
Synthesis of Massively Pipelined Algorithms for
List Manipulation

Ali E. Abdallah

The University of Reading
Department of Computer Science

Reading, RG6 6AY, U.K.
Emaih A.Abdallah~reading.ac.uk

Abstrac t . This paper presents new, efficient, massively pipelined algo-
rithms for several list manipulation operations. Transformational pro-
gramming is used in the development of these algorithms from clear
functional specifications to networks of linearly connected communicat-
ing processes in CSP. The derivation of each algorithm is achieved by
transforming the specification into an instance of a generic parallel func-
tional form called pipe pattern and then refining this into CSP. The ap-
proach is demonstrated by transforming quadratic functional algorithms
for sorting, removing duplicates, and calculating the difference between
two lists, into pipelined versions running in linear time with a linear
number of processors. The refinement from functions to CSP processes is
based on a formal treatment given in earlier work by the author. Deriva-
tion and reasoning are conducted using Bird-Meertens Formalism.

1 I n t r o d u c t i o n

List manipulation operations such as those for sorting, removing duplicates,
and calculating the difference between two lists are essential in the construction
of numerous applications. The purpose of this paper is to demonstrate how
transformational programming can be used to synthesize new massively parallel
algorithms for these operations. The starting specification of each operation is
formulated as a functional program and the final implementation is formulated
in CSP as a static network of processes. The implementation is derived from the
specification by a process of systematic algebraic manipulations.

The effectiveness of the calculational approach in deriving efficient sequential
algorithms from high-level functional specifications has been demonstrated in nu-
merous case studies [3, 4, 5, 6]. Because of the much greater complexity involved
in the development of parallel algorithms, the transformational programming
approach seems to be essential, not only for a deeper understanding of existing
algorithms, but also, as this paper shows, for the discovery of new ones. Clearly,
achieving parallelism is not the objective of the initial functional program. Typ-
ically, parallelism and communication are introduced at a later stage during the
development process, for the sole purpose of capturing functionally equivalent
but more efficient parallel algorithms.

912

The transformational derivation of each algorithm is structured into two
stages. The first aims at identifying implicit pipelined parallelism in the func-
tional specification. This is achieved by transforming it into an instance of a
generic parallel functional form called pipe pattern. The transformation is con-
ducted using Bird and Meertens calculus and is guided by new methods for iden-
tifying pipelined parallelism. The second stage aims at refining the functional
instance of the pipe pattern into an appropriate static pipeline network of com-
municating processes in CSP. This is achieved whithin an algebraic framework
based on earlier work by the author. It uses refinement concepts and transfor-
mation laws introduced in [1, 2, 8]. The individual processes in the network
are usually instantiations of a single parameterized process in CSP. Connections
between the processes are fixed throughout the execution of the network and
communications take place only locally between neighbouring processes. Pipe
patterns can be efficiently implemented on a variety of parallel machines which
includes systolic arrays, pipelined, and MIMD machines.

The usefuness of the approach is demonstrated by sytematically synthesizing
new massively pipelined algorithms for sorting, removing duplicates, and calcu-
lating the difference between two lists. The sequential functional version of each
of these algorithms runs in quadratic time, but the pipelined version runs in
linear time and uses a linear number of processors.

The remainder of this paper is organised as follows. Section 2 contains a brief
summary of the notation and Section 3 introduces the concept of refinement from
functions to sequential processes in CSP. New techniques for identifying pipelined
parallelism in functional programs are introduced in Section 4. The usefulness
of these techniques is demonstrated in Sections 5-7 by deriving several new,
efficient, massively parallel algorithms for list manipulations. Section 8 describes
related work and concludes this paper.

2 N o t a t i o n

Throughout this paper, we use the functional notation and calculus developed
by Bird and Meertens [3, 5] for specifying algorithmics and reasoning about
them. We also use the CSP notation and its calculus developed by Hoare [8] for
specifying processes and reasoning about them. We give a brief summary of the
notation and conventions used in this paper.

Lists are finite sequences of values of the same type. The list concatenation
operator is denoted by -IF and the list construction operator is denoted by: (pro-
nounced "cons"). Functional application is denoted by a space and functional
composition is denoted by o. The operator �9 (pronounced "map") takes a func-
tion on the left and a list on the right and maps the function to each element of
the list. Informally, we have:

.f * [al, a2, �9 �9 �9 a2] ---- If (al), .f (a2),. �9 �9 , .f (an)]

The operator / (pronounced "reduce") takes an associative binary operator on

913

the left and a list on the right and is informally described as follows

($) / [a l , a 2 , . . . , a n] = ai �9 o~2 0 . . . @ an

In order to concisely describe structured networks of processes we find it very
convenient to use, in addition to the CSP notation, functions which return pro-
cesses and functional operators such as map (,) and reduce (/) . For example,
if F is a function which returns processes, @ is an associative CSP operator and
[a l , a2 , . . . ,an] is a list of values, we have

F * [al,a2,. . . ,a2] = [F(al) ,F(a2) , . . . ,F(an)]
(~) / F . [a i , a2 , . . . ,an] = F (a i) @ F(a2) e " " @ F(an)

In CSP, the notation P d; bool ~ Q is just an infix form for the traditional
selection construct i f bool t h e n P else Q. In general, we use identifiers with
lower case letters to name functional values and with upper case letters to name
processes or types. Occasionally, we will underline a symbol, such as F_, in order
to emphasize the fact that it is a function which returns processes. We will
also use the notation F(x) instead of (F x) to denote the process obtained by
applying the function F to the value x. When parsing expressions, we assume
that functional application has the highest precedence and associates to the
left, but all other functional operators have equal precedence and associate to
the right. For example, the expression F * s -H- t means F * (s A+ t) and not
(F * s) -4+ t.

3 R e f i n e m e n t f r o m F u n c t i o n s t o P r o c e s s e s

The refinement from functions to CSP processes is based on the formal treatment
given in [2, 1]. In general, there could be many semantically different sequential
processes which refine (or correctly implement) a given function. Some of these
processes are more suitable than others in the context of parallel computations.
The most useful functions for designing algorithms as networks of communicating
processes are those which manipulate lists. A function f :: [A] ~ [B] can be
viewed as a specification of a pipe process which consumes a stream of values
(argument) on the input channel and produces a stream of values (result) on the
output channel. By convention, the end of each stream is denoted by a special
symbol eot indicating "end of transmission". In CSP, a pipe process Q is said
to refine a function f :: [A] -+ [B] if[for all lists s drawn from the domain of f ,
the output stream of Q is f (s) -H- [eot] whenever the input stream is s A+ [eot].
This concept is illustrated in Figure 1.

Formally, a pipe process Q is a refinement of a function f :: [A] --+ [B],
written as (] -4 Q), iff the following condition holds:

Vs E dom f �9 Prd(s) b Q = P r d (f s)

914

8 + [eot]
Ii q

Fig. 1. A process Q refining a function f.

The operator ~>, see [2, 1] for full details, is similar to the CSP piping operator
>> except tha t the left operand of E> is a producer (a process which can only
output). For any list s, the producer process Prd(s) is defined by the equations

EOT = !cot --> S K I P
Prd [] = EOT
Prd (x :s) = !x --+ Prd(s)

The proof tha t a process Q refines a function f , that is (f -< Q), is usually
established by a simple inductive argument.

3.1 Exanap les

We consider several useful functions and present a typical refinement of each of
these functions as a sequential process in CSP. The resulting processes will be
the basic building blocks for the construction of several parallel algorithms which
will be encountered later. Correctness proofs of the refinement and techniques
for systematically synthesizing sequential processes in CSP from functional def-
initions can be found in [1].

- T h e i d e n t i t y f u n c t i o n id[A]: The identity function over lists of values
id[A] :: [A] --+ [A] can be refined by any bounded buffer process and, in par-
ticular, by the process:

COPY = # X . ?x =-+!x -+ (S K I P ~ .x=eo t~ X)

- T h e f u n c t i o n map: For any function f :: A + B, the map function
f * :: [A] ~ [B] can be refined by the process:

M A P (f) = # X . ?x --+ (EOT ,~.x=eot~ ! (f x) --~ X)

- T h e f u n c t i o n filter. For any predicate p :: A --+ bool, the filter function
(filter p) :: [A] ---> [A] can be refined by the process:

F I L T E R (p) = # X * ? x - ~ (EOT ~.x=eot~. (Ix ~ X Jgpx~, X))

915

4 Decomposition Strategies for Pipelined Parallelism

Pipelined parallelism is a very effective means for achieving efficiency in numer-
ous algorithms. It is generally much harder to detect than data parallelism. The
function decomposition strategy aims at exhibiting pipelined parallelism in func-
tional programs. The fundamental objective of this strategy is to transform a
given algorithmic expression into a new form in which the dominant term is a
composition of several functions. To fully appreciate the usefulness of this trans-
formation, we will appeal to a basic result, shown in [1], that the composition of
functions is naturally refined in CSP by the piping operator as follows

f :: [A] -+ [B]; g :: [B] -+ [C]
go]

F)) G

By an inductive argument, using the associativity of >>, this result can be gener-
alised so that the composition of any finite list of functions, say [fl, f2, --, I n - l , fn],
is refined by piping the list of processes [F~, F~-I , .., F2, F1] where for each in-
dex i, 1 < i < n, the process Fi is a refinement of the function fi-

4.1 P i p e P a t t e r n s

There are several general recursive functional forms, called pipe patterns [1],
which can be systematically transformed into networks of linearly connected
processes in CSP. These patterns encapsulate algorithmic definitions which are
frequently encountered in functional specifications. They are generally suitable
for massively parallel implementations. A particular pipe pattern which will be
used to derive all the parallel algorithms presented in this paper has the form:

spec :: [A] -+ [B]; f :: A ~ ([B] ~ [B]); e :: [B]
spec [] = e
spee (a: s) = f a (spec s)

An alternative formulation of this pattern can be captured by the higher order
function fo ldr as (specs = fo ldr f e s). This pattern has a high degree of im-
plicit parallelism. The parallelism can be clearly identified by using the function
decomposition strategy. All we need is to transform (spec s) into an expression
in which the dominant term is of the form (o)/fs, for some list of functions fs.
This is achieved by transforming the recursive definition of specs into a new
form defined using the composition of a list of functions, namely ((o) / f �9 s) e.
The informal justification for this transformation is as follows:

spec s = spec [al, a2 , . . . , an]
= f al (spec [a2, a3 , . . . , an])
= / al (Y a~ (spec [a3 , . . . , a ,]))
= (f al o f a2) (spec [a3,... , and
= (f ~1 o / ~ 2 o " " o / ~ ,) (spec U)
= ((o) / f * [~1, a s , . . . , a ,]) e
= ((o) /3'* s) e

916

A formal proof of this recursion unrolling rule is straightforward by induction.
Now provided that for all values a in A, the function (f a) is refined by a process
F(a) in CSP, then spec(s) can be refined into the following network:

S P E C (s) = Prd (e) t> (>>)/F* (reverse s)

The proof of this result directly follows from the refinement of function compo-
sition and the refinement of function application [2, 1]. If the list s contains n
values, tha t is s = [a l , a2 , . . . ,an], then s p e c s can be implemented as a pipe of
(n + 1) processes. Processes in the pipe are mainly instances of a single process
F. The network S P E C ([a l , a 2 , . . . , anD, can be pictured as follows:

spec D

I I
Prd(e)

I
F(a~) F(a~)

I -I
F(a._~)

spe4a~.., am]

-I
F(al)

Fig. 2. SPEC([a t , a2 a,])

spec[a t . . . a~]

5 P a r a l l e l Inser t Sort

The functional specification of the insertion sort algorithm i sor t can be recur-
sively captured as follows:

i sor t :: [a] -+ [a]; i n s e r t :: a -+ [a] -+ [a]
i sor t U = [1
i sor t (a: s) = i n s e r t a (isort s)

i n se r t a D -- [a]
i n s e r t a (x: s) = x: i n se r t a s, if x < a

= a: x: s, otherwise

This algorithm is usually regarded as inherently sequential and cannot be ef-
fectively parallelized. We will show that by using new techniques for exploiting
pipelined parallelism, this algorithm can be transformed into an efficient mas-
sively pipelined network of communicating processes in CSP. To achieve this,
observe that the definition of i sor t is expressed as a pipe pattern. In this case
the starting value e is ~ and the step function f is inser t . Therefore, it follows
from the previous section that for all lists s, i sor t (s) can be implemented as the
following network:

I S O R T (s) -- E O T C> ((> >) / I N S E R T , (reverse s))

917

where for all values a, the sequential process INSERT(a) is a refinement of
the function (insert a). Here is a possible refinement of (insert a):

I N S E R T (a) = # X . ?x --~ (!a -~ !eot --~ S K I P ~.x = eot:~

!a --~ !x --~ COPY)

The diagram in Figure 3 depicts how the network ISORT([5, 4, 8, 9, 3, 5, 8])
may evolve with time by illustrating the timed behaviour of the individual pro-
cesses in the network. Note that the input stream for each process in the network
is displayed on the horizontal line below it and its output stream is displayed
on the line above it. Communications can only take place between neighbour-
ing processes in a synchronized fashion, that is the output of each process is
simultanously input to the process above it.

channels

c2

. 3 ~ 5 5 8 8 9 eot

: : : : : : "3 : "4 : "5 : : "s : "s : "9 : "rot:

: : : : S : "5 : s : : : : : : 9 : ~ot : : :

8 r o t

eOt .

i a I i i I i I i I i i i t I I i I i i i

t5 t~o t15 t~0 Time

Fig. 3. Time diagram for the computation of ISORT([5, 4, 8, 9, 3, 5, 8])

To analyse the time complexity of the network ISORT(s) for a list of length n,
say TISORT(n), observe that the first element of the result is output on the exter-
nal channel after n computational steps, after which the remaining elements of
the sorted list will successively appear on the output channel after two steps each
(one communication and one comparison). Hence, TISORT(n) = O(n). There-
fore, using n processes, the parallel implementation of isort(s) shows an ideal
O(n) speed up over the sequential implementation.

918

6 Parallel Removal of Dupl icates

The function r m d u p :: [a] -+ [~] that removes all but the first occurrence of each
element in a list is defined as:

r m d u p D = []
r m d u p (x: xs) = x : f i l t e r (i~ x) (rmdup xs)

This function is automatical ly executed in some relational database implemen-
tations in order to normalize the result of some relational operators such as
select, j o i n , un ion , and projec t . Clearly, this function matches the pipe pattern
form. In this case, e = [] and the step function f is

f x ys = x : f i l t e r (~ x) ys

Hence, for all lists s, a parallel implementation of (rmdup s) is synthesized as:

R M D U P (s) = E O T ~> ((>>)/ (F* (reverse s)))
F (x) = !x -+ F I L T E R (r x)

The diagram in Figure 4 depicts how the network R M D U P ([4 , 3, 4, 5, 3, 5, 2, 3])
may evolve with time. Observe that , the sequential implementation of r m d u p
has a quadratic t ime complexity but the pipelined version runs in linear time.

channels

i
C2

4 3 5 2 eo t .

3 4 5 2 eo t .

4 5 3 2 eot.

5 3 2 eot

. . . . 3 5 2 eot

. 5 2 3 eot

. 2 3 rot

. 3 rot

. eot

| D

Time

Fig. 4. Time diagram for the network RMDUP[4 , 3, 4, 5, 3, 5, 2, 3]

919

7 P a r a l l e l L i s t d i f f e r e n c e

The list difference operator listdiff, also written as (-) , is recursively defined as:

l istdif f x s [] = x s
l istdif f x s (y: ys) = r e m o v e l y (l istdiff x s ys)

where the function r emove1 y takes a list s and removes the first occurrence of
y, if any, from s. For example, we have: l istdiff "parallel table" = "prall".
I t is easy to see tha t if we take spec = listdiff x s then the above definition
will immediat ly match the pipe pattern form. In this case, we have e = xs and
f = r e m o v e l . Hence, by unrolling recursion we get:

l istdiff x s ys = ((o) / r e m o v e l , ys) (l istdiff x s D)

and now provided tha t the function r e m o v e l is refined into a sequential process,
say R M , then for all lists x s and ys, listdiff x s y s is refined,into the network:

L I S T D I F F (x s , ys) = P r d (x s) ~> ((>>) / (RM * (reverse ys)))

R M (z) = # X , ? x --~ (E O T

! x - ~ X
C O P Y)

J~ x = eot
,~ = # z

The timing diagram in Figure 5 depicts how the computat ion in the network
L I S T D I F F (" p a r a l l e l " , ',table") may evolve with time. Again with pipelined
parallelism, we have synthesized a linear t ime network from a quadratic t ime
recursive algorithm.

channels

t

C 5

C 4

C 3

C 2

. p r a l l eot

. p a r a ~ " " ~ " ~ o ~ : "

�9 p " i~ " r : i~ " ~ " ~ " " i " ~ o t : " " "

"p : "a : "r : h : "z : "z : "e "z : "eot: : : : :

| | | | i u | | | | | I | | , | P

. . . . t5 tl0 tl~ t20 Time

Fig. 5. Animation of the network L I S T D I F F ("parallel", '2able")

920

8 Related Work and Conclusion

Many researchers have proposed the use of functional notations and formalisms
for programming parallel machines. The focus has mainly been on exploiting
data parallelism rather than pipelined parallelism. Darlington, Field, Harrison,
Kelly [7], Cole, Mou, Huddak, Misra, Runciman, Wakeling[10], Partsch, Pep-
per [9] and Skillicorn [11], to name bu a few, have all used functional notations
and algebraic laws to develop parallel functional programs. Our work goes a step
further in refining the final functional version into networks of CSP processes.
This allows us to address, reason about, and study the effects of implementa-
tional issues such as, locality of communications, granularity of computations
and scalability.

In summary, we have presented several efficient massively pipelined algo-
rithms for list manipulations. Transformational programming has been used in
the development of these algorithms from clear functional specifications to mas-
sively pipelined networks of communicating processes in CSP. We have developed
new techniques for identifying pipelined parallelism in functional specifications
and showed how this parallelism can be efficiently realized in CSP. By applying
these techniques, the time complexity of several algorithms has been reduced
from quadratic to linear time.
Acknowledgments I would like to thank Richard Bird, Jeff Sanders, Philip
Wadler, Mark Josephs and three anonymous referees.

References

1. A. E. Abdallah, Derivation of Parallel Algorithms from Functional Specifications
to CSP Processes, in: Bernhard MSUer, ed., Mathematics of Program Construction,
LNCS 947, (Springer Verlag, 1995) 67-96.

2. A. E. Abdallah, An Algebraic Approach for the Refinement of Functional Specifi-
cations to CSP Processes, Submitted to Formal Aspects of Computing, 1996.

3. R. S. Bird, An Introduction to the Theory of Lists, in M. Broy, ed., Logic of Pro-
gramming and Calculi of Discreet Design, (Springer, Berlin, 1987) 3-42.

4. R. S. Bird, J. Gibbons, and G. Jones, Formal derivation of a pattern matching
algorithm, Science of Computer Programming 12 (1989), 93-104.

5. R. S. Bird, and P. Wadler, Introduction to Functional Programming, (Prentice-Hall,
1988).

6. CIP language group, The Munich project CIP, LNCS 1, (Springer-Verlag, 1984).
7. J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp and Q. Wu, Parallel Pro-

gramming Using Skeleton Functions. In Parallel Architectures and Languages Eu-
rope, PARLE93. LNCS 947, (Springer Verlag, 1993) 146-160.

8. C. A. R. Hoare, Communicating Sequential Processes. (Prentice-Hall, 1985).
9. R. Paigee, J, Reif, snd R. Wachter (eds), Parallel Algorithm Derivation and Program

Transformation, (Kluwer,1993).
10. C. Runcima~ and D. Wakeling (eds), Applications of Functional Programming,

(UCL press, 1995).
11. D. B. Skillicorn, Models for Practical Parallel Computation, International Journal

of Parallel Programming 20 (2) (1991) 133-158.

