
A Transaction Model for Multidatabase
Systems

Timu~in Devirmi~ and Ozgiir Ulusoy

Department of Computer Engineering and Information Science
Bilkent University

Bilkent, Anl~ra 06533, TURKEY

1 I n t r o d u c t i o n

In this paper, we present a new transaction model for multidatabase systems
(MDBSs). This model captures the formalism and semantics of various extended
transaction models and adopts them to an MDBS environment. The extended
models constituting our transaction model are the nested transactions [4], the
flexible transaction model that provides various dependency relations among
transactions [7], and the model that involves a relaxed version of transaction
atomicity, namely the semantic atomicity, to increase the level of concurrency
[2], [5]. While including the semantics of all those transaction models, the global
serializability in our execution model was ensured through the use of the ticketing
method [3].

2 A M u l t i d a t a b a s e T r a n s a c t i o n M o d e l

In a multidatabase environment, some subtransactions can be committed inde-
pendent of its global transaction. If a subtransaction's effects on the database
can be semantically undone by executing a compensating transaction, the sub-
transaction can be allowed to commit earlier. A subtransaction that reserves
a seat in an airline reservation system is compensatable by a transaction that
cancels the reservation. Another kind of commit independent transactions is the
retriable transactions which eventually commit if they are retried a number of
times. A retriable transaction can be committed later than the global transac-
tion. Crediting a bank account is an example of retriable transactions. We will
consider three transaction types (TT) in our model:

- Compensatable (C),
- Retriable (R), or
- Ordinary (O) (neither compensatable nor retriable).

In the following, we provide a formal definition for subtransactions processed
in our MDBS and the dependency relation types among subtransactions.

D e f i n i t i o n 1. A subtransaction S is a 2-tuple S=(TT,CT) where

863

- T T is the transaction type of S;
- CT is the set of compensating transactions of S, if T T is compensatable.

D e f i n i t i o n 2 . Let S~ and Sj be two subtransactions. We define four types of
dependency relation between Si and Sj.

- Precedence relation (<), Si < Sj means that Sj cannot begin execution until
Si successfully finishes its execution.

- Alternative relation (o), Si o Sj means that Sj and Si are alternative of each
other and any of them can be executed. It is also possible to execute them
together, but only one of them should be committed.

- Preference relation (~,), Si ~, Sj means that among two alternative subtrans-
actions Si and Sj, Si is preferred to Sj. If they are executed together, Sj can
be committed only if Si fails. If they are not allowed to execute together, Si
should execute first, and if it fails, Sj can be executed.

- No-dependency relation (n) , Si[]Sj means that Si and Sj can execute inde-
pendently.

A global transaction in our model is syntactically a nested transaction with
extended semantics. A global transaction consists of a set of child transactions
each of which is either a subtransaction or again a global transaction. This trans-
action model can be represented as a tree where the internal nodes are global
transactions and the leaf nodes are subtransactions. The height of a transaction
tree can vary depending on the transaction complexity.

D e f i n i t i o n 3 . A global transaction G is a 3-tuple G=(ST ,DT,TO) where

- ST is the set of global transactions and /o r subtransactions that are the
children of G;

- DT is the dependency type among the transactions in ST;
- TO is the total order on ST according to the dependency specified in DT.

3 A n E x e c u t i o n A r c h i t e c t u r e f o r t h e P r o p o s e d

T r a n s a c t i o n M o d e l

In our execution model, the local transactions are directly submitted to local
database management systems (LDBSs), while global transactions use a com-
mon MDBS interface. A global transaction, submitted to the global transaction
manager (GTM), is divided into a number of subtransactions, and each sub-
transaction is sent to the relevant site where the required data iterns reside. A
set of application programs called agents is built on top of the LDBSs to act
as an interface between GTM and each local site in controlling the execution of
subtransactions.

The objectives of GTM are to avoid inconsistent retrieval of data, and to
preserve global consistency and atomicity. The LDBS at each site ensures the
local consistency and isolation properties by generating serializable schedules.

864

Global serializability can be provided by obtaining the information of relative
serialization order of subtransactions at each local site and guaranteeing the
same relative order at all those sites [6].

3 . 1 E n s u r i n g G l o b a l A t o m i c i t y

We need to extend the traditional atomicity to capture the semantics of depen-
dency relations among subtransactions. The execution of a global transaction G
preserves the semantic atomicity, if the following conditions are satisfied:

- When a precedence or a no-dependency relation exists among its children,
G can commit if all of its child transactions commit. If one of its child
transactions is aborted, G is aborted and the other child transactions are
either aborted or the effects of commit ted ones are undone.

- If an alternative or a preference relation exists, G can commit if one of its
child transactions commits. When a child transaction commits, other child
transactions tha t are executing are aborted.

The execution of a global transaction containing only ordinary children pro-
ceeds as follows.

- First, the global transaction is constructed with the initial execution state.
- G T M spawns the children of the global transaction according to the specified

dependency type:
�9 If either a no-dependency, or an alternative, or a preference dependency

exists, all of the child transactions are created.
�9 Otherwise (if a precedence relation is specified), the children are created

on the basis of the given total order.
- I f G T M reaches a leaf node in the nested transaction tree and creates a sub-

transaction, it submits the subtransaction to the corresponding site through
the agents.

- When a subtransaction finishes its database operations, the agent of that
site sends a ready-to-commit message to GTM.

- After receiving a ready-to-commit message for a subtransaction, GTM checks
the dependency type associated with the parent of the subtransaction to find
out what to do next.

�9 I f a precedence relation exists among its children, the next child transac-
tion in the given order is created by GTM. If all of the child transactions
enter the ready-to-commit state, the parent also enters the ready-to-
commit state.

�9 If an alternative relation exists, the parent enters the ready-to-commit
state and G T M sends messages to the relevant agents to abort the other
child transactions.

�9 I f a preference relation exists, the parent enters the ready-to-commit
state if the completed subtransaction is the most preferred one. When
the parent becomes ready to commit, G T M broadcasts the abort message
for the other child transactions.

865

�9 If a no-dependency relation exists, the execution state of the parent
becomes ready-to-commit after all of its children enter the ready-to-
commit state.

- If the root transaction enters the ready-to-commit state, G T M decides to
commit or abort the transaction according to the concurrency control algo-
r i thm executed.

- After a commit or abort is issued for the root transaction, G T M broadcasts
a message to child transactions down to the leaves of the transaction tree to
commit or abort the subtransactions at local sites.

3.2 Ensuring Global Serializability

The global seriatizability is ensured in our execution model by employing a
ticketing-based concurrency control for global transactions. The ticket values ob-
tained by subtransactions are transferred to their parents up to the root transac-
tion. G T M ensures the same relative serialization order at all sites of the global
root t ransaction using the ticket values obtained. Two possible methods that
can be used to control concurrent execution of global transactions are the opti-
mistic ticketing method, and the conservative ticketing method [3]. Due to the
space l imitat ion the implementat ion details of these two methods in our execu-
tion model are not included in this paper. Interested readers are referred to [1],
which also includes the details of the execution strategies for commit indepen-
dent subtransactions. The performance implications of the proposed transaction
model are also discussed in [1].

References

1. T. Devirmi~: Transaction Execution in Multidatabase Systems. M.S. Thesis in
preparation, Department of Computer Engineering and Information Science, Bilkent
University (1996)

2. A. Elmagarmid, Y.Leu, W. Litwin, M. Rusinkiewicz: A Multidatabase Transaction
Model for Interbase. VLDB Conference (1990) 507-518

3. D. Georgakopoulos, M. Rusinkiewicz, A.P.Sheth: Using Tickets to Enforce the Se-
rializability of Multidatabase Transaction. IEEE Transactions on Knowledge and
Data Engineering 6 (1994) 166-180

4. J.E.Moss: Nested Transactions: An Approach to Reliable Distributed Computing.
MIT Press (1985)

5. S. Mehrotra, R. Rastogi, H.F. Korth, A. Silberschatz: A Transaction Model for Mul-
tidatabase Systems. Technical Report TR-92-14, Department of Computer Science,
University of Texas at Austin (1992)

6. M. Rusinkiewicz, P.Krychniak, A. Cichocki: Towards a Model for Multidatabase
Transactions. Technical Report UH-CS-92-18, Department of Computer Science,
University of Houston (1992)

7. A. Zhang, M. Nodine, B. Bhargava, O. Bukhres: Ensuring Relaxed Atomicity for
Flexible Transaction in Multidatabase Systems. ACM SIGMOD Conference (1994)
67-78

