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Abstract. Finite automata and their application in lexical analysis play 
an important role in many parts of computer science and particularly in 
compiler constructions. We measured 12 scanners using different imple- 
mentation strategies and found that the execution time differed by a 
factor of 74. Our analysis of the algorithms as well as run-time statistics 
on cache misses and instruction frequency reveals substantive differences 
in code locality and certain kinds of overhead typical for specific im- 
plementation strategies. Some of the traditional statements on writing 
"fast" scanners could not be confirmed. Finally, we suggest an improved 
scanner generator. 

1 Introduction and background 

Finite automata (FA) and regular languages in general are well understood and 
have found many applications in computer science, e.g., lexical analysis in com- 
pilers [23,3]. A number of different implementation strategies were developed 
[3,24] and there are many scanner generators translating regular specifications 
(RS) which consist of regular expressions (RE) with additional semantic actions 
into executable recognizers. Examples are Lex [3,25], flex [25,28], Alex [27], Aflex 
[31], REX [18,19], RE2C [5], and LexAgen [32]. There seem, however, to be only 
a few studies comparing the efficiency of different implementation strategies on 
today's computer architectures. 

Our original interest in this problem came from research in the field of pro- 
gramming language design for parallel architectures. Obviously, the assumption 
of a single flow of control is not the most natural approach when programming 
parallel machines. This is, however, the only possible model behind the infa- 
mous G{3TO statement. An examination of GOT0 usage in Ada, Fortran, and C 
[13] showed that GOT{3 is used rarely today, but one final stronghold of G{3TOs 
are programs produced by generators. We were interested to see whether GOT0 is 



really needed to efficiently encode FAs or more structured implementations are 
equally or possibly even more efficient. 

This paper presents the result of a run-time comparison of lexical analyzers 
produced by two scanner generators and four hand-coded scanners for lexical 
analysis of the programming language Ada 95 [1,4]. All scanners were written 
in the same language, Ada, and compiled using the same compiler, GNAT [14]. 
We also examined the impact of compiler optimization levels. As GNAT and the 
widely used GNU C compiler gcc share the same code generator, similar run- 
time data  can be expected for scanners written in C. Execution behavior was 
evaluated on a Sun workstation using a RISC processor, on a PC with an Intel 
i486 CISC processor under OS/2, and on a PC with an Intel Pentium processor 
running Windows NT. 

Section 2 provides further details on how the measurements were obtained. 
Section 3 describes the evaluated implementation approaches. Section 4 presents 
the execution statistics and discusses probable causes for run-time differences. 
Somewhat surprisingly, some well-known statements about scanner optimization 
could not be confirmed. In section 5 we compare our results to data  gathered by 
other  authors. Section 6 summarizes our conclusions and outlines our design of 
an improved scanner generator. 

2 Evaluation strategy and setup 

Lexical analysis in compilers is probably the most important  application of FAs 
and most scanner generators are designed to utilize FAs. We therefore decided to 
compare s c a n n e r s  instead of pure FAs. This has the additional advantage that  
the interaction of the analysis of REs with other parts of a program is included 
in the measurements. 

Typical tasks of a scanner are keyword recognition, conversion of numeric lit- 
erals into internal representation, recognizing operator symbols, and maintaining 
a table for strings and identifiers. The implementation strategies differ signifi- 
cantly in how these further tasks are integrated into the pure FA realization. We 
used common packages for identifier handling etc. in all scanners to avoid biasing 
the run-time data  by these peripheral activities. We were careful to ensure that  
all scanners had the same functionality. 

2.1 T h e  t e s t  p r o b l e m  

As problem to be solved and measured, we chose lexical analysis of the Ada 95 
programming language. This can be considered a non-trivial problem, addressing 
most features occurring in lexical analysis. 

Keywords and identifiers in Ada are not case-sensitive, so the scanner must 
map these lexical elements to either upper- or lower-case form. None of our scan- 
ners supports Ada's pre-defined type Wide_Character whose values correspond 
to the 16-bit representation of ISO 10646, because the scanner generators we in- 
tended to test were not able to handle such characters. All scanners do, however, 
support  the Latin-1 8-bit character set,.  



Numeric literals can occur in several different notations which do not impose 
scanning problems, but complicate th~ conversion into an internal representation. 

Correct handling of the apostrophe is somewhat difficult in Ada as this sym- 
bol can be a token of its own, and is also used to delimit character literals. For 
example, in t '  ( ' a ' ,  ' b ' ) ,  t is a type_mark qualifying a character aggregate 
consisting of two literals ' a '  and ' b '. Since an apostrophe token can only appear 
after the keyword a l l ,  closing parentheses, or an identifier, possible implemen- 
tations are setting a flag, storing the previously recognized token, or switching 
into a special recognition mode after one of the three tokens is recognized. The 
need to consider limited context information in lexical analysis contradicts the 
principles of REs but is necessary in many programming languages [17,25] and 
can be handled by most scanner generators. 

2.2 Hardware, run-time, and instruction measurement 

Run-time measurements were made on a Sun SPARCstation 10 RISC worksta- 
tion with Solaris 2.5 and OpenWindows 3.5, on a PC with an Intel 486 CPU, 
running IBM OS/2 version 3, and on a PC with an Intel Pentium, running 
Windows NT 4.0. 

Initially, we measured consumed CPU time under Solaris using the times(2) 
function. This, however, turned out to be rather unprecise. Therefore, we used 
the workstation in real-time mode and started the scanners as processes of high- 
est priority with a potentially infinite time slice, thus suppressing multitasking 
[22,26]. Time measurements were obtained via the function gethrtime(3C) read- 
ing the internal hardware timer. The relative error of the measurements is about 
0.2%. On the PCs, run-time was measured using the function t imes provided 
by the emx library [14], offering a precision of only about 5%. 

On the Sun, there was no way to measure the CPU's internal cache hit rate 
and to gather statistics about instruction frequency. However, the Intel Pentium 
CPU provides special instructions for this purpose which can can be accessed 
under Windows NT using a special driver [29,38,21]. 

2.3 Compilat ion and code optimization 

All scanners were compiled using the same compiler, the GNU Ada 95 Trans- 
lator GNAT [14]. GNAT uses the back-end of the GNU C compiler gcc [12] 
which provides four levels of optimization. Level 00 does no optimization at all. 
Level 01 enables a few code optimizations including improved register alloca- 
tion, and in particular performs RISC-specific improvements like filling delay 
slots. Level 02 enables many common code optimizations such as strength re- 
duction, constant optimizations, and common subexpression elimination, while 
03 additionally performs heuristic inline expansion of subprogram calls. 

2.4 Input to the scanners 

Run-time tests on the SUN workstation applied the scanners to large input 
files created by simply concatenating existing Ada source code. We used 14 files 



Abbreviation 
AFLEX 
REXSK 
REXS 
REXK 
REX 
GNAT01 
GNAT03 
WAITPI 
WAITI 
WAIT 
OPT1 
OPT2 

Remarks on scanner implementation 
with table compression 
Keyword recognition via REs, with table compression 
Keyword recognition via REs, no table compression 
Keyword recognition via hash table, table compression turned on 
Keyword recognition via hash table, table compression turned off 
Keyword recognition using many GOT0s (from GNAT 3.01) 
Keyword recognition via hash table (from GNAT 3.03) 
with packing, with inlining 
without packing, with inlining 
without packing, without inlining 
Number conversion by cascaded IFs  

Number conversion via array 

Fig. 1. List of examined scanners 

ranging from 1.5 MB to 11.4 MB in size and consisting of over 58.1 MB in total. 
The run-time data  given in this paper is the total time a scanner needed to scan 
all 14 files. On the PCs we only tested the 11.4 MB source file. 

3 E x a m i n e d  s c a n n e r s  

Basically, there are two different strategies to implement a FA: 
T a b l e - d r i v e n  scanners encode state transitions in one or more tables which 

control execution of a FA-algorithm which itself is independent of the RS to 
be analyzed [34,3]. We tested two scanner generators, Aflex and REX, both 
generating table driven scanners. 

D i r e c t l y  e n c o d e d  scanners consist of code reflecting the structure of the 
RS. An overview of methods for directly programming a FA is given in [24]. We 
tested two hand-writ ten scanners carved fi'om different versions of GNAT and 
wrote a scanner according to a strategy suggested by W.M. Waite [35]. Based 
on our experience gained during the project, we finally wrote a hand-optimized 
scanner intended to optimally solve the problem. Figure 1 gives an overview of 
all scanners tested. The following subsections describe them briefly. 

Common packages providing number conversion, a hash table for identifier 
handling, and storing string constants were used in all scanners. Details are left 
out due to space limitations. 

3.1 T a b l e - d r i v e n  s c a n n e r s  

Aflex.  Aflex [31] is the Ada version of flex [25,28], a lex-compatible scanner 
generator which, according to [28], works as described in [3] by first constructing 
a non-deterministic FA which is then converted to a deterministic FA (DFA). By 
default, table compression is turned on. As turning it off caused program failure, 
we did not test tha t  case. The original version only supported 7-bit characters 
and was extended to handle 8-bit characters. 



Aflex provides an option to automatically map input characters to upper case 
when matching against REs. We used this to implement case-insensitive keyword 
and identifier recognition. The apostrophe problem is solved by entering a start 
state for special handling. 

R E X .  The scanner generator REX [17-19] is part of a set of compiler generation 
tools [16]. Originally implemented in Modula-2, we had ported REX to Ada for 
a different project [30] and used this version for our measurements. REX handles 
8-bit characters. The generated scanner uses so-called "tunnel automata" which 
are based on a pattern matching algorithm described in [2] and extend the DFA 
by a "tunnel function" [18]. In short, the automaton begins matching input 
using one of several alternative paths. When the match fails, the tunnel function 
causes a transition to a different state that represents a different continuation of 
the prefix read so far, thus implementing overlapping REs. Table compression is 
optionally available and applies the "comb-vector" row displacement technique 
[3]. We measured REX-generated scanners with and without table compression. 

Matching input characters is always case-sensitive. We tested two versions: 
the first one only has a rule to match general character strings, with identifiers 
and keywords handled via a hash table. A second version has REs for all keywords 
completely written in upper or lower case, respectively. According to style guides 
and tradition, one will almost never see mixed case keyword spelling in Ada. The 
apostrophe problem is solved by entering a start state. 

3.2  Direc t ly  coded  scanners  

G N A T .  We measured two different scanners carved from GNU Ada Compiler 
GNAT version 3.01 (GNAT01) and version 3.03 (GNAT03). The earlier version 
recognizes keywords by a hand-coded algorithm using a total of 282 GOT0s. The 
typical structure of the source code looks like 

when 'c' => Lower_Case_C : begin -- CASE 

if Source (Scan_Ptr + i) = 'a' then 

if Source (Scan_Ptr + 2) = 's' then 

if Source (Scan_Ptr + 3) = 'e' then 

Token := Tok_Case; 

goto Scan_Keyword_4; 

else goto Scan_Identifier_3; end if; 

else goto Scan_Identifier_2; end if; 

elsif Source (Scan_Ptr + i) = 'o' then -- CONSTANT 

The program logic is based on the assumption that keywords are usually written 
in lower-case letters. Keywords with upper-case letters and all identifiers are 
recognized via a hash table. Version 3.03 no longer uses this approach and always 
recognizes keywords via a hash table, thus reducing code size [9]. The apostrophe 
problem is solved by storing the previously recognized token. 



In order to get comparable results, we wanted all scanners to have nearly 
identical functionality. In the case of the GNAT scanner, we removed code for 
GNAT's excellent error handling. We also omitted some code to implement an 
Ada 83 mode, wide character support, style checking, and the generation of 
syntax tree nodes which GNAT does, in some cases, in its scanner. 

T h e  Wai t e  m e t h o d .  W.M. Waite suggested a technique to efficiently imple- 
ment hand-coded scanners [35]. The set of all tokens is divided into a few classes 
like "identifiers", "numbers" or "operators". Tokens from different classes must 
start with different characters. An array maps characters to the token class start- 
ing this way. This array is used in a CASE statement which then branches to code 
recognizing the particular token class. 

Identifiers, string literals and numbers are recognized by loops. The deci- 
sion whether the next input character belongs to the currently scanned token is 
implemented by arrays mapping characters to boolean values. The apostrophe 
problem is solved using a flag. 

As the size of the array might conflict with cache management, we tested 
two versions of the scanner, one packing the array using pragma(Pack), which, 
however, might cause expensive unpacking. We also tested a version making 
heavy use of pragma ( I n l i n e )  for expanding subprogram calls. 

Our  h a n d - o p t i m i z e d  scanner .  Based on our experiences reported here, we 
designed an optimized hand-coded scanner. It works similar to the Waite method 
but avoids double arrays mapping: the first character of any token is used in a 
CASE statement to branch to code dealing with the rest of the token's characters. 
This, as well as the lack of any GOT0 statements, can yield a high degree of locality 
in the code. Depending on the strategy chosen to implement CASE statements, 
this approach might introduce extra tests when the cases are not compact. We 
did not examine this in detail, because it is likely that the cases are compact in 
scanners for common programming languages. 

We also were careful to never discard information needed later. For example, 
the main CASE statement already distinguishes between digits. In order not to 
loose that information, we provided individual branches for every digit, initial- 
ized a variable with that number and then continued recognizing the rest of that 
number using common code. 

We tested two versions of number conversion. The first one tests characters 
using IF statements and then assigns the appropriate value while the second 
one maps characters to the appropriate value using an array. The apostrophe 
problem is solved using a flag. 

4 Results  and conclusions 

Figure 2 shows the run-time of all scanners on the SUN. There are four entries 
given for each scanner, referring to optimization level 00 to 03, respectively. 
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Scanner 

AFLEX 
REXSK 
REXS 
REXK 
REX 
GNAT01 
GNAT03 
WAITPI 
WAITI 
WAIT 
OPT1 
OPT2 

Time/ I 
s e c  

66.37 
51.17 
46.83 
50.48 
46.79 

3.52 
3.68 
3.81 
3,76 
4.15 
3.37 
3.39 

[ Data 

Read Cache 
Inst/108 Miss/t06 
2188.95 87.33 
1439.63 49.18 
1397.69 36.57 
1350.93 43.63 
1321.45 30.74 

82.98 1,.22 
92.38 1.56 
93.34 3.83 
92.68 3,66 
95.28 3.96 
88.04 1.85 
88.04 1.95 

C o d e  
Read Cache 

Inst/lO 6 Miss/lO ~ 
2592.65 9.01 
1411,20 8.67 
1372.29 9.00 
1440.17 9.17 
1374.34 9.28 

176.72 5.16 
198.93 4.21 
210.09 6.65 
199.31 3.87 
210.55 8.63 
204.61 2.11 
204.86 2~06 

Fig. 5. Scanning 11 MB Ada sources (Pentium PC), min. and 

L o c a l i t y  
Data1 Dode Total 

25.07 87.7__55 49.63 
29.27 62.77 49.28 
38.22 52.48 60.79 
30.96 57.05 52.86 
43.37 48.10 67.36 
68.02 34.25 40.70 
59.22 47.25 50.49 
24.37 31.59 28.95 
25.32 51~50 38.78 
24.0.6 24.40 24.30 
47.59 96.97 73.76 
45.15 99.45 73.04 

max. values underlined 

All table-driven scanners were slow in general, with REX being about  7.5 
t imes faster than  Aflex when full optimization is enabled. OPT1 is the fastest 
directly encoded scanner and outperforms Aflex by a factor of about  74. Turning 
on the first level of optimization yields significant speedup while higher optimiza- 
tions show little or no effect. 

When  repeated on a faster SUN, the difference was only a factor of 27.This 
can be explained by the fact that  IO is relatively insensitive to CPU speed. There 
are fixed costs increasingly dominating total  t ime when scanning becomes faster. 

Figures 3 and 5 give the results measured on the PCs  with 486 and Pent ium 
CPU,  respectively, which are, in general, quite similar to the workstation results. 
Figure 4 shows the run-t ime of directly encoded scanners in more detail. With  
optimization turned on, there is not much difference in execution time. Figure 5 
shows run-t ime and the number  of read instructions and cache misses executed by 
the scanners compiled with optimization 02 while scanning 11 MB Ada sources 
on a Pent ium PC. There is a quite obvious correlation between run-t ime and 
the number  of read instructions and cache misses. 

The  rest of this section discusses possible reasons for the differences in per- 
formance. Some reasons are what  we had expected, but  we also found some sur- 
prising results. We tried to verify each hypothesis with differential measurements  
which was, however, not possible in all cases as the effect of certain implemen- 
tat ion propert ies are very difficult to isolate. 

4.1 The  representation of  states 

In order to handle the next input character correctly, the scanning algorithm 
needs to know a "history" of characters processed before. FAs encode this infor- 
mat ion in the current state. 

Our directly coded scanners represent the s tate  implicitly by the current 
position of control flow. Another  approach to represent s tates by control flow is 



to associate a label with every FA state and then use GOT0s for state transition, 
a technique used in RE2C [5]. 

Other approaches explicitly store the state using a variable which is then 
used to index an array in the case of a table-driven scanner or to dispatch using 
a CASE statement [3]. Explicit encoding of state information is, however, an 
unnecessary level of indirection, causing run-time overhead - a difference similar 
to implementing a programming language using an interpreter or a compiler. 

The indirection multiplies the number of instructions to be executed per input 
character. Figure 5 shows that those scanners using an indirect representation 
of state need to execute up to 26 times more data reads and fetch up to 14 
times more instructions than those using implicit state representation. However, 
there are further effects increasing the number of instructions, and we could not 
isolate these: indirection always comes along with less locality, and the algorithms 
used in Aflex and REX have certain weaknesses, sometimes causing unnecessary 
operations to be performed. 

4.2 Local i ty  and  cache usage 

Most of today's computers have cache memory which is usually as fast as it is 
small. Program run-time therefore strongly depends on achieving a good cache 
hit rate and this is determined by the degree of referential locality. There is 
locality both of data and of program code, affecting data and instruction caches, 
resp. Locality in code means that flow of control stays in the same region of code 
for a relatively long time while, e.g., far-reaching jumps violate code locality. 

We measured the data and instruction cache misses for all scanners on a Intel 
Pentium CPU. Both caches have a size of 8 kB and are organized as 32bit words 
with LRU replacement strategy [21]. Relative miss rates reflect the algorithm's 
working set size which can be considered a measure for locality. 

In figure 5, locality is defined as the ratio of read instructions and cache 
misses, thus yielding the average number of read instructions between two cache 
misses. Total locality is the total number of read instructions divided by the 
total number of cache misses. 

The fastest scanners of all, OPT1 and OPT2, are those constructed to have 
a high degree of both kinds of locality. They achieved good values for code and 
data locality and the best values for total locality. However, total locality varied 
only by a factor of about 3, and the table-driven scanners exhibited rather good 
values, too. Total locality can not be a major factor for speed differences. 

Code and data locality show contrary behavior in general. GNAT01, encoding 
most information in its control structure and thereby using several hundred 
GOT0s and EXITs achieves a very low code locality but has the highest data 
locality as it uses almost no large data structures. On the other side, Aflex shows 
the best code locality of all scanners but has low data locality. Not surprisingly, 
all table-driven scanners yielded similar results, caused by the use of large tables 
which do not completely fit into the data cache, while the interpreting algorithm 
is rather small. 
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Token class 
Single (non-letter) character tokens 
Identifier 
Keywords 
Two (non-letter) character tokens 

Frequency 
41.8% 
32.9% 
14.1% 
4.9% 

Token class 
Integer literals 
String literals 
Character literals 
Real literals 

Fig. 6. Frequency of tokens in Ada 

Frequency 
4.7% 

0.94% 
0.37% 
0.1% 

The WAIT scanner, although rather fast, got low values in locality. Possible 
causes might be five arrays frequently used for mapping characters, and many 
subprogram calls. Code locality is improved by a factor of two when subpro- 
gram calls are expanded, which also reduced run-time by a few percent. Packing 
arrays did not significantly improve cache behavior but decreased code locality, 
presumably caused by the extra code needed for unpacking. The weak cache 
behavior might also be explained by working set theory: perhaps WAIT would 
produce much less cache misses if the cache were only a little bit larger. 

4.3 Algor i thms  used in R E X  and Aflex 

To some degree, the inefficiency of the two table-driven scanners is caused by 
weaknesses of the algorithms used. For example, the Aflex-generated scanner 
does not use the input character directly but first maps it into an integer number. 

For REX, we traced the generated scanner with a debugger and found that 
after accepting keyword IF and the following space character, the scanner per- 
formed another nine tunnel transitions before it finally recognized that token. 
This suggests that the information available from a language definition is not 
yet fully exploited: For our RS, spaces act as separators thus terminating any 
token and making any further tunneling unnecessary. Additional inefficiencies 
exist but are omitted here due to space limitations. 

In the case of Aflex we found that some of its inefficiency is caused by the 
translation from C to Ada. For example, using subtypes for array ranges and 
index variables instead of integer ranges and integer variables will enable good 
compilers to omit many range checks. 

4.4 Keyword and identifier recognition 

Identifiers occur twice as often as keywords in Pascal which suggests that one 
should avoid spending additional work for the less probable case of character 
strings being keywords [35]. Figure 6 shows that Ada programs have a similar 
relation between keywords and identifiers. 

For table-driven scanner generators, one suggested method [17,25,19] is im- 
plementing keyword recognition as part of the automaton which then skips to 
general identifier recognition only if input does not match against any keyword. 
The identifier is not yet stored in a name table by that process. 

More efficient seems the "sifter" approach [37] where the automaton recog- 
nizes strings of characters. These are then passed to a name table which detects 



11 

GNAT01 -O0 

GNAT01 -01 
GNAT03 -00 
GNAT03 -01 
OPT1 -0O 
OPT1 -01 

length of .s 
file in Byte 

666552 
217170 
175401 
103467 
104792 
106793 

number 
of loads 

5263 
1358 
1629 
447 
689 
396 

number 
of stores 

2928 
328 
991 
206 
454 
307 

number 
of no~ 

5029 
9O5 

1823 
297 

1059 
268 

Fig. 7. Frequency for some machine instructions 

keywords via hashing or a specialized search tree [32] and also does general 
identifier handling which needs to be done anyway. 

Although these arguments sound quite convincing, a comparison of both 
methods with REX (see figure 1) revealed that run-times differ by less then 
0.5%. Similar statements hold for the two GNAT scanners. 

But, keywords and identifiers occur rather frequently. Weaknesses in their 
recognition will considerably slow down execution time. Although identifiers oc- 
cur more frequently then keywords, it is the case that "important" keywords 
are used more often than any identifier, and in larger programs the number of 
different identifiers will considerably exceed the number of keywords. A hash 
table used to access the name table should therefore avoid collisions between 
keywords by choosing a perfect hash function [6,7,39,8,20]. 

4.5 Facts abou t  GOT0 

A comparison of all directly encoded scanners contradicts the contention that 
structured programming might be inefficient and the usage of GOT0 is necessary 
to get fast code. 

Another myth concerning GOT0 is that unstructured code necessarily inter- 
feres with code optimization. Our results are different: enabling the first level of 
optimization yielded a significant speedup for GNAT01 and GNAT03. To explain 
this result, we took a closer look at the generated assembly code (see figure 7) 
and counted the total number of load, s tore ,  and nop instructions [36]. We 
ignored any files common to all scanners. 

The large number of jumps in GNAT01 seems to split the code into many 
small basic blocks. With register optimization disabled, this results into a large 
number of load and s to re  instructions and, as no instruction scheduling is 
done, many nops are needed to fill RISC-specific delay slots. Enabling first level 
optimization when compiling GNAT01 reduces the number of loads by 74.2%, 
the number of s tores  by 88.8% and the number of nops by 82~. These im- 
provements are lower for GNAT03 and OPT1 which are more well-structured 
programs. Higher levels of optimization did not significantly improve run-time 
any further, but this was observed for all scanners. 
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4.6 Never  touch characters twice 

A key design goal for scanners should be to "minimize the number of times each 
character is touched by the program" [35]. Although this sounds quite obvious it 
is often violated when using a scanner generator. The problem occurs when REs 
do not describe a single lexical token but a token class. Consider how numbers are 
recognized: first, the input characters are compared against the corresponding 
RE and stored in a buffer usually provided by the scanner generator. This phase 
stops when reaching a terminator symbol. Then, the whole number is read again, 
this time from buffer, in order to be converted to internal representation. 

Directly encoded scanners, however, can do matching and immediate conver- 
sion within the same loop. This eliminates the buffer and the second loop and 
also avoids re-scanning the particular character sequence. Scanner specification 
languages thus should allow semantic actions inside of REs instead of invoking 
them only after an expression is completely matched, basically by supporting an 
attribution syntax already used by many parser generators. 

To check the actual effect, we modified OPT1 by inserting code to first store 
the digits in an array and then convert the number after the RE is fully rec- 
ognized. This increased overall run-time by about 1.5%. Considering that real 
and integer literals make up only about 5% of all tokens in Ada (see figure 6), 
this difference would be significant for regular languages with a high frequency 
of numeric literals. 

4.7 Input buffering 

We ran experiments to find out whether execution time depends on the way 
input is buffered. We found that buffer size has only a very small influence 
on the scanner's execution time. The scanner generated by REX has a default 
buffer size of 8 kB 1. Increasing the buffer size to 128 kB led to an acceleration 
of only 5%. This might be surprising at first glance, but can be explained by the 
fact that the operating system (and perhaps the run-time system, too) already 
buffers input from disk. In a different experiment, we measured the percentage 
of execution time of OPT1 that was attributable to IO. The result of about 10% 
suggests that the cost of IO is sometimes over-estimated. 

5 Related  Work 

P. Bumbulis and D.D. Cowan [5] measured run-time performance of four different 
scanners for C on four machines. Figure 8 cites the results for SPARC and i486. 
The compiler was gcc with optimization 0i enabled. The generators gta [15], 
and RE2C [5] produce directly encoded scanners which are faster than the table- 
driven Flex. 

Lcc is a hand-written scanner from a public C compiler [10,11]. It was im- 
plemented following the Waite method and we were surprised to see that it did 

1 plus additional 256 Bytes which remain unused 
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Scanner 
Generator 
flex -Cem 
flex -Cf 
lcc 

Time/s ] Time/s 
on SPARC on i486 

18.81 23.12 
10.53 10.30 
6.47 6.67 

Scanner 
Generator 
gla 
re2c 
re2c -s 

Time/s 
on SPARC 

5.64 
5.43 
5.18 

Time/s 
on i486 

6.29 
5.86 
6.02 

Fig. 8. Run-time evaluation of scanners for C [5] 

Scanner 
Generator 
lex 
flex -Cem 
flex -Cf 
Rex -c 

Time/s (with hashing of 
identifiers and number conversion) 

7.21 
3.99 
2.12 
1.77 

Time/s (without hashing of 
identifiers and number conversion) 

6.88 
3.69 
1,80 
1.37 

Fig. 9. Run-time evaluation of scanners for Modula-2 [18] 

not yield really good results but then took a look at its source code. Lcc is 
likely not to achieve good referential locality as it uses many GOTOs for jumping 
between different branches of the outer switch statement. Including break and 
continue,  lcc has a total of 33 jumps. An additional weakness might be keyword 
and identifier recognition. The code is similar to the mechanism used in GNAT 
3.01 and is claimed to recognize individual keywords faster than even a perfect 
hash table could [10], but this is at the expense of handling identifiers which 
occur much more frequently. Also, lcc unnecessarily tests for keywords having a 
common prefix longer than one character. 

J. Grosch [18] compared some generated scanners for lexical analysis of 
Modula-2. Figure 9 shows that the original lex generated the slowest scanners. 
The relative speed of Flex and REX differs less than in our test. 

6 Summary and future work 

We compared twelve differently implemented scanners and found that their ex- 
ecution time solving the same problem differs by more then a factor of 70 with 
table-driven scanners being slow in general. There is no single explanation for 
this difference. As a general result we can state that today's computer architec- 
tures require algorithms with a high degree of locality in both the executable 
code and the data. Locality of code means the absence of frequently executed and 
far-reaching transfers of control. Locality of data of course is particularly endan- 
gered by the existence large, frequently and randomly accessed tables. Another 
factor worth noting is that generated scanners suffer from executing unnecessary 
actions, using unnecessary indirection in the implementation of states, or doing 
the same thing more than once. 

Some other causes which at first seemed quite plausible had only little effect 
in practice. Several claims sometimes made about implementation strategies for 
fast scanning could not be confirmed. Some might have been valid decades ago 



but fail to consider the advances in code generation and hardware architectures 
since then. In particular, the effect of input buffering and inline-expansion is 
over-estimated and the use of GOT0s did riot prove to be necessary for achieving 
good performance - s tructured programming yields bet ter  results. 

Experimental  evaluations are published rarely which has been considered 
a problem of computer science in general [33]. However, we found some data  
published in the context of newly developed scanner generators and these confirm 
our result about the speed of table-driven scanners. 

Measuring the effect of different code optimizations leads to the conclusion 
that  register allocation and, for RISC CPUs, instruction scheduling are criti- 
cal issues but  most other code optimizations have no or very little effect on a 
scanner's run-time. 

It  is important  to note tha t  the efficiency does not depend on whether scan- 
ners are hand-writ ten or automatically generated. It is, however, the case that  
table-driven scanners are slow, and many scanner generators produce such scan- 
ners. The fastest scanners in our test were hand-written, but there is no reason 
why the construction principles we used should not be incorporated into a scan- 
ner generator. 

Currently, we design a new scanner generator based on the principles we 
found: the input language will allow semantic actions to be written within REs 
instead of executing them after a complete RE is matched to avoid unnecessary 
buffering and re-scanning of, e.g., numbers. The generated scanning algorithms 
will be directly encoded and achieve good locality by avoiding jump statements 
as well as the use of large arrays. 
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