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Abstrac t .  We study various theoretical and algorithmic aspects of in- 
verse problems in discrete tomography that are motivated by demands 
from material sciences for the reconstruction of crystalline structures 
from images produced by quantitative high resolution transmission elec- 
tron microscopy. 
In particular, we discuss questions related to the itl-posedness of the 
problem, determine the computational complexity of the basic under- 
lying tasks and indicate algorithmic approaches in the presence of NF- 
hardness. 

1 I n t r o d u c t i o n  

While having a number of interesting applications in and connections to areas 
like general image processing, graph theory, scheduling, statistical data  security, 
game theoryetc. (see e.g. [16], [28], [10], [21], [14], [15]), the main motivation for 
the present paper's discussion of the problem of reconstructing finite lattice sets 
from certain of their marginal sums is the demand from material sciences to re- 
construct crystalline structures given through their images under high resolution 
transmission electron microscopy in a certain limited number of directions. In 
fact, [29] and [22] show how a quantitative analysis of images from high resolu- 
tion transmission electron microscopy can be used to determine the number of 
atoms on atomic columns in certain directions. The goal is to use this technique 
for quality control in VLSI~technology. In particular, the interracial topography 
of a material is vital in the manufacture of silicon chips. 

So, in principle, we are given the information how many atoms there are on 
each line parallel to a certain direction for a certain small number of different 
directions. To be more precise, let n E N, n > 2, let F be a finite subset of 
Z n, let S be a line through the origin, and let A(S) denote the set of all lines 
of Euclidean n-space E ~ that  are parallel to S. Then the (discrete) X-ray of F 
parallel to S is the function X s F  : A(S) -+ No = N t3 {0} defined by 

X s F ( T )  = IF o Tt = 
xET 
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for T C Jr(S). Of course, in practice only the cases n = 2 and n = 3 are relevant. 
Figure 1 shows a 3D-sample that  has been reconstructed from three of its 

X-rays by methods outlined in Section 5. 

Fig. I. A 3D-sample 

It should be mentioned that the restriction to the lattice Z ~ is not a crucial 
one. One the one hand, the problem is ai~nely invariant and, on the other hand, 
the whole model can be rephrased in a purely combinatorial form that relies 
only on incidences anyway. 

Clearly, the best known and most important part of the general area of to- 
mography is computerized tomography, an invaluable tool in medical diagnosis 
and many other areas including biology, chemistry and material sciences. While 
the mathematics of computerized tomography is quite well understood and uti- 
lized in every day practice, bringing down the resolution to the atomic scale 
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changes this inverse problem drastically. Continuous methods do not seem ap- 
propriate anymore. In the following we will show, how the discreteness effects 
the problem. 

2 U n i q u e n e s s  R e s u l t s  

Clearly, when real world data is given, it is not enough to check consistency (up 
to data errors) and reconstruct an object compatible with the given X-ray data. 
It is absolutely necessary to have some uniqueness and stability results as well. 
It would not be a great help to be able to reconstruct an object that satisfies all 
the given X-ray constraints and fits the data perfectly if there were many other 
solutions of very different shape and nature. So let us begin by dealing with the 
question of unique determination of finite lattice sets by their X-rays. 

In the following let :Y'~ = {F : F C Z n A F is finite} and S n = {lin {u} : 
u E E n \ {0}}. The elements of ~ are called lattice sets. Quite typically, we have 
some additional a priori information available. This is modeled by considering 
a suitable subset G of 9 TM. For instance, G may incorporate some contiguity 
condition that reflects that the crystalline structures that are to be reconstructed 
do not consist of 'scattered' atoms but are highly connected. In most cases it 
will also be necessary to consider subsets T of S n since electron microscopic 
images of high enough resolution can only be obtained in certain directions. An 
important such subset of S n is the set £'~ = {lin {u} : u E Z n \  {0}} of lattice 
lines. 

We say that G is determined by m X-rays with respect to T if and only if 
there exist $1 , . . . ,  Sm E T such that the following holds: When F1, F2 E 6 and 
XsjF1 = Xs jF2  for j = 1, . . .  ,m, then F1 = F2. 

Let us begin with a trivial uniqueness results that indicates already the fun- 
damental difference between discrete and continuous tomography. 

2.1 With respect to 8 n, the class 2 :n is determined by one X-ray. 

Of course, an X-ray line in a non-lattice direction either misses Z n or, if it 
contains a lattice point, this lattice point is the unique lattice point on this line. 
From a certain point of view, (2.1) solves the problem. However, X-rays in non- 
lattice directions are not practical at all. The resolution coming from such X-rays 
would not be good enough, the image would typically be completely blurred. In 
fact good resolution can only be achieved in practice in certain main directions 
of the lattice. 

Another quite simple uniqueness theorem is due to [26]. 

2.2 For n = 2, any IF! + 1 X-rays in pairwise non-parallel directions determine 
F within jzn. 

Some extensions of this result are contained in [5]. The problem with (2.2) 
in practice is that the typical atomic structures that have to be reconstructed 
comprise about 106 to 109 atoms. That means that we would need an extremely 



22 

large number of X-ray images to be certain that the object is uniquely deter- 
mined. However, after about 3 to 5 images taken by high resolution electron 
microscopy, the object is destroyed by the energy of the radiation, i.e. the object 
changes and after just a few X-rays it is no longer the original object that is 
'seen' by the subsequent X-rays. In fact, it is easy to see that a fix number of 
X-rays is not sufficient to determine finite lattice sets uniquely. 

In order to obtain positive results there seem to be only two options. The 
first option is to restrict the class of lattice sets under consideration. This gen- 
eral approach is quite reasonable since there is lots of information from physics 
waiting to be utilized. In terms of mathematical uniqueness results there is the 
following theorem of [12] for the class g n of convex lattice sets, i.e. finite subsets 
F of Z n such that F = Z n N cony (F). 

2.3 The class dn is determined by suitable 4 and any 7 X-rays in pair"wise 
non-parallel coplanar lattice directions. 

It is an open problem where the later result persists when the assumption of 
coplanarity of the lattice directions is abandoned° In practice this restriction is 
satisfied since for technical reasons the 'tilting' of the microscope is confined to 
rotations about an axis, hence all X-ray directions lie in a common plane. This 
means, further, that the reconstruction can be done slice by slice, hence the un- 
derlying problem is essentially 2-dimensional. Let us point out that among the 
°good' sets of directions in terms of (2.3) there are many that do have compo- 
nents of quite small absolute value which can be handled in practice. Examples 
for such sets in E 2 are {(1,0)~(1,1),(1,2),(1,5)}, {(1, 0), (2,1), (0,1), (-1,  2)} 
and {(2, 1), (3, 2), (1, 1)~ (2, 3)}~ see [12] and also [31. While this result is quite 
reassuring, it is only practical in a very restricted setting. There may be some 
applications, for instance in colloid physics~ but the main demand for mathe- 
matical methods for solving the inverse problems of discrete tomography comes 
from applications that involve the reconstruction of highly non convex objects. 
In particular, quality control in certain stages of chip production involves the 
detection of 'bumps' on the surface of silicon chips, hence convexity is not an 
appropriate condition in this situation. 

It may be possible to weaken the assumptions of convexity so that only con- 
vexity in the X-ray directions together with strong connectivity assumptions are 
needed. At present, however, the above result may be mathematically satisfac- 
tory, in practice it is largely irrelevant. 

So far, we have considered the problem of unique determination under the 
assumption, that we choose the directions in which X-rays are taken beforehand. 
A reasonable approach may, on the other hand, be to take the first X-ray in 
an arbitrary direction but then use the information gained from analyzing the 
image in order to determine the next direction in which an X-ray is taken. For 
the third direction, one could then use the complete information given by the 
first two X-rays and so on. This approach of successive determination leads to 
strong uniqueness results even for higher dimensional X-rays and even for more 
general sets then lattice sets, see [12]. In particular 
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2.4 iT n can be successively determined by 2 X-rays. 

Again, while seeming to be satisfactory, this result is not practical at all. 
The reason is that the second X-ray has to be so 'skew' that one cannot produce 
images of high enough resolution in this direction. 

Except for some results in more restricted situations, these are the only 
uniqueness results available at present. So what can be done? 

Of course, the first question would be whether we have used all the crystal- 
lographic knowledge that there is. While this is certainly not the case is has not 
been possibly yet to identify reasonable mathematical constraints based on this 
crystallographic knowledge that reduce the relevant classes of lattice sets enough 
so as to lead to uniqueness theorems. In fact, there are examples showing that 
no fixed number of lattice X-rays suffices for determination that look like a solid 
crystalline blocks with 'just a few impurities.' 

In view of the lack of satisfactory uniqueness theorems it seems that at least 
for the time being we have to settle for less. We may be satisfied by determin- 
ing the 'core' of all solutions, the set of all invariant points that must belong 
to all solutions or at least to most in a sense that has to be made precise. We 
might also be satisfied by determining a 'typical' solution. We will come back 
to these aspects later. Another practically quite satisfying option could be to 
check uniqueness algorithmically. While we do not have general a priori unique- 
ness guarantees it is certainly true that in many practical applications sets to be 
reconstructed are determined uniquely by the available information. So, an effi- 
cient procedure to check uniqueness algorithmically might actually be all that is 
needed in practice. This brings up the algorithmic aspect of discrete tomography 
in the context of uniqueness. But it is certainly clear that efficient procedures 
for reconstruction are needed anyway. We will study algorithmic questions in 
the next sections. 

3 Computational Complexity 

In this section we state results dealing with the computational complexity of 
the questions of checking consistency of X-ray data, of determining uniqueness 
of given solutions and, of course, of finally reconstructing the objects. In the 
following we will focus on the full family 5 rn, and the results will only be stated 
for that case. However, most of the results hold for a great variety of other 
subclasses G as well, without any significant change, see [14]. 

Suppose that S1 , . . . , Sm E ~ are m > 2 lines specified beforehand. In the 
inverse problem RECONSTRUCTION(S1,...,Sm), we are given candidate func- 
tions 

A : A ( & )  -+ No, i = 1 , . . . ,  m 

with finite support and want to find a set F C Z n with corresponding X-rays or 
decide that no such F exists. Since for the purpose of computational complexity 
theory decision problems are more appropriate than reconstruction problems, we 
consider also the problem CONSISTENCY(S1,..., Sin) whose instances are just 
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the same but whose task is restricted to the decision whether a solution exists 
(without being obliged to produce one). Similarly, UNIQUENESS(S1,..., Sin) asks 
whether, given a solution F,  there exists another one. (Asking the question in 
this way puts the problem into the class P.) Clearly, when investigating the 
computational complexity of such problems in the usual binary Turing machine 
model one has to describe suitable finite data structures and specify the problems 
accordingly. We refrain from doing this here but refer the reader to [14]. 

Here is a tractability results. 

3.1 Whenever $t, $2 E £n, all three problems, CONSISTENCY(S1,S2), 
UNIQUENESS(S1, $2) and RECONS'rRUCTION(S1, $2) can be solved in polynomial 
time. 

Proofs for the planar case can be fbnnd in [7], [16], [27], [28] or [2]. A particu- 
larly interesting way of looking at it is to interpret the problem as 2-PARTITION- 
MATROID-INTERSECTION. While this interpretation might not lead to the most 
efficient algorithm, it provides an elegant way of generalizing the results to higher 
dimensional X-rays and arbitrary dimensions. In fact, arbitrary linear optimiza- 
tion problems over the intersection of two matroids can be solved in polynomial 
time, see [8], [9]. So the ease of just two X-rays is algorithmically tractable, see 
[13]. 

However, two X-rays usually do not determine finite lattice sets uniquely~ 
hence, we would like to extend these tractability results to a greater number 
of X-rays. Unfortunately, there is a drastic jump in complexity from m = 2 to 
m = 3 .  

3.2 For n > 2 and m > 3 different lines S1,. . .~Sm in £n, the problems 
CONSISTENCY(S1, • . •, Sin) and UNIQUENESS(St,..., Sra) are ~-complete in the 
strong sense; RECGNSTRUCTION(SI~ . . . ,  Sin) is r~-hard. 

This intractability result due to [14] generalizes and sharpens previously 
known results. N. Young (private communication) showed the NP-hardness of 
CONSISTENCY(S1,S2,S3,~4) when $1~... ,~4 are the four coordinate axes in 
E 4. He used this result to obtain the NiP-hardness of a consistency problem for 
n = 2 and m = 4; however, the fourth direction is part of the input, so this 
is much weaker than the corresponding case of (3.2). Also, it is shown in [21, 
Section 4.1] (in the context of contingency tables)~ by a transformation from 
LATIN-SQUARE, that CONSISTENCY(SI~ $2, ~3) iS NF-complete when $1, S~ $3 
are the coordinate axes in E 3 . 

The hardness results of [14] are given by transformations from the well known 
NP-complete problem 1-IN-3-SA% The constructions shows that hardness does 
occur in situations which are not too far off from practice. In fact, the constructed 
objects are again solid crystals with just a few impurities and can represent, in 
principle, physically reasonable objects. Therefore (3.2) seems to be an appropri- 
ate explanation of the algorithmic difficulties observed in practice. An extension 
of these hardness results is given ~n [19]. 

There are some other related complexity results, particularly those of [4] and 
[31] for polyominoes in the plane. 
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4 Algorithmic Approaches in the Presence of 
l~ -Hardness  

Even though our problems are I~?-hard, they have to be solved in practice. Vari- 
ous approaches have been suggested for dealing with CONSISTENCY(S1,..., Sin), 
UNIQUENESS(S1,..., Sin) and RECONSTRUCTION(S1,..., Sin) in practice. See 
[19] for an account of the success and failure of many of those techniques. For 
simplicity, we restrict the following exposition to the problem of checking data 
consistency, and we will always assume that S1, . . . ,Sm are m > 2 different 
lattice lines. 

It is easy to see, that CONSISTENCY(S1,..., Sin) can be formulated as an 
integer linear programming problem whose variables correspond to the possible 
positions of elements of a solution. In fact, the grid G associated with a given 
instance of the problem consists of all (finitely many) lattice points that arise 
as points of intersection of m lines parallel to $1 , . . . ,  Sin, respectively, whose 
candidate function value is nonzero, i.e. 

m 
c:z  N U T, 

i =1  TE  "/'~ 

where T1,..., Tm denote the supports of the given candidate functions/1, • • •, Sm~ 
respectively. The incidences of G and Ti can be encoded by an incidence matrix 
Ai. I f G  consist of, say, N points, Mi = ITil for i = 1 , . . . ,m ,  and M = MI + 
... + Mm, then the incidence matrices Ai are in {0, 1} MixN, and can be joined 
together to form a matrix A E {0, t} MxN. Identifying a subset of G with its 
characteristic vector x E {0, 1} N, the reconstruction problem amounts  to  solving 
the integer linear feasibility program 

A x = b ,  s.t. xE  {0,1} N, (1) 

where b T = (bT,...,bTm) contains the corresponding values of the candidate 
functions f l , . . . ,  fm as the right hand sides of AI , . . . ,  Am, respectively. 

Since linear programming problems can be solved in polynomial time the 
first natural approach is to consider the LP-relaxation 

A x = b A O < x < l ,  (2) 

of (1), where, as usual, '< '  is to be understood componentwise; see [11]. Since 
linear programming codes are available for solving these problems very efficiently 
for all sizes of crystalline structures that are relevant in practice, computation 
time is not much of an issue for this heuristic. However, the solution is usually 
far from being integer and it does not seem completely justified to interpret 
fractional components of solutions as probabilities that the corresponding points 
belong to a (typical) solution. 

In an improvement strategy N. Young studied the effect of such an interpre- 
tation followed by a subsequent randomized rounding. Here an atom is placed at 
the  corresponding lattice point with the probability coming from the fractional 
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solution produced by the LP-solver. This way an approximative solution to the 
consistency problem is produced. Compared to other heuristics for the problems 
in discrete tomography, known bounds for such solutions are, however, in gen- 
eral rather weak. We wilt give some bound on approximation errors for various 
heuristics in Section 5. 

Of course, one cannot expect too tight a priori error bounds for polynomial- 
time approximative heuristics in general. But again, for all practical purposes 
it is nice but not absolutely necessary to have such a priori bounds. In fact, a 
method that would, in the course of the run of the algorithm~ provide upper and 
lower bounds might be all that is needed. One can then run the algorithm on the 
given data until the gap between upper and lower bounds is small enough and 
then terminate with an approximate solution including a performance guaranty. 
The next section wilt give the basic idea of such an algorithm, the branch-and-cut 
method. 

5 P o l y t o p e s  i n  D i s c r e t e  T o m o g r a p h y  

The idea behind the branch-and-cue method is to try to approximate the poly- 
hedral structure of the convex hull 

P(A, b) = conv{x E {fl, 1}g: Ax = b}, 

of all solutions of (1). In the algorithm, we begin with an LP-relaxation of the 
integer programming problem (1), compute a solution, and check whether it is 
already in {0, 1} N. If this is the case, we stop with a consistent solution for the 
given instance. Otherwise we try to find a (facet-defining) constraint for P(A, b) 
that is violated by the LP solution. This means, we try to find a cutting plane 
that is in a sense best possible far providing a deep cut. If such a separating 
hyperplane can be found, we add the corresponding constraint to the current LP 
and repeat the procedure. It may actually happen that the LP-solution found 
is not in {0, 1} N but we are still not able to produce a separating hyperplane. 
In that case, we use a branch-and-bound paradigm and proceed in the same 
algorithmic framework as before - just splitting the problem into subproblems. 
Such an approach has been successfully utilized for many problems in combina- 
torial optimization, most notably for the traveling salesman problem, see [20], 
[25] for surveys on the polyhedral theory and on polyhedral computations for 
the traveling salesman problem, and see [6] for a geometric introduction into the 
general concept underlying polyhedral combinatorics. 

Since, in general~ computing the dimension of P(A, b) is NP-hard by (3.2) and 
since it does not seem wise to try to 'jump to a solution' in one step anyway, 
P(A, b) is replaced in the polyhedral study [17] by 

T(A,b) = conv{x e {0,1}N: Ax < b}. 

Then, of course, we have to model that we are only interested in a solution 
of maximum cardinatity in order to obtain an equivalent problem. This can 
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be done by adding the objective to maximize the funktion x ~ eTx, where 
e = (1 , . . . ,1)  T E E N. 

The tomography poIytopes T(A, b) are quite special. Clearly, all tomography 
polytopes are subpolytopes of the standard cube {0, 1} g whose coefficient, matrix 
A is a 0-1-matrix with a particular structure° Specifically, all submatrixes corre- 
sponding to just two directions are totally unimodular- another explanation why 
the case of two directions is simple. It follows from [24] that the combinatorial 
diameter of a tomography polytope is at most N. This means that, in principle, 
an edge-path could be found leading from 0 to a solution of the problem that is 
rather short. The main problem of course is, that it is not known how to actually 
choose the pivot element at each step in order to find such short paths. Of course 
the underlying physics induces additional structure that can be utilized in the 
study of the polytopes. 

Further, using all sorts of preprocessing techniques, the practically relevant 
dimensions of these polytopes can be reduced to about 104. Judged on the base 
of the sizes of successfully solved instances of the traveling salesman problem this 
seems encouragingly small. While the traveling salesman polytopes correspond 
to the complete graph on the given number of 'cities' and are hence universal, 
tomography potytopes depend, on the other hand, on the right-hand side b. So 
the most important goal of polytopal investigations is to find large systems of 
valid inequalities that are facet-defining under week conditions on the right-hand 
side. In [17] various classes of facet-defining inequalities are determined under 
very weak assumptions on b. Usually it is only necessary to require that all 
components of b are at least 2 or 3 and that no X-ray line is completely filled with 
atoms. Using these branch-and-cut techniques one can reconstruct moderately 
big crystalline structures already. The example of Figure 1 was produced by a 
(not yet fully developed) algorithm of this kind. It shows a 3D-phantom - whose 
X-ray data in directions (0, t, 0), (1, 4, 0) and (-1,4,  0) were given to us by P. 
Schwander - that turns out to be uniquely determined by the X-rays in these 
directions. (One should regard the front plane as the xy-plane while the different 
z-coordinates correspond to planes parallel to the xy-plane). 

6 Approximat ion Algorithms wi th  A Priori Performance 
Guarantees 

In the following we study some simple heuristics that can be fully analyzed and 
give approximation guarantees that yield a constant relative error. It is clear that 
these techniques by themselves will not solve the problem since their performance 
in terms of approximating a solution is still rather poor. However, it is first of 
all reassuring that simple techniques yield such a small relative error, and on 
the other hand such techniques can be used as a preprocessing step in order to 
find good bounds in any branch-and-bound based approach. 

The two problems that we are going to consider now are BEST-INNER- 
FIT(S1,. . . ,  Sin) [BIF] and BEST-OUTER-FIT(SI,..., Sin) [BOF]. Given candi- 
date functions f l , - . - ,  fro, the tasks of these problems are to find a set F C G, 
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respectively. For [BIF], ]F I must be maximal such that  Xs, F(T)  < f i(T) for 
all T E T~ and i = 1 , . . . , m ,  while for [BOF], IF1 must be minimal such that  
Xs~F(T)  > f i (T)  for all T E T/and  i = 1 , . . . ,  m. 

For an analysis of these and other approximation problems for discrete to- 
mography see [18]. The first strategy for [BIF] that  is fully analyzed is that  of 
the greedy heuristic: place points into the grid of the given instance whenever 
that  is possible without violating the constraints. Then one obtains the following 
bound. 

6.1 If F is a solution of [BIFJ and L is a greedy solution then m[L ! >_ IF[. 

It may be worthwhile to point out that the greedy strategy is very flexible 
and allows various specifications for breaking the ties between different choices 
for points to be placed next. For example, the X-ray data  can be used in a 
way that  is very similar to back-projection techniques to express preferences. In 
addition, connectivity of the solution (in a sense that  is justified by the physical 
structure of the analyzed material) can be rewarded. Similarly, information of 
neighboring layers can be taken into account in a layer-wise reconstruction of a 
3D-object. 

While the above result follows from work of [23], the next bound is due to [18]. 
It uses tile notion of an (increasing) r-change: r points of a feasible set F C G 
are deleted and r + 1 points of G \ F are inserted instead without destroying 
the feasibility. Clearly, r-changes are more powerful than just greedy insertion 
(which actually can be regarded as a 0-change strategy). 

6.2 Let t E N, let F be a solution of [BIF] and let L C G such that no further 
r-change is possible then 

2 _ IFI,  where -+ 0 for  t - *  
\ 

ILl-> m o o .  
/ 

Similar results can be obtained for [BOF] see [18]. Ra:~her than specifying the 
algorithms precisely - they are based again on greedy strategies, (decreasing) r- 
changes and matching techniques - let us just state a result for [BOF] that  
corresponds to (6.2). 

6.3 For every e > 0 there is a polynomial-time algorithm that, given an instance 
of [BOF] produces a set L that is feasible and whose eardinality exceeds that of 
an optimal solution by a factor at most 

2 1 1 

Another simple but useful observation is that  if we compute a basic optimal 
solution of the LP-relaxation N - M of the 0-1-constraints of (1) are already 
satisfied. 
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7 Dealing with Nonuniqueness 

So far, we have mainly studied the question of checking data consistency. A prob- 
lem of similar (or even greater) importance, is that of dealing with nonunique- 
ness. Again, if the data given in practice allow many solutions that are extremely 
different, the relevance of finding one of them is not apparent any more. There 
are various suggestions for how to deal with the problem of nonuniqueness. 

If we use the fact, that in the practical application for material sciences that 
motivated this study the directions in which the X-ray images are taken are 
coplanar, then the objects can be reconstructed layer by layer. Suppose that the 
first layer has been reconstructed and that it is uniquely determined by the given 
information (or known beforehand). Then it may be reasonable to assume, that 
the second layer does not vary too much from the first. We can easily model that 
by adding an objective function to our reconstruction problem for the second 
layer. In fact the incidence vector of the so]ution for the first layer provides a 
linear objective function whose maximization leads to a solution for the second 
layer that is in a certain sense closest to that for the first one. In case of just 
two X-rays such an approach was suggested by [16]. 

[Ii] uses an interior point method for solving the LP-relaxation 

maxeTx s.t. Ax~b A 0<x<l (3) 

of the (monotone vorsion of the) reconstruction problem in order to identify po- 
sitions that are uniquely determined by the given data. In fact such an approach 
produces a point that is interior to the optimal face of the LP-polytope. So if 
a component of the LP-solution is 0 or 1 then the same is true for all solutions 
and hence for all 0-I solutions. While by [14] the problem of detecting whether 
a given subset of G belongs to all solutions is again NP-hard (see also [19]), it is 
demonstrated in [11] that for certain phantoms such an approach produces quite 
a large number of fixed variables. Note that the problem of deciding whether 
a subset of a possible solution can actually be extended to a full solution is 
again i~-complete, see [14]. It should be noted that the notion of additivity as 
introduced by [I0] and extended by [i] is actually equivalent to 'substructure 
uniqueness' for the LP-relaxation. 

All of the above mentioned techniques can be used and combined in practice 
to reduce nonuniqueness but it will certainly still be mandatory to take addi- 
tional physical constraints into account in order to be able to produce solutions 
that resemble the actual physical objects. 

8 Imprecise Data 

Even if we manage to reduce nonuniqueness to a large extent and solve the recon- 
struction problem efficiently in practice, there is still the problem of imprecise 
data. Of course there is always some noise involved when physical measurements 
are taken but for the problem under consideration also some systematic error is 
present. In fact, the sample that is to be studied has to be prepared for electron 
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microscopy by thinning it out so as to let the electron waves penetrate it. For 
technical reasons this is done in such a way that  the object is much thinner in 
the middle than at the boundary where it is attached to some position control 
element. This means that  an X-ray taken in some direction 'sees' the crystalline 
structure in the middle of the object but is absorbed towards the boundary. Tak- 
ing a second direction, one has the same effect, just that  the parts of absorption 
at the boundary do not coincide. That  means that  in practice the data  that  one 
gets from the measurements actually correspond to slightly different objects. 

There are various ways of modeling data  inconsistency and error. General 
techniques for dealing with ill-posed problems can be applied by using an ob- 
jective function that  minimizes the distance of the computed right-hand side 
for a found solution from the given right-hand side data. This can be done in 
various different ways. A promising suggestion of this kind is due to [30] since 
it allows to interpret solutions as best-approximations in the sense of maximum 
likelihood. The method is, however, again based on the LP-relaxation of the un- 
derlying 0-1-programming problem. It will be particularly intriguing to find out 
on the basis of real-world data  to what extent 'severe artifacts' are introduced 
by methods based on the underlying LP-relaxation. It is certainly clear that  
LP-based techniques are generally not capable of capturing the discreteness of 
the problem. Maximum likelihood strategies on all possible 0-1 solutions are on 
the other hand algorithmically quite demanding. 

9 Final  Remarks 

The problems of discrete tomography are practically important, mathematically 
rich (involving methods from areas like combinatorial optimization, number the- 
ory, geometry, combinatorics~ stochastics, etc.) and algorithmically challenging. 
During the last few years there has been considerable progress in attacking these 
problems. However, there is still a lot of work to be done to finally create a tool 
that  is as developed and satisfactory for the application in material sciences as 
is computer tomography in its medical and other applications. 
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