
Coexistence of Tricubes in Digital Naive Plane 

J. Vittone & J.M. Chassery 

Laboratoire TIMC-iMAG, Institut Albert Bonniot 
Domaine de ta merci, 38706 La Tronche cedex, France 
e-mail: {JoeUe.Vittone, Jean-Marc.Chassery}@imag.fr 

Abstract .  Tricubes are considered as elementary 3D neighbours used 
to generate digital planes. We present some properties of these tricubes 
and discuss about their characterization and coexistence in a digital naive 
plane. 
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1 I n t r o d u c t i o n  

Digital naive plane recognition is an important subject of research. Different 
works on this topic had been developped. An incremental algorithm has been 
introduced by Debled and Reveilles [DR95][DRR94] and more recently, works 
have been performed by Schramm based on Fourier's algorithm [FST96]. Here we 
are interested by the configurations of neighbourhoods, called tricubes, appearing 
in a digital naive plane. Properties about tricubes are introduced and we propose 
an array grammar based on tricubes for characterization of naive plane. 

2 D e f i n i t i o n s  

A digital naive plane ,  18-connected digital plane, is the set of points of Z~ 3 
satisfying the double inequality # _< ax+by+cz  < t~+max(Ial, Ib[, Ic[), a, b, c, # E 
Z~, where (a, b, c) is the normal vector of the plane and/t  a translation parameter. 
Using symetries, we can reduce 
our study to naive planes such as 
0 < a < b < c. We will note these 
planes P(a, b, c, #). 

The lower  (resp. uppe r )  l e an ing  
points of a naive plane P(a,b,c,p~) 
are the points verifying the equation 
ax + by + cz = p (resp. az + by + cz = 
~ + c -  1). Fig. 1. Naive plane P(3, 7, 17,0) on 

[0, 14] × [0, 14]; in black upper Ieanin 9 
points, in gray lower leanin 9 points. 
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A b i c u b e  is a set of 4 voxels of a naive 
plane for which the projection on plane 
(0xy) is reduced to a 2 x 2 square of 
pixels (fig.2). 

Each voxel M in a naive plane P has 8 
neighbours belonging to this plane. We 
call t r i e u b e  attached to M in P the 
set of these 9 voxels. The projection of 
a tricube on the plane (Oxy) is reduced 
to a 3 x 3 square of pixels (fig.2). 

Y y 

Fig. 2. Example of bicubes and tricubes. 

3 Construction of tricubes by grouping bicubes 

There exists 5 different configurations of bicubes (see fig.3) in a naive plane 
[Fra95] [Fra96b][FraO6a]. 

0 [ 2 3 4 

Fig.  3. The 5 different configurations of bicubes. 

Bicubes of a naive plane verify the following property: 

P r o p e r t y  1. [FST96] A naive plane can't contain simultaneously more than 4 
different configurations of bicubes (types 0 and ~ can't appear in a same plane). 

A trieube can be seen us a grouping of' four adjacent bicubes with recovering. We 
developped an algorithm to generate the set of tricubes. To do that  we tested 
the compatibility of connection between bicubes. 
More precisely we used the formal representation of bicubes of figure 4, where a 
full segment represents two voxels at same level and dot segment represents two 
voxels situed at different level, 

y 
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Fig.  4. Formal representation of the 5 bicubes. 
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When we generate a tricube we hole that two bicubes can connect only by a 
same type of line of voxels. 
Now retaining only configurations verifying property 1, we obtain the 40 existing 
configurations of tricubes introduced by Debled[DR95] and illustrated in annexe. 

4 P r o p e r t i e s  o f  a n a i v e  p l a n e  t h r o u g h  i t s  t r i c u b e s  

We recall the following properties from previous works on digital planes: 

P r o p e r t y  2. [Rev95] There are no more than 9 different configurations of tricubes 
in a same naive plane. 

P r o p e r t y  3. [Rev95] Each piece of plane which is projected as a 5 x 5 square 
on the plane (Ozy) and which is centered on a leaning point contains all the 
configurations of trieubes appearing in the plane. 

Let us introduce the following definitions: 

Defini t ion 1. The symet r i c  of a t r i cube  T is the tricube T'  obtained by 
symetry around the central voxel of T. We notice by [T, T'] symetric tricubes. 
A tricube T is called neu t r a l  if T=T'. We notice by IT] the neutral tricubes. 
(see example on fig. 5) 

(a) (b) 

Fig. 5. Example of: (a) symetric tricubes; (b)a neutral tricube. 

and this lemma: 

L e m m a  1. Let (xt, Yl) be coordinates of the projection on plane (Oxy) of a lower 
leaning point and (xu, y~) those of an upper leaning point of a same naive plane. 
Then for every (a, fl) E 2g 2, the configuration of tricube at point (zt + a, y~ + fl) 
is symetric from the configuration at point (zu - a, Yu - fl). 

we have finally: 

P ropos i t ion  1. If  the number of configurations appearing in a naive plane is: 

odd then configurations of tricubes contain pairs of symetric tricubes, 
even then one configuration is neutral and the others are pairs of symetric 
tricubes. 
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5 G r a m m a r  o f  t r i c u b e s  

In order to enumerate digital planes we propose to  use the number of tricubes 
involved in the decomposition of each plane. We have noticed that  it exists two 
types of tricubes: the neutrals and the symetrics. In refering with annexe 1, the 
6 neutral tricubes are numbered by [0], [8], [39], [19], [13] and [32]. We have 
seen that  if a plane is generated with only one configuration of tricubes then 
this one corresponds to a neutral. Only [0], [8] and [39] can be used to gener- 
ate a plane. These tricubes generate respectively the planes with normal vector 
(0, 0, 1), (0, 1, 1) and (1, 1, 1). These planes define the limit of the part of space 
containing planes such as their normal vector (a, b, c) verify 0 < a < b < e. So 
we will use them as a base on which we will construct other configurations. 

Each normal vector (a, b, c) with a, b, c E 2g and 0 < a < b < c can be decom- 
posed as ( c -  b)(0, 0, 1) + (b--a)(0, 1, 1) + a(1, 1, 1). To generate all normal vet}ors 
of planes, we introduce a tree such as each node has three sons. At the top we 
start with vector (0,0,0). Then we generate the three sons of a node (x, y, z) in 
the following way: 

- the left son is the vector (x, y, z + 1), 
- the middle son is the vector (x, y +  1, z + 1), 
- the right son is the vector (x + 1, y + 1, z + 1). 

(0,0,0) 

~..~ . / ~  . . . . . .  
~ - .  ~ + (0 ,0 ,1 )  

(0 ,0 ,1)  (O,l ,1)  (1 ,1 ,1)  _ _  +((t ,1 ,11 

(0,11,2) (0,1,2) (0,2,2) (1,1,2) (1,2.2) (2,2,2) 

(0,0,3) (0,l,3) (0,2,3) (0,3,3) (1,1,5) (1,2,3) 0,3,3) (2,2,3) (2,3,3) (3,3,3) 

..... ,~ ........... ~ ........... T ............ T .......... i ............ .."'-. ........ T'-, ....... i", ....... ~ ............ ~ ...... 

The development of grammar for 3D objects recognition is not recent. P.S.P. 
Wang [Wan89][SNW92][Wan92] had introduced a 3D array grammar to con- 
struct 3D objects using the notion of neighbourhood and adjancy. Here the study 
is limited to naive planes and we limit neighbourhood to tricubes. The gram- 
mar we propose is in the same time a geometric way to recognize naive planes 
but also an analytical model because it is linked to normal vector of naive planes. 

Looking at the tricubes'table of Debled[DR95], we have for each tricube the 
normal vector (a, b, c) containing this tricube and such as c is minimal. We 
can remark that  the 40 tricubes involve only 18 different normal vectors. Using 
the tree, we decompose these 18 vectors in a sum of 2 vectors (ui, vi, w~) with 
u~ A vi A w~ = 1. So we have the following table (at the right of the arrow we 
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have the normal vector and its decomposition and at the left of the arrow, we 
have the list of tricubes which compose the plane): 

[0]--+ (0,0,1) 
[8] -+ (0,1,1) 
[39] (1,1,1) 
[2,6] -+ (0,1,2)=(0,0,1)+(0,1,1) 
[24,30] --+ (1,1,2)=(0,0,1)+(1,1,1) 
[15,35] --+ (1,2,2)=(0,1,1)+(1,1,1) 
[5,29]+[19] --). (1,t,3)=(1,1,2)+(0,0,1) 
[22,27]+[13]-+ (1,2,3)=(0,1,2)+(1,1,1)=(1,2,2)+(0,0,1)=(1,1,2)+(0,1,1) 
[25,36]+[32] -+ (2,2,3)=(1,1,2)+(1,1,1) 
[4,26]+[11,21] --+ (1,2,4)=(1,2,3)+(0,0,1)=(0,1,2)+(1,1,2)=(1,1,3)+(0,1,1) 
[23,34]+[16,31]--+ (2,3,4)=(1,2,3)+(1,1,1)=(1,2,2)+(1,1,2)=(2,2,3)+(0,1,1) 
[5,29]+[1,18] --+ (1,1,4)=(1,1,3)+(0,0,1) 
[22,27]+[9,12] -+ (1,3,4)=(1,2,3)+(0,1,1)=(0,1,2)+(1,2,2) 
[25,36]+[33,38]-+ (3,3,4)=(2,2,3)+(1,1,t) 
[3,10]+[19]+[4,26] --+ (1,2,5)=(1,2,4)+(0,0,1)=(1,1,3)+(0,1,2) 
[7,20]+[13]+[4,26] --+ (1,3,5)=(1,2,4)+(0,1,1)=(1,2,3)+(0,1,2) 
[14,28]+[13]+[23,34] --+ (2,4,5)=(2,3,4)+(0,1,1)=(1,2,3)+(1,2,2) 
[t7,37]+[32]+[23,34]--~ (3,4,5)=(2,3,4)+(1,1,1)=(2,2,3)+(1,2,2) 

From these formulae, we extract the following grammar: 

[0]+[0]=2[0] 
[8]+[8]=218] 
[39]+[39]=2[39] 
[2,6]=[0]+[8] 
[24,30]=[0]+[39] 
[15,35]=[8]+[39] 
[5,29] + [19] = [24,30] + [0] 
[22,27]+[13]=[2,6]+[39]=[15,35]+[0]=[24,30]+[8] 
[25,36]+[32]=[24,30]+[39] 
[4,26]+[11,21]=[22,27]+[13]+[0]=[2,6]+[24,30]=[5,29]+[19]+[8] 
[23,34]+[16,31]=[22,27]+[13]+[39]=[15,35]+[24,30]=[25,36]+[32]+[8] 
[1,18]=[19]+[0] 
[9,12]=[13]+[8] ou [22,27]+[9,12]=[2,6]+[15,35] 
[33,38]=[32]+[39] 
[3,10]+[19]=[11,21]+[0] ou [3,10]+[4,26]=[5,29]+[2,6] 
[7,20]+[13]=[11,21]+[8] ou [7,20]+[4,26]=[22,27]+[2,6] 
[14,28]+[13]=[16,31]+[8] ou [14,28]+[23,34]=[22,27]+[15,35] 
[17,37]+[32]=[16,31]+[39] ou [17,37]+[23,34]=[25,36]+[15,35] 

Let P be a naive plane with normal vector (a, b, c) with the conditions 0 < 
a < b < c. Such a plane is represented by the point (a, ~) corresponding to the 
intersection of its normal vector with plane (z = 1). This point belongs to the 
triangle of vertices A(0,0), B(0,1) and C(t,1) respectively associated to normal 
vectors (0, 0, 1), (0, 1, 1) and (1, 1, 1). 
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Definition 2. Let P(a, b, c, it) be a naive plane identified by its tvicubes (Tt, T2 .... , T,), 
n < 9. We suppose a A b A c = l and O < a < b < c. 

P is an exact plane i f  it is the unique plane containing the tricubes (T1, T2, ..., T~). 

Example.  The planes of normal vectors (0, 0, 1), (0, 1, 1) and (1, 1, 1) contain 
respectively only one tricube [0], [8] and [39]. They are exact planes. 

We propose the following algorithm to construct exact planes. It is based on 
"barycen t r i c  construct ion ' ;  of rationnal points. 
Let P1 be an exact plane identified by its normal vector (al, bl, el) and its nl 
tricubes (T1, T2, ..., T~). 
Let P~ be an exact plane identified by its normal vector (a2, b2, c2) and its n2 
tricubes (T~, T~, ..., Y~2). 
A new exact plane P3 can be constructed fi'om Pt and P2 if there exits a rule 
issued from the previous grammar which associates trieubes of P1 with tricubes 
of P2- In this case, the trace of the normal vector of the plane P3 will be equal 
to the gravity center between trace of normal vectors of P1 and P2 weighted 
respectively by the number of tricubes appearing in the corresponding planes. 

Example  I. Let P1 be the plane of normal vector (0, 0, 1) generated by the single 
tricube [0] and let P2 be the plane of normal vector (1, 1, 1) generated by the 
single tricube [39]. 
In figure 6(a), PI is illustrated by the point (0, 0) and P2 by the point (t, 1). 
Using rule [0]+[39]=[24,30], we can generate the exact plane P3 such as the 
trace of its normal vector, here (1, 1, 2), is equal to ½[(0, 0) + (1, 1)] = (½, ½) and 
containing only trieubes [24,301 (see fig.6(b)). 
The correspondance between (1, 1, 2) and [24,30] is issued from the consultation 
of the first table (see also Annexe). 

Example  2. Let P1 be the plane of normal vector (0, 0, 1) generated by the single 
tricube [0] and let P2 be the plane of normal vector (1, 1, 2) generated by tricubes 
[24,30]. 
In figure 6(b), P1 is illustrated by the point (0, 0) and P2 by the point (½, ½). 
Using rule [24,30]+[0]=[5,29]+[i9], we can generate the exact plane P3 such as 
the trace of its normal vector (1,1,3) is equal to ~'T[(O,O)+ (½, ½)] = (½, ½) 
and containing tricubes [5,29][19] (see fig.6(c)). 
The correspondance between (1, 1, 3) and 5, 29, 19 is issued from the consultation 
of table t (see Annexe). 
We can note in figure 6(c) that tricubes [8] and [2,6] can't be associated to 
generate an exact plane because there is no rule between [8] and [2,6]. 

Using such algorithm we generate M1 the exact planes (see fig.6). 
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Fig. 6. Construction of the projection on plane (z = 1) of the normal vectors of 
the exact planes containing l(a), 2(b), 3(c), 4(d), 5(e) and 6(f) tricubes. 
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Finally, we have the following figure: 
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In the above figure, n addition to the 22 "exact" points we have 49 edges connect- 
ing two "exact" points and 28 polygonal areas with " exact" points as vertices. 
The total corresponds to the 99 possible associations of tricubes [Sch97]. 

6 F r o m  n o r m a l  v e c t o r s  to  t r i c u b e s  

To find the tricubes involved in the description of a naive plane of normal vector 
(a,b,c) with 0 < a < b < c, we can locate the trace (a,  b) of the normal vector 
in the previous figure. 

3 4 Example 1. The point E (g.g) in the figure is supported by edge connecting 
planes P[24,301 of normal vector (1, 1, 2) and P[~3,~41116,311 of normal vector (2, 3, 4). 
So the plane of normal vector (3, 4, 6) is composed with tricubes [24,30][23,34][16,31]. 

3 4 Example 2. The point F (g.g) in the figure is in the triangular area which ver- 
tices are planes P[24,zo] of normal vector (1, 1, 2), P[4,26][tl,21] of normal vector 
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(1, 2, 4) a n d  P[5,29][~9] of  n o r m a l  ve c t o r  (1, 1, 3). So the  p l a n e  of  n o r m a l  v e c t o r  
(3, 4, 9 ) i s  c o m p o s e d  w i t h  t r i cubes  [24,30][426][11,21][5,29][19].  

H e r e  we p r o p o s e  an  a l g o r i t h m  which  t akes  in to  accoun t  t he  pos i t i on  of  t he  t r a ce  
in to  t he  t r i ang l e  A B C .  T h i s  pos i t i on  will be  c o m p a r e d  w i t h  pos i t i ons  of  t r i cubes  
[0], [8], [39], [24,30], [2,6] a n d  [15,35]. 

Initialization: 
x ~ - ~ . c ~ b  

y = b - a  
z _ ~ . a  

Decompose  in x[0] + y[8] + z[39] 

Make appea r  [24,30]: 
k1124, 30] + (x - k,)[0] + y[8] + (z - ki)[39] with kl = m i n ( x , z )  

I f  kl = z T h e n  {no more [39]} 
- Make appea r  [2,6]: 
k212, 6] + k, [24, 301 + (x - kl - k2)[0] + (y - k2)[8] with k2 = r a i n ( y ,  x - k l )  

I f  k2 = x - kl T h e n  {no more [0]} 
- We have the  solution in calculating: 

k619, 12] + ks[7, 20] + k4122, 27] + (k4 + ks - k6)[13] + k314, 26] + (k3 - k5)[11, 21] 
+(k2 - k3)[2, 6] q- (kl - k3 - k4)[24, 30] + (y - k2 - k4 - k5 - k6)[8] 

with va l  = y 

E l s e  {no more  [8]} 
- We have the  solution in calculating: 

k611, 18] + k~[3, 10] + k415, 29] + (k4 + ks - k0)[19] + k~[4, 26] + (k3 - k~)[11, 21] 
+(k2 - ks)[2,6] + (kl - ks - k4)[24, 30] + (x - kl - k2 - k4 - ks - ks)[0] 

with v a l  = x - k t  

E l s e  {no more  [0]} 
- Make appea r  [15,35]: 
k2115, 35] + k1124, 30] + (z - kl - k2)[39] + (y - k2)[8] with k2 = m i n ( y ,  z - k l )  

I f  k2 = z - kl T h e n  {no more [39]} 
- We have the solution in calculating: 

k~[9, 12] + ks[14,  28] + k4122, 27] + (k4 + ks - k6)[13] + k3123, 34] + (ks - k5)[16, 31] 
+(k2 - k3)[15, 35] + (k~ - k3 - k4)[24, 30] + ( y  - k2 - k4 - k5 - k6)[8] 

with va l  = y 

Else  {no more [8]} 
- We have the solution in calculating: 

k6133, 38] + k5117, 37] + k4125, 36] + (k4 + k5 - k6)[32] + k3123, 34] + (k3 - k5)[16, 31: 
+(k2 - k3)[15,35] + (kl - k3 - k4)[24, 30] + (z - kl - k2 - k4 - ks - k6)[39] 

wi th  va l  = z - k l  

w i t h  
k3 = m i n ( k l ,  k2)  

k4 = r a i n ( k 1  - k3 ,  va l  - k2) 
kz  = m i t t ( k 3 ,  v a l  - k2 - k4)  

k6 = r a i n ( k 4  + k s ,  v a l  - k2 - k4 - k s )  

E x a m p l e .  I f  we e x a m i n e  the  n o r m a l  ve c t o r  (3,5,8) .  T h i s  v e c t o r  c a n  be  d e c o m -  
p o s e d  as 3(0, 0, 1) + 2(0, 1, 1) + 3(1, 1, 1). So we h a v e  3[0] + 2[8] + 3139]. W i t h  t h e  
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algorithm, we obtain [24, 30] + 2[22, 27] + 2113]. The plane P(3,5,8,0) is formed 
with tricubes 22, 27, 13, 24 and 30. Figure 7 illustrates the configurations of 
tricubes around a leaning point of this same plane (see property 3). 

x 

Projection of voxels which are 
around a lower leaning point. 

30 24 

~7 

13 22 

Projection of voxels appearing 
in the plane. 

Fig.  7. Configurations of tricubes appearing in plane P(3, 5, 8, 0). 

7 Conclus ion 

This work describes the way to associate normM vector of a plane and basic 
elements (trieubes). From a list of tricubes appearing in a set of voxels near 
leaning points, we are able to say if these tr]cubes can coexist in a naive plane. 
A geometric model to recognize naive digital plane has been presented and we 
retrieve results issued from other analytic method [Sch97]. 
In perspective we are working on the polyhedrization of a set of voxels and on 
relations between our coding of tricubes and the umbrella graph presented by 
Fran~on [Fra95]. 
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Annexe:  The  40 configurations of  tr icubes  

(0,Z,1) 11tl (IA4) ll~l (1~$) I ~a  
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