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Abst rac t .  This paper presents a new technique to reduce the regis- 
ter pressure in pipehned schedules. A two-step approach is proposed: 
minimizing the SPAN of the loop and rearranging operations within a 
basic block. Experimental results show that further improvements on the 
schedules found by the best existing techniques can be obtained at the 
expense of a negligible computational cost. 

1 I n t r o d u c t i o n  

In parallel architectures, a loop is usually executed by means of software pipelin- 
ing techniques. These techniques at tempt  to find a schedule that  contains in- 
structions belonging to different iterations. The number of registers required to 
execute the schedule may be reduced by adding spill code [1] (storing some vari- 
ables in memory).  When there are not enough registers to execute the schedule, 
some techniques increase the expected number of cycles (initiation interval or 
H) and schedule the loop again [2]. Recent experiments have demonstrated that  
this approach may never converge [3]. 

Scheduling followed by register allocation may require much spill code [4]. On 
the contrary, register allocation followed by scheduling may reduce the potential 
parallelism [5]. In this paper, we will show that  scheduling followed by register 
allocation may obtain optimal results in most cases. 

The rest of the paper is organized as follows: Section 2 presents the formal- 
ism to represent a loop and a schedule. Section 3 shows three different lower 
bounds on the number of registers required to execute a loop. Section 4 presents 
an overview of RESIS, the approach presented in this paper, and an example. 
Sections 5 and 6 present the two main steps of RESIS: SPAN reduction and 
incremental scheduling. Some results are reported in Section 7. 

2 O b t a i n i n g  a D G  f r o m  a s c h e d u l e  

A loop can be represented as a labelled directed dependence graph, DG(V, E). 
Each vertex u E V represents an instruction of the loop body. Each edge e E E 
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Fig. 1. Obtaining a DG from a schedule (a) Initial DG (b) Pipelined schedule by 
assuming 1 adder and 1 multiplier (c) Equivalent DG associated to the schedule 

corresponds to a data dependence between two instructions. Labels of the DG 
are defined by two mappings as follows: 

- A(u), defined on vertices, denotes the iteration index of u (~(u) _> 0). A(u) = 
i will be denoted by ui in the DG. Initially, Vu E V, ~(u) = 0. 

- ~(u, v), defined on edges, denotes the number of iterations traversed by the 
dependence. ~(u,v) = 0 corresponds to an intra-loop dependence (ILD). 
~(u, v) > 0 corresponds to a loop-carried dependence (LCD). 

In general, a schedule of a loop can be represented by a matrix containing 
the instructions of the loop. Each row of the matrix represents a cycle of the 
schedule. The schedule contains instructions that  may belong to different loop 
iterations. Thus, placing instruction ui at row j indicates that  instruction u from 
iteration i + k is executed at cycle j in the kth iteration. Figures l(a) and l(b) 
show an example of loop and schedule representation. 

A schedule obtained by means of software pipelining is in general associated 
to a DG different from the initial one, but equivalent to it (representing the same 
loop). Such a equivalence is described by means of the rules of retiming. Reliming 
[6] transforms a DG in a way such that  the index of the nodes (A's) and the 
distance of the dependences (~'s) may be different in both DGs. A DG = (V, E) 
is equivalent to another one DG' = (V, E) if the following condition holds: 

V(u, v) E E : A(v) - ;~(u) + ~(u, v) = A'(v) - A'(u) + ~'(u, v) (1) 

To build the DG associated to the schedule, the value of ~ for each instruction 
is taken from the schedule, and the value of ~ for each dependence is computed 
by using Equation (1). Since initially ~(u) = 0 for each u E V, we conclude that:  

v) = - + v)  (2 )  

As an example, DGs from Figures l(a) and l(c) are equivalent, since equation 
(1) holds for each dependence. The schedule from Figure l(b) can be easily 
obtained from the DG in Figure l(a) by using any software pipelining approach. 
However, note that  it can also be obtained from the DG in Figure l(c) by using 
any algorithm for scheduling basic blocks. This idea has been used in [7, 8] to 
perform software pipelining with resource and timing constraints. 
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Fig. 2. Example of register optimization 

A B C 

3 L o w e r  b o u n d s  o n  r e g i s t e r s  

A tight lower bound on the number of registers required by a schedule is the 
maximum number of variables whose lifetimes overlap at any cycle (MaxLive). 
[9]. Such a lower bound may not be reached, since a register assignment with 
such requirements may not exist (see [10] for an example). 

The number of registers required when all variables have the minimum life- 
time and their overlapping is minimized is also a lower bound, that  can be 

] minimum_variable_l i f et ime( e) / I I (3) 
le6E I 

An absolute lower bound (ALB) on the number of registers can be computed 
by using Equation (3) in a DG in which A(u) = 0 for each u E V .  ALB might 
be considered as a lower bound for any schedule of the loop [10]. 

A relative lower bound (RLB) on the number of registers can be computed 
by using Equation (3) with the DG associated to a schedule. 

In general, ALB < RLB g MaxLive. Note that  ALB is calculated by using 
the initial loop, MaxLive is calculated by using the final schedule and RLB is 
calculated by using the DG associated to the schedule. 

4 R E S I S :  s t r a t e g y  o v e r v i e w  

This paper proposes RESIS (REduce Span and Incremental Scheduling), an 
approach aiming at reducing the register requirements of a schedule. RESIS 
works in two separate steps: 

1. SPAN reduction: First, the DG associated to the schedule is built. Variable 
lifetimes are shortened by reducing the iteration index of some instructions 
and scheduling the new DG again. 

2. Incremental scheduling: Variable lifetimes are reduced by moving some in- 
structions within the schedule, attempting to reduce MaxLive. 

As a single example, Figure 2(a) shows the SPEC-SPICE loop 10. We assume 
a result latency of one cycle for subtract and store, two cycles for multiply 
and load and an architecture with one FU (functional unit) fully pipelined of 
each type. Figure 2(b) presents the schedule found by HRMS [12], requiring 3 
registers. Figure 2(c) shows the improvement achieved by RESIS. The index of 
instruction C has been reduced, and instructions A and C have been moved to 
a different cycle. As a result, the number of registers required is decreased by 
one. 
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Fig. 3. Example of SPAN reduction (a) 
associated (b) DG after SPAN reduction 

5 S P A N  r e d u c t i o n  

 ~ 
0 0 0 reg 

A 1 D 1 
. . . . . . . . . .  2 reg 
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(b) 

Schedule example (MaxLive = 3) and DG 
and scheduling with MaxLive = 2 

5.1 S t r a t e g y  o v e r v i e w  

The SPAN of a DG is defined as A,~a~ - Ar~i~ + 1, where Ama~ and Amin are the 
m a x i m u m  and minimum values for A. In general, a reduction of the SPAN in a 
DG leads to a reduction in the variable lifetimes in any associated schedule. 

The SPAN reduction phase works as follows. First of all, the DG associated 
to the given schedule, DG' ,  is built by using Equation (2) for each dependence 
(we assume the initial DG is known). Following this, the m a x i m u m  value for 
(A,~a~) is computed by exploring all nodes in DG' .  Then, this value is i teratively 
decreased while the following three conditions hold: 

- a DG with min imum SPAN is not found (minimum SPAN=l) 
- the critical path  (CP) of the current DG is not longer than the expected H 
- the number  of registers estimate for the current schedule is greater than the 

absolute lower bound (MaxLive >ALB) 

DG ~ Select node u and ~ Reduce scheduling ~ _ l ~ p ,  ACNP~I~.~h/p ~ _ ~  Reduce local ~ OUTPUT 
11 ~ Reduce index of u I v I depend . . . . .  I r ~ ~  maxima [ SCHEDULE 

% f  

Fig. 4. Flow diagram of SPAN reduction 

Figure 3 shows an example of the effectiveness of reducing the SPAN in an 
architecture with 2 FUs. Figure 4 shows a flow diagram of the algori thm used to 
reduce the SPAN. The execution t ime of the algorithm 2 is O(V3E + VE  2) [13]. 
The following sections explain in detail each one of the steps in the diagram. 

5 . 2  S e l e c t i n g  a n o d e  t o  r e d u c e  t h e  S P A N  

In order to reduce the SPAN, two different approaches may  be used: reducing 
/~rnax o r  increasing Amen. A transformation called reduce_index is used 3 to reduce 

2 V and E are the number of nodes and edges in a DG respectively. 
3 A similar transformation is used to increase Am~. 



828 

A,~a,. Reduce_index(u) is based on retiming, and it is only applied to nodes so 
that  the transformed DG has non-negative dependences. Among all the nodes in 
the DG, the node which will produce the DG with the shortest CP is selected. 
Reduce_index(u) decreases A(u) by also transforming 8(e) for the incoming and 
outgoing edges of u as follows: 

- = - 1 

- V ( u , v )  e E ,  8 ' ( u , v )  = 6 ( u , v ) -  1 

- V ( v , u )  �9 E ,  8'(v,u) = 8(v,u) + 1 

5.3 R e d u c i n g  t h e  n u m b e r  of  s chedu l ing  d e p e n d e n c e s  

Let Lu be the execution time for an instruction u. As shown in Figure 5, for an 
e x p e c t e d / / o f  the schedule, data dependences can be classified as follows [13]: 

- Positive Scheduling Dependences (PSDs): 6(u, v) < ~ /  
- Negative Scheduling Dependences (NSDs): L,,+H-11I > 6(U, 1)) >_ ~II 
- Free Scheduling Dependences (FSDs): 8(u, v) > L,+II-1 -- I I  

L u Lu+//-1 
0 

H H 

PSD NSD FSD 
(u,v) 

Fig. 5. Types of scheduling dependences according to the value of 6(u, v) 

PSDs constrain the scheduling process more than NSDs, and FSDs do not 
constrain the schedule. In fact, some NSDs do neither constrain the scheduling 
process [13]. The SPAN reduction algorithm attempts to reduce the number of 
PSDs and NSDs without increasing the SPAN by transforming them into FSDs. 
Function reduce_sched_depend performs such a task (see Figure 6). 

DGs containing fewer PSDs are considered better for scheduling. For the same 
number of PSDs, the DG with fewer NSDs is considered as the best. An edge 
is selected to be retimed only once if a better DG is not found. The heuristics 
used to select an edge for retiming are as follows: (i) head of a CP 4, (ii) tail of 
a CP, (iii) head or tail of a path not critical. The scheduling algorithm used is a 
list scheduling (see [13] for details). 

5.4 R e d u c i n g  local  m a x i m a  

On one hand, the algorithm to reduce SPAN is based on reducing the index of 
nodes whose index is Area,. Therefore, no reduction is done with nodes having 
smaller indices. However, the index of such nodes may also be reduced, also 
reducing the variable lifetimes and thus register requirements. On the other hand, 
the function reduce_sched_depend increases the distance of some dependences. As 

4 A CP is a path formed only by PSDs. 
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f u n c t i o n  r educe - . s ched_depend(DG,  H ) ;  
DG 1 :=  DG; 
R e p e a t  

sehed :=  schedul ing(DG,  II); 
i f  no schedu le  has  been  found  t h e n  

e : = s e l e c t _ e d g e ( D G ,  Amax); 
i f  edge_selec ted  t h e n  

DG : = r e t i m i n g ( D G ,  e); 
i f  (DG is b e t t e r  t h a n  DG~) 

the** DG]_ :=  DG; 
u n t i l  (no  edge  se lec ted  o r  schedule  found) ;  
r e t u r n  t r u e  if a schedule  has  been  found;  

f u n c t i o n  reduce local.xnax( D G , S C H , H ) ;  
DG]_ :=  DG; 
l o o p  

u :=se lec t  a node  f rom DGIA 
e x i t  if no  n o d e  se lected;  
DG1~ := reduce_ index(DGl_ ,  u) ;  
new-sched  :=scheduling(DG1, H ) ;  
i f  schedu le  f o u n d  t h e n  

DG :=  DG1A 
S C H  := new-sched ;  

e l s e  u n d o  r e d u c e _ i n d e x ( D G 1 ,  u) ;  
r e t u r n  SCH;  

Fig. 6. Functions r e d u c e _ s c h e d _ d e p e n d  and r e d u c e _ l o c a l _ m a x i m a  

a side effect, the indices of some nodes may be unnecessarily increased. Given the 
previous argumentation, some indices smaller than ~rnax may also be reduced 
after reducing the SPAN. These nodes are called local maxima. Figure 6 shows 
the algorithm used to reduce local maxima. 

6 Incremental scheduling 

6.1 Strategy  overv iew 

1 Reg --.~- ......... 1 Reg 

| 1 1 
2 Reg ................ 0 Reg 

2 
1 Reg . . . . . . . . . .  I Reg 

3 3 

(a) (b) 

Fig. 7. Reducing registers by i n c r e m e n t a l  s c h e d u l i n g .  

After reducing the SPAN, RESIS tries to reduce register requirements by re- 
arranging some instructions without changing their iteration indices. This step is 
denoted incremental scheduling (Figure 7 shows an example). Code rearranging 
strategies have previously been proposed by other authors [14, 15]. Two different 
moves are considered: 

- Re-schedule: moves an instruction from the current cycle to another cycle if 
sufficient resources are available. 

- Swap: swaps the scheduling of two instructions that  have a similar execution 
pattern (both instructions use the same resources at the same cycle). 

The execution time of incremental_scheduling is O(V 3) [13]. The incremental 
scheduling algorithm is as follows: 

1. Compute the RLB. This is done to stop the search when a schedule requiring 
such registers is found. 

2. Compute MaxLive. The algorithm ends if MaxLive = RLB. 
3. Select a cycle c requiring MaxLive registers. 
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4. Select an instruction to move across cycle c. The lifetime of the variable read 
or written by the selected instruction must  be alive at cycle c. An instruction 
is selected only once if no movements  are carried out within the schedule. 

5. Move (re-schedule) the selected instruction until crossing cycle c, decreasing 
the number  of registers required at cycle c. Swapping the instruction for 
another one is only done when re-scheduling the instruction is not successful. 

6. If no successful move can be done with the selected instruction, select another 
one to move across cycle c and go to 5. If  the instruction is moved successfully, 
go to 2. The process is repeated until no instruction can be moved. 

6.2 M o v i n g  a n  i n s t r u c t i o n  

A move consists of moving a node (forward or backwards) across a given cycle c, 
a t tempt ing  to prevent the variable lifetime from being alive at cycle c. In order 
not to change the iteration index of any instruction, no movement  can be done 
across the boundaries of the schedule. 

- Re-scheduling: Assume that  u was scheduled at cycle S(u). If u must  be 
moved forward, t ry to reschedule u from cycle c + 1 to cycle ALAP(u) If  u 
must  be moved backwards, try to reschedule u from cycle c to cycle S(u). 

- Swapping: In order to swap u with another node, a node v is selected among 
those tha t  have a similar execution pat tern  as u. The swapping is recursively 
done by following the same algorithm as that  used to move u (first by re- 
scheduling v, and by swapping v for another node x only when v cannot be 
successfully re-scheduled). 

7 E x p e r i m e n t a l  R e s u l t s  

We have borrowed from [16] a set of benchmark loops selected from assorted 
scientific programs such as Livermore Loops, SPEC, Linpack and Whetstone. 
As in [16], we assume a unit result latency for add, subtract,  store, and move 
instructions, a result latency of 2 cycles for multiply and load, and a result 
latency of 17 cycles for divide. We also assume that  all the FUs are fully pipelined 
in a superscalar architecture with 1 FP adder, 1 FP multiplier, 1 FP divisor and 
1 load/store unit. Lifetime for a dependence e = (u, v) has been considered from 
the start ing of u to the start ing of v. 

In order to show the efficacy of RESIS, we have executed the algorithm over 
the schedules generated by HRMS [12]. Table 1 shows the reduction obtained 
in the number  of registers. For each benchmark,  the first column shows the ini- 
t iation interval of the found schedule. The next two columns show the absolute 
(ALB) and the relative (RLB) lower bounds. RLB has been computed by using 
the final schedule. The next column (OPT) shows the actual minimal regis- 
ter requirements. This number  has been calculated by using an integer linear 
programming approach [17]. The next columns show the register requirements 
(MazLive) of the schedule found by HRMS and by RESIS after each step (SPAN 
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reduction and incremental scheduling), as well as the CPU-time used in a Sparc- 
10/40 workstation. Last column (diff)  shows the register reduction achieved. 

When comparing ALB and RLB to the optimal register requirements, we 
find that the proposed lower bounds are very close to MaxLive. This suggests 
that ALB and RLB are a good estimation for MaxLive. 

Note that, despite HRMS is a very good algorithm from the point of view 
of register pressure, RESIS achieves improvements in more than 20% of the 
cases. The optimization is achieved by both the SPAN reduction phase and the 
incremental scheduling phase. The short time used to calculate the final schedule 
suggest that RESIS can be suitable to be integrated in a parallel compiler. 

The schedule found after incremental scheduling is optimal in a more than 
90% of the cases. However, we think that integrating both SPAN reduction and 
incremental scheduling in a unique task may still obtain better results. 

Table I .  Register optimization in HRMS 

II Lower b o u n d s  I[ H R M S  [] R E S I S  [[ [ 
ApplicatiOnprogram A L B  RLB O P T  after S R  after IS (secs)  MaxLive  MaxLive  MaxLive  t i m e  [diff [  

L o o p l  1 3 3 3 3 3 3 0.06 
Loop2 6 3 4 5 5 5 5 0.08 
Loop3 6 1 2 2 2 2 2 0.07 
Loop4 11 8 8 8 8 8 8 0.07 

S P E C  Loop5 2 1 1 1 1 1 1 0.07 
S P I C E  Loop6 2 14 14 15 15 15 15 0.12 

Loop7 3 8 14 15 15 15 15 0.06 
Loop8 3 2 3 5 5 5 5 0.06 
Loop9 6 4 4 7 7 7 7 0.11 

L o o p l 0  3 2 2 2 3 2 2 0.02 

L o o p l - i  20 4 4 5 7 7 6 0.09 
SPEC Loop2 21 2 2 3 4 4 3 0.12 

D O D U C  Loop3 20 2 2 3 4 4 3 0.16 
Loop7 2 18 18 18 18 18 18 0.02 

H SPEC-FP. ] L o o p l [ [ 2 0 ] [  2 I 2 I 2 II 2 [I 2 2 I 0.02 

[ [ T O M P C A T [ L o o p l  H22[[ 2 [ 3 [ 6 [[ 7 [[ 7 6 [ 0.19 

- i  

- i  
- i  
- i  

II I 
[I-11 

LooplII3 6 6 6 7 7 7 ]0.16 I 
Livermore Loop5 [3 3 3 30 131 30 30 0.02 

0.20 - I  Loop23 9 5 8 

[[ Linpack ] L o o p 1  [[2[[  4 [ 5 [ 5 ][ 5 [[ 5 5 [ 0.02 [[ [ 

L o o p l  17 2 4 5 5 5 5 0.15 
Loop2 6 4 5 6 6 6 6 0.09 
Loop3 5 3 4 4 4 4 4 0.02 

Whetstone Cycle1 4 1 1 1 1 1 1 0.02 
Cycle2 4 2 2 2 2 2 2 0.02 
Cycle4 4 4 4 4 4 4 4 0.02 
Cycles 4 S 8 8 8 8 S 0.02 

8 C o n c l u s i o n s  

In this paper we have presented RESIS, a new algorithm for register optimization 
based on reducing the maximum number of variables whose lifetime overlaps 
at any cycle. RESIS is divided into two steps, namely SPAN reduction and 
incremental scheduling. 
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Results show that RESIS  may reduce the register requirements of schedules 
obtained by using any software pipelining approach. This is because it performs 
a global optimization of the variable lifetimes. 
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