University of Massachusetts Amherst

From the SelectedWorks of Hava Siegelmann

February, 1997

Turing Universality of Neural Nets (revisited)

J. Pedro Neto

Hava Siegelmann, University of Massachusetts - Amherst
J. Félix Costa

C. P. Sudrez Araujo

Available at: https://works.bepress.com/hava_siegelmann/18/

B bepress®

http://www.umass.edu
https://works.bepress.com/hava_siegelmann/
https://works.bepress.com/hava_siegelmann/18/

Turing Universality of Neural Nets (revisited).
Ledure Notesin Computer Science— 1333 361-366, Springer-Verlag, 1997.

Turing Universality of Neural Nets (Revisited)’

J. Pedro Neto!, Hava T. Siegel mann?, J. Féix Costal, and C.P.Suérez Arauj o>
jpn@di.fc.ul.pt, iehava@ie.technion.ac.il, fgc@di.fc.ul.pt, and paz@neurona.dis.ulpgc.es

1Faculdade de Ciéncias da Universidade de Lisboa
BLOCO C5-PISO 1, 1700LISBOA, PORTUGAL

2Faculty of Induwstrial Engineering and Management
TECHNION CITY, HAIFA 32 00Q ISRAEL

3Dpt. of Computer Sciences and Systems. Univ. of Las Palmas de G.C.
CAMPUS UNIVERSITARIO DE TAFIRA, 35017LAS PALMAS DE G.C., SPAIN

Abstract. We show how to use recursive function theory to prove Turing
universality of finite analog recurrent neural nets, with a piecewise linea
sigmoid function as activation function. We emphasize the modular
construction of nets within rets, a relevant isale from the software engineaing
point of view.

Keywor ds. Neural computation, recursive function theory, modularity.

1 Introduction

In this paper we work with analog reaurrent neural nets (ARNN's) as in
[Siegelmann and Sontag 95. In each instant t each neuron i updatesits activity x; in
the foll owing non-li near way:

N M
x(t+1) = o(> ax(t) +> bju(t) +c)
=1 =1

where g;, by and ¢; arerational weights (and therefore Turing computable); N is the
number of neurons, M the number of input streams u;; and o is the piecewise linear
sigmoid function,

\ x<0
o(x) = [, O<x<1
E]., x>1

which is a continuous function as opposed to the Heaviside function. The latter,
when used in the ontext of analog neural nets alows the instantaneous
computation of eguality between reals, which is rather unphysical. Using o-
processors we @n diredly import Siegdmann and Sontag constructs for stacks,
together with coding and uncoding devices.

As dowed in [Siegelmann and Sontag 91], using classcal constraints (finite binary
input/output and a finite number of procesors), these nets have Turing power when
we allow for rational weights. Herein, we remake this prodf by means of rearsive

" This work was supported by INICT PBIC/TIT/252795 and a fell owship from the Gobierno
Autonomo de Canarias.

function theory. Theideais to emphasize modular constructions of nets within nets.
This approach will provide insights of modularity that we are expeding to use latter
in alocal learning theory for hybrid systems.

2 Reaursive Function Theory

Reaursive function theory identifies the set of computable functions with the set of
partial recursive functions on N (see [Bodos 80]). A function f is sid to ke
computableif it can be manufactured from a spedfic set of basic functions and some
construction rules.

The primitive functions, also called axioms, are:

* W, the zero-ary constant 0;
e S, theunary succesor function S(x) = x+1;
» Theset of n-ary projedion functions, U; n(Xy,...,X,) = X; (1<i<n).

The ongtruction rules are;
e Composition (C): If g(ya,....y«) and fi(Xg,....Xn), ..., f(Xq,...,X,) are

computable functions, then h(xy,...,Xn) = 9(f1(X1,...,Xn),-..,fu(X1,...,Xn)) IS @
computabl e function.

* Reaursion (R): If f(Xg,...,X,) and g(Xy,...,Xn,Y,2) are computable functions,
then the unigue function h(xg,...,X,,Y), defined by h(xy,...,Xn,0) = f(Xy,...,Xn)
and h(xy,...,Xn,Y+1) = g(X1, ..., XnY,N(X1,...,Xn,Y)) is a computable function.

For thelast rule, weintroducethe p functional: for any function f(xy,...,Xn,Y),

he least y such that

0 fxy,...x,2) is defined for all z<y
My (f(X1,...,Xn¥)=0) = [0 Hx... %) =0

EJndefi ned, if thereisnosuchy
e Minimalisation (M): If f(Xy,...,.Xny) is a computable function, then
h(Xy,...,Xn) = Hy(f(X1,...,Xn,y)=0) is a computable function.

For instance the function h(x,y)=x+2 is computable and gven by C(C(Uy2,5),S).
Also, h(x,y)=x+y is a computable function given by R(U;;,C(S,Us3)). It can be
shown that all Turing computable functions are partial reaursive (see[Bodos 80]).

3 Number Representation

Each natural number, iON, is coded as a rational number, x]0,1[. This is
mandatory becuse we want neurons to hold values. We adopt the unary coding:

0=01,1=011,2=0111 ...,n=0.1"

Every initial natural input must be cded before the omputation starts and decoded
after the computation to provide the final output. The @ding and uncoding
techniques used in [Siegelmann and Sontag 91] will do the job.

4 Net Examples

In the following neural net diagrams, non-labelled arcs default to weight one. The
first net finds if a given number is positive or zero, outputting a 1 through the
appropriate channd. 1

—p =1if x>0
Fig. 1. The Signa (Sg) Net.

For instance if we take a positive number coded as a rational number greater than
0.1, subtract 0.1 and multi ply by 100, the result is greater than 1 and the shadowed
neuron will output 1, dseit will output 0. We use a box labelled Sg as a macro for
this net.

The following net recéves a positive integer and returns its siccesor (we will use a
box labelled Succ as a macro for this net)

x_»() 0.1) <+l
X

-0.9
Fig. 2. The Successor (Succ) Net.

These nets begin the spedfied computation if and only if they recaéve a 1 through
theinput IN. The output OUT signals to the foll owing module the avail ahilit y of the
result at that predse moment. Using this method, we @n easily control all
synchronizations. The next net synchronizes two different incoming signals,

Fig. 3. The Sync-2 Net.

The Sync-2 net can be easily transformed to synchronize n inputs. The neuron A
must have its bias changed to -(n-1). A is activated only when bath signals arrive.
Either X or Y will keep the first value until the seand arrives.

5 Net Schemas
5.1 Theaxioms

The following three net schemas compute the three axioms of reaursive function
theory: the zero-ary constant O, the (unary) succesor and the set of projedion

functions.
X1 '()
L’O_>x‘
01 0 X_> L x+1 :
N N Suce X_O
ouT —> —p»ouT

Ny }Y—pour

@ (b) ©
Fig. 4. Thethree aioms, (8) W, (b) S, (c) Uin.
Thethreerules, composition, recursion and minimalisation have their particular net
schemas.
5.2 Compoaosition

For the mmposition schema, h(Xy,....Xn) = g(fa(X1,....Xn)-..,fk(X,...,Xn)), €ach
fi(Xq,...,Xn), i=1,... .k, is computed first and partial results are trapped by a Sync-k
net of k inputs until al of them are available. Then, they are all inputed into the g
net.

f1 —— 9(y1,---Y&)

FLd

fi Ly ouT

FLd

Fig. 5. The Composition Schema.

53 Rearson

To compute h(Xy,...,Xn,0) = f(Xq,...,Xn), h(Xy,...,. X0, Y+1) = g(X1, ..., Xn, Y0 (X1, - - X0 V),
we introduce an algorithm that inspires our proposal for the reaursion schema. It
iterates from O until y, computing all partial results.

K0;
Hef(X 1,...,Xn);
while y>0 do
begin
H—g(X 1,...,X n,K,H);
K~K+1;
y <y-1
end;
h(x 1,....X n,y) <H;

h(x4,...Xn,Y)

Fig. 6. The Recursion Schema.

54 Minimalisation

For the minimalisation, we must find the least y such that f(xy,...,Xn,y)=0. Both
algorithm and the computation of the resulting net schemawill divergeif no suchy
exists. The f box denotes the net that computes function f.

Y -0;
while f(x 1,...,xn,Y) 20 do
Y -Y+1;

h(X 1,....Xx n) <Y;

X1 reset
X1 ' () I
: X1 f(X1,...XnY) f _O
— —> f lour n| SO ouT
Hy(f(X1,...,Xn,y)=0)
1 -U.

Fig. 7. The Minimali sation Schema.

6 An Axiomatic Prodf...

We will provide one eample of an axiomatic prodf. A prodf is a list of
interconneded steps, each one prescribing some function, and explaining how we
can construct it from earlier steps. For instance consider binary addition,
h(x,y) = x+y.

h(x,0) = x (=f(x)) and,

h(x,y+1) = x+(y+1) = (x+y)+1 = h(x,y)+1 (= g(x.y.h(x.y)))
If we @n provethat bath f and gare omputable (that is, if bath f and g can be built

using the axioms and the @nstruction rules), then we @n use reaursion to find h.
Fig. 8 dsplays a possble prodf:

Step Function Reason
f- 1 Oy f1(%) = x Uy
2 [t fa(x) = x+1 S
3 [Fs fa(x,y,2) =z Usz
g- 4 Ohs: fa(xy,2) = z+1 Compasition o 3in 2
5 Ofs: fs(X,y) = X+y Reasrsonwith 1 and 4

Fig. 8. The prodf of h(x,y) = x+y, R(U11,C(S,U33))

Each step denotes a computable function. Then we are able to compile it into the
corresponding net (using the algorithm introduced so far). The resulting net
bemmes an independent module. Every module @an be inserted where it is needed.
In this example, modules 1, 2 and 3 are straightforward. Module 4 uses module 1
for function f(...) and module 3 as g(...) (seefig. 5). Module 5 uses module 1 as
f(...) and module 4 as ¢(...) (seefig. 6). When this procedure ends, we have a
module for binary addition. It can be used to build more amplex functions.

In this way, a library of functions, or theorems, can be set. All working
independently from each other and having no synchronizaion probems between
them. The net programming task becomes modular.

7 Conclusion

With the compilation of an universal reaursive function we find an “universal”
analog reaurrent neural net. Our proof not only confirms that neural nets can
compute all Turing computable functions, but also gives an explicit method to huild
those same nets. If we have the axiomatic prodf of a function, there is an
algorithmic way to huilt the respedive net. This net is build in a modular way,
solving at the same time, al synchronizaion problems, and minimising the
asociate ommplexity of assembling elabarate functions.

8 References

[Bodos 80]
BOOLOS, G. and JEFFREY, R., Computability and Logic, (2° Ed), Cambridge
University Press 1980

[Siegdmann and Sontag 91]
H.SIEGELMANN and E.SONTAG, “Neural Nets are Universal Computing
Devices’. SY CON Report 91-08, Rutgers University, 1991

[Siegddmann and Sontag 99
H.SIEGELMANN and E.SONTAG, “On the Computational Power of Neural
Nets’, in Journal of Computer and System Science [50]1, Academic Press
1995

	University of Massachusetts Amherst
	From the SelectedWorks of Hava Siegelmann
	February, 1997

	Turing Universality of Neural Nets (revisited)
	tmpAxcjXQ.pdf

