For the same
number of PSDs, the DG with fewer NSDs is considered as the best. An edge
is selected to be retimed only once if a better DG is not found. The heuristics
used to select an edge for retiming are as follows: (i) head of a CP 4, (ii) tail of
a CP, (iii) head or tail of a path not critical. The scheduling algorithm used is a
list scheduling (see [13] for details).

5.4 R e d u c i n g local m a x i m a

On one hand, the algorithm to reduce SPAN is based on reducing the index of
nodes whose index is Area,. Therefore, no reduction is done with nodes having
smaller indices. However, the index of such nodes may also be reduced, also
reducing the variable lifetimes and thus register requirements. On the other hand,
the function reduce_sched_depend increases the distance of some dependences. As

4 A CP is a path formed only by PSDs.

8 2 9

f u n c t i o n r educe - . s ched_depend(DG, H) ;
DG 1 := DG;
R e p e a t

sehed := schedul ing(DG, II);
i f no schedu le has been found t h e n

e : = s e l e c t _ e d g e (D G , Amax);
i f edge_selec ted t h e n

DG : = r e t i m i n g (D G , e);
i f (DG is b e t t e r t h a n DG~)

the** DG]_ := DG;
u n t i l (no edge se lec ted o r schedule found) ;
r e t u r n t r u e if a schedule has been found;

f u n c t i o n reduce local.xnax(D G , S C H , H) ;
DG]_ := DG;
l o o p

u :=se lec t a node f rom DGIA
e x i t if no n o d e se lected;
DG1~ := reduce_ index(DGl_ , u) ;
new-sched :=scheduling(DG1, H) ;
i f schedu le f o u n d t h e n

DG := DG1A
S C H := new-sched ;

e l s e u n d o r e d u c e _ i n d e x (D G 1 , u) ;
r e t u r n SCH;

Fig. 6. Functions r e d u c e _ s c h e d _ d e p e n d and r e d u c e _ l o c a l _ m a x i m a

a side effect, the indices of some nodes may be unnecessarily increased. Given the
previous argumentation, some indices smaller than ~rnax may also be reduced
after reducing the SPAN. These nodes are called local maxima. Figure 6 shows
the algorithm used to reduce local maxima.

6 Incremental scheduling

6.1 Strategy overv iew

1 Reg --.~- 1 Reg

| 1 1
2 Reg 0 Reg

2
1 Reg I Reg

3 3

(a) (b)

Fig. 7. Reducing registers by i n c r e m e n t a l s c h e d u l i n g .

After reducing the SPAN, RESIS tries to reduce register requirements by re-
arranging some instructions without changing their iteration indices. This step is
denoted incremental scheduling (Figure 7 shows an example). Code rearranging
strategies have previously been proposed by other authors [14, 15]. Two different
moves are considered:

- Re-schedule: moves an instruction from the current cycle to another cycle if
sufficient resources are available.

- Swap: swaps the scheduling of two instructions that have a similar execution
pattern (both instructions use the same resources at the same cycle).

The execution time of incremental_scheduling is O(V 3) [13]. The incremental
scheduling algorithm is as follows:

1. Compute the RLB. This is done to stop the search when a schedule requiring
such registers is found.

2. Compute MaxLive. The algorithm ends if MaxLive = RLB.
3. Select a cycle c requiring MaxLive registers.

830

4. Select an instruction to move across cycle c. The lifetime of the variable read
or written by the selected instruction must be alive at cycle c. An instruction
is selected only once if no movements are carried out within the schedule.

5. Move (re-schedule) the selected instruction until crossing cycle c, decreasing
the number of registers required at cycle c. Swapping the instruction for
another one is only done when re-scheduling the instruction is not successful.

6. If no successful move can be done with the selected instruction, select another
one to move across cycle c and go to 5. If the instruction is moved successfully,
go to 2. The process is repeated until no instruction can be moved.

6.2 M o v i n g a n i n s t r u c t i o n

A move consists of moving a node (forward or backwards) across a given cycle c,
a t tempt ing to prevent the variable lifetime from being alive at cycle c. In order
not to change the iteration index of any instruction, no movement can be done
across the boundaries of the schedule.

- Re-scheduling: Assume that u was scheduled at cycle S(u). If u must be
moved forward, t ry to reschedule u from cycle c + 1 to cycle ALAP(u) If u
must be moved backwards, try to reschedule u from cycle c to cycle S(u).

- Swapping: In order to swap u with another node, a node v is selected among
those tha t have a similar execution pat tern as u. The swapping is recursively
done by following the same algorithm as that used to move u (first by re-
scheduling v, and by swapping v for another node x only when v cannot be
successfully re-scheduled).

7 E x p e r i m e n t a l R e s u l t s

We have borrowed from [16] a set of benchmark loops selected from assorted
scientific programs such as Livermore Loops, SPEC, Linpack and Whetstone.
As in [16], we assume a unit result latency for add, subtract, store, and move
instructions, a result latency of 2 cycles for multiply and load, and a result
latency of 17 cycles for divide. We also assume that all the FUs are fully pipelined
in a superscalar architecture with 1 FP adder, 1 FP multiplier, 1 FP divisor and
1 load/store unit. Lifetime for a dependence e = (u, v) has been considered from
the start ing of u to the start ing of v.

In order to show the efficacy of RESIS, we have executed the algorithm over
the schedules generated by HRMS [12]. Table 1 shows the reduction obtained
in the number of registers. For each benchmark, the first column shows the ini-
t iation interval of the found schedule. The next two columns show the absolute
(ALB) and the relative (RLB) lower bounds. RLB has been computed by using
the final schedule. The next column (OPT) shows the actual minimal regis-
ter requirements. This number has been calculated by using an integer linear
programming approach [17]. The next columns show the register requirements
(MazLive) of the schedule found by HRMS and by RESIS after each step (SPAN

831

reduction and incremental scheduling), as well as the CPU-time used in a Sparc-
10/40 workstation. Last column (diff) shows the register reduction achieved.

When comparing ALB and RLB to the optimal register requirements, we
find that the proposed lower bounds are very close to MaxLive. This suggests
that ALB and RLB are a good estimation for MaxLive.

Note that, despite HRMS is a very good algorithm from the point of view
of register pressure, RESIS achieves improvements in more than 20% of the
cases. The optimization is achieved by both the SPAN reduction phase and the
incremental scheduling phase. The short time used to calculate the final schedule
suggest that RESIS can be suitable to be integrated in a parallel compiler.

The schedule found after incremental scheduling is optimal in a more than
90% of the cases. However, we think that integrating both SPAN reduction and
incremental scheduling in a unique task may still obtain better results.

Table I . Register optimization in HRMS

II Lower b o u n d s I[H R M S [] R E S I S [[[
ApplicatiOnprogram A L B RLB O P T after S R after IS (secs) MaxLive MaxLive MaxLive t i m e [diff [

L o o p l 1 3 3 3 3 3 3 0.06
Loop2 6 3 4 5 5 5 5 0.08
Loop3 6 1 2 2 2 2 2 0.07
Loop4 11 8 8 8 8 8 8 0.07

S P E C Loop5 2 1 1 1 1 1 1 0.07
S P I C E Loop6 2 14 14 15 15 15 15 0.12

Loop7 3 8 14 15 15 15 15 0.06
Loop8 3 2 3 5 5 5 5 0.06
Loop9 6 4 4 7 7 7 7 0.11

L o o p l 0 3 2 2 2 3 2 2 0.02

L o o p l - i 20 4 4 5 7 7 6 0.09
SPEC Loop2 21 2 2 3 4 4 3 0.12

D O D U C Loop3 20 2 2 3 4 4 3 0.16
Loop7 2 18 18 18 18 18 18 0.02

H SPEC-FP.] L o o p l [[2 0] [2 I 2 I 2 II 2 [I 2 2 I 0.02

[[T O M P C A T [L o o p l H22[[2 [3 [6 [[7 [[7 6 [0.19

- i

- i
- i
- i

II I
[I-11

LooplII3 6 6 6 7 7 7]0.16 I
Livermore Loop5 [3 3 3 30 131 30 30 0.02

0.20 - I Loop23 9 5 8

[[Linpack] L o o p 1 [[2[[4 [5 [5][5 [[5 5 [0.02 [[[

L o o p l 17 2 4 5 5 5 5 0.15
Loop2 6 4 5 6 6 6 6 0.09
Loop3 5 3 4 4 4 4 4 0.02

Whetstone Cycle1 4 1 1 1 1 1 1 0.02
Cycle2 4 2 2 2 2 2 2 0.02
Cycle4 4 4 4 4 4 4 4 0.02
Cycles 4 S 8 8 8 8 S 0.02

8 C o n c l u s i o n s

In this paper we have presented RESIS, a new algorithm for register optimization
based on reducing the maximum number of variables whose lifetime overlaps
at any cycle. RESIS is divided into two steps, namely SPAN reduction and
incremental scheduling.

832

Results show that RESIS may reduce the register requirements of schedules
obtained by using any software pipelining approach. This is because it performs
a global optimization of the variable lifetimes.

R e f e r e n c e s

1. G. J. Chaitin. Register allocation and spilling via graph coloring. In Proc. of the
ACM SIGPLAN82 Syrup. on Compiler Construction, pages 201-207, June 1982.

2. J. Wang, A. Krall, M. A. Ertl, and C. Eisenbeis. Software pipelining with register
allocation and spilling. In Proc. of the 27th Annual Int. Syrup. on Microarchitecture
(MICRO27), pages 95-99, November 1994.

3. J. LLosa. Reducing the Impact of Register Pressure on Software Pipelined Loops.
PhD thesis, Universitat Polit&cnica de Catalunya (Spain), 1996.

4. D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation and
instruction scheduling for RISCs. In Proc. of the 4th Int. Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IV), pages
122-131, April 1991.

5. S. Pinter. Register allocation with instruction scheduling. ACM SIGPLAN No-
tices, 28(26):248-257, 1993.

6. C.E. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry by retim-
ing. In Proc. of the 3rd Caltech Conf. on VLSI, pages 87-116, March 1983.

7. F. Ss and J. Cortadella. Maximum-throughput software pipelining. In Proc.
of the Int. Conf. on Massively Parallel Computing Systems (MPCS), pages 483-
490, May 1996.

8. F. Ss and J. Cortadella. Time-constrained loop pipelining. In Proc. of the
Int. Conf. Computer-Aided Design (ICCAD), pages 592-596, November 1995.

9. B.R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for
software pipelining loops. In Proc. o] the ACM SIGPLAN92 Conf. on Program-
ming Languages Design and Implementation, pages 283-299, June 1992.

10. F. Ss and J. Cortadella. RESIS: A new methodology for register optimization
in software pipelining. Technical Report RR-1996/15, UPC-DAC, April 1996.

11. R. A. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the 6th Conf. Pro-
gramming Languages Design and Implementation, pages 258-267, 1993.

12. J. LLosa, M. Valero, E. Ayguad6, and A. Gonzs Hypernode reduction modulo
scheduling. In Proc. of the 28th Annual Int. Syrup. on Microarchitecture (MI-
CRO28), pages 350-360, November 1995.

13. F. Ss Loop Pipelining with Resource and Timing Constraints. PhD thesis,
Universitat Polit&cnica de Catalunya (Spain), 1995.

14. A. Sharma and R. Jain. InSyn: Integrated scheduling for DSP applications. In
Proc. of the 30th Design Automation Conf. (DAC), pages 349-354, June 1993.

15. J. Vanhoof, K. Van Rompaey, I. Bolsens, G. Goossens, and H. De Man. High-Level
Synthesis for Real Time Digital Signal Processing. Kluwer Academic Pub., 1993.

16. R. Govindarajan, E. R. Altman, and G. R. Gao. Minimizing register requirements
under resource-constrained rate-optimal software pipelining. In Proc. of the 27th
Annual Int. Syrup. on Microarchitecture (MICRO27), pages 85-94, November 1994.

17. J. Cortadella, R. M. Badia, and F. Ss A mathematical formulation of the
loop pipelining problem. Technical Report UPC-DAC-1995-36, Department of
Computer Architecture (UPC), October 1995.

