
Myths and Facts about the Efficient
Implementation of Finite Automata and Lexical

Analysis

Klaus Brouwer, Wolfgang Gellerich and Erhard Ploedereder

Department of Computer Science
University of Stuttgart

D-70565 Stuttgart
Germany

telephone: +49 / 711 / 7816 213; fax: -~49 / 711 / 7816 380
geUerich@informatik.uni-stuttgart.de

keywords: Scanner, Lexical Analysis, Finite Automata, Run-time Efficiency

Abstract. Finite automata and their application in lexical analysis play
an important role in many parts of computer science and particularly in
compiler constructions. We measured 12 scanners using different imple-
mentation strategies and found that the execution time differed by a
factor of 74. Our analysis of the algorithms as well as run-time statistics
on cache misses and instruction frequency reveals substantive differences
in code locality and certain kinds of overhead typical for specific im-
plementation strategies. Some of the traditional statements on writing
"fast" scanners could not be confirmed. Finally, we suggest an improved
scanner generator.

1 Introduction and background

Finite automata (FA) and regular languages in general are well understood and
have found many applications in computer science, e.g., lexical analysis in com-
pilers [23,3]. A number of different implementation strategies were developed
[3,24] and there are many scanner generators translating regular specifications
(RS) which consist of regular expressions (RE) with additional semantic actions
into executable recognizers. Examples are Lex [3,25], flex [25,28], Alex [27], Aflex
[31], REX [18,19], RE2C [5], and LexAgen [32]. There seem, however, to be only
a few studies comparing the efficiency of different implementation strategies on
today's computer architectures.

Our original interest in this problem came from research in the field of pro-
gramming language design for parallel architectures. Obviously, the assumption
of a single flow of control is not the most natural approach when programming
parallel machines. This is, however, the only possible model behind the infa-
mous G{3TO statement. An examination of GOT0 usage in Ada, Fortran, and C
[13] showed that GOT{3 is used rarely today, but one final stronghold of G{3TOs
are programs produced by generators. We were interested to see whether GOT0 is

really needed to efficiently encode FAs or more structured implementations are
equally or possibly even more efficient.

This paper presents the result of a run-time comparison of lexical analyzers
produced by two scanner generators and four hand-coded scanners for lexical
analysis of the programming language Ada 95 [1,4]. All scanners were written
in the same language, Ada, and compiled using the same compiler, GNAT [14].
We also examined the impact of compiler optimization levels. As GNAT and the
widely used GNU C compiler gcc share the same code generator, similar run-
time data can be expected for scanners written in C. Execution behavior was
evaluated on a Sun workstation using a RISC processor, on a PC with an Intel
i486 CISC processor under OS/2, and on a PC with an Intel Pentium processor
running Windows NT.

Section 2 provides further details on how the measurements were obtained.
Section 3 describes the evaluated implementation approaches. Section 4 presents
the execution statistics and discusses probable causes for run-time differences.
Somewhat surprisingly, some well-known statements about scanner optimization
could not be confirmed. In section 5 we compare our results to data gathered by
other authors. Section 6 summarizes our conclusions and outlines our design of
an improved scanner generator.

2 Evaluation strategy and setup

Lexical analysis in compilers is probably the most important application of FAs
and most scanner generators are designed to utilize FAs. We therefore decided to
compare s c a n n e r s instead of pure FAs. This has the additional advantage that
the interaction of the analysis of REs with other parts of a program is included
in the measurements.

Typical tasks of a scanner are keyword recognition, conversion of numeric lit-
erals into internal representation, recognizing operator symbols, and maintaining
a table for strings and identifiers. The implementation strategies differ signifi-
cantly in how these further tasks are integrated into the pure FA realization. We
used common packages for identifier handling etc. in all scanners to avoid biasing
the run-time data by these peripheral activities. We were careful to ensure that
all scanners had the same functionality.

2.1 T h e t e s t p r o b l e m

As problem to be solved and measured, we chose lexical analysis of the Ada 95
programming language. This can be considered a non-trivial problem, addressing
most features occurring in lexical analysis.

Keywords and identifiers in Ada are not case-sensitive, so the scanner must
map these lexical elements to either upper- or lower-case form. None of our scan-
ners supports Ada's pre-defined type Wide_Character whose values correspond
to the 16-bit representation of ISO 10646, because the scanner generators we in-
tended to test were not able to handle such characters. All scanners do, however,
support the Latin-1 8-bit character set,.

Numeric literals can occur in several different notations which do not impose
scanning problems, but complicate th~ conversion into an internal representation.

Correct handling of the apostrophe is somewhat difficult in Ada as this sym-
bol can be a token of its own, and is also used to delimit character literals. For
example, in t ' (' a ' , ' b ') , t is a type_mark qualifying a character aggregate
consisting of two literals ' a ' and ' b '. Since an apostrophe token can only appear
after the keyword a l l , closing parentheses, or an identifier, possible implemen-
tations are setting a flag, storing the previously recognized token, or switching
into a special recognition mode after one of the three tokens is recognized. The
need to consider limited context information in lexical analysis contradicts the
principles of REs but is necessary in many programming languages [17,25] and
can be handled by most scanner generators.

2.2 Hardware, run-time, and instruction measurement

Run-time measurements were made on a Sun SPARCstation 10 RISC worksta-
tion with Solaris 2.5 and OpenWindows 3.5, on a PC with an Intel 486 CPU,
running IBM OS/2 version 3, and on a PC with an Intel Pentium, running
Windows NT 4.0.

Initially, we measured consumed CPU time under Solaris using the times(2)
function. This, however, turned out to be rather unprecise. Therefore, we used
the workstation in real-time mode and started the scanners as processes of high-
est priority with a potentially infinite time slice, thus suppressing multitasking
[22,26]. Time measurements were obtained via the function gethrtime(3C) read-
ing the internal hardware timer. The relative error of the measurements is about
0.2%. On the PCs, run-time was measured using the function t imes provided
by the emx library [14], offering a precision of only about 5%.

On the Sun, there was no way to measure the CPU's internal cache hit rate
and to gather statistics about instruction frequency. However, the Intel Pentium
CPU provides special instructions for this purpose which can can be accessed
under Windows NT using a special driver [29,38,21].

2.3 Compilat ion and code optimization

All scanners were compiled using the same compiler, the GNU Ada 95 Trans-
lator GNAT [14]. GNAT uses the back-end of the GNU C compiler gcc [12]
which provides four levels of optimization. Level 00 does no optimization at all.
Level 01 enables a few code optimizations including improved register alloca-
tion, and in particular performs RISC-specific improvements like filling delay
slots. Level 02 enables many common code optimizations such as strength re-
duction, constant optimizations, and common subexpression elimination, while
03 additionally performs heuristic inline expansion of subprogram calls.

2.4 Input to the scanners

Run-time tests on the SUN workstation applied the scanners to large input
files created by simply concatenating existing Ada source code. We used 14 files

Abbreviation
AFLEX
REXSK
REXS
REXK
REX
GNAT01
GNAT03
WAITPI
WAITI
WAIT
OPT1
OPT2

Remarks on scanner implementation
with table compression
Keyword recognition via REs, with table compression
Keyword recognition via REs, no table compression
Keyword recognition via hash table, table compression turned on
Keyword recognition via hash table, table compression turned off
Keyword recognition using many GOT0s (from GNAT 3.01)
Keyword recognition via hash table (from GNAT 3.03)
with packing, with inlining
without packing, with inlining
without packing, without inlining
Number conversion by cascaded IFs

Number conversion via array

Fig. 1. List of examined scanners

ranging from 1.5 MB to 11.4 MB in size and consisting of over 58.1 MB in total.
The run-time data given in this paper is the total time a scanner needed to scan
all 14 files. On the PCs we only tested the 11.4 MB source file.

3 E x a m i n e d s c a n n e r s

Basically, there are two different strategies to implement a FA:
T a b l e - d r i v e n scanners encode state transitions in one or more tables which

control execution of a FA-algorithm which itself is independent of the RS to
be analyzed [34,3]. We tested two scanner generators, Aflex and REX, both
generating table driven scanners.

D i r e c t l y e n c o d e d scanners consist of code reflecting the structure of the
RS. An overview of methods for directly programming a FA is given in [24]. We
tested two hand-writ ten scanners carved fi'om different versions of GNAT and
wrote a scanner according to a strategy suggested by W.M. Waite [35]. Based
on our experience gained during the project, we finally wrote a hand-optimized
scanner intended to optimally solve the problem. Figure 1 gives an overview of
all scanners tested. The following subsections describe them briefly.

Common packages providing number conversion, a hash table for identifier
handling, and storing string constants were used in all scanners. Details are left
out due to space limitations.

3.1 T a b l e - d r i v e n s c a n n e r s

Aflex. Aflex [31] is the Ada version of flex [25,28], a lex-compatible scanner
generator which, according to [28], works as described in [3] by first constructing
a non-deterministic FA which is then converted to a deterministic FA (DFA). By
default, table compression is turned on. As turning it off caused program failure,
we did not test tha t case. The original version only supported 7-bit characters
and was extended to handle 8-bit characters.

Aflex provides an option to automatically map input characters to upper case
when matching against REs. We used this to implement case-insensitive keyword
and identifier recognition. The apostrophe problem is solved by entering a start
state for special handling.

R E X . The scanner generator REX [17-19] is part of a set of compiler generation
tools [16]. Originally implemented in Modula-2, we had ported REX to Ada for
a different project [30] and used this version for our measurements. REX handles
8-bit characters. The generated scanner uses so-called "tunnel automata" which
are based on a pattern matching algorithm described in [2] and extend the DFA
by a "tunnel function" [18]. In short, the automaton begins matching input
using one of several alternative paths. When the match fails, the tunnel function
causes a transition to a different state that represents a different continuation of
the prefix read so far, thus implementing overlapping REs. Table compression is
optionally available and applies the "comb-vector" row displacement technique
[3]. We measured REX-generated scanners with and without table compression.

Matching input characters is always case-sensitive. We tested two versions:
the first one only has a rule to match general character strings, with identifiers
and keywords handled via a hash table. A second version has REs for all keywords
completely written in upper or lower case, respectively. According to style guides
and tradition, one will almost never see mixed case keyword spelling in Ada. The
apostrophe problem is solved by entering a start state.

3.2 Direc t ly coded scanners

G N A T . We measured two different scanners carved from GNU Ada Compiler
GNAT version 3.01 (GNAT01) and version 3.03 (GNAT03). The earlier version
recognizes keywords by a hand-coded algorithm using a total of 282 GOT0s. The
typical structure of the source code looks like

when 'c' => Lower_Case_C : begin -- CASE

if Source (Scan_Ptr + i) = 'a' then

if Source (Scan_Ptr + 2) = 's' then

if Source (Scan_Ptr + 3) = 'e' then

Token := Tok_Case;

goto Scan_Keyword_4;

else goto Scan_Identifier_3; end if;

else goto Scan_Identifier_2; end if;

elsif Source (Scan_Ptr + i) = 'o' then -- CONSTANT

The program logic is based on the assumption that keywords are usually written
in lower-case letters. Keywords with upper-case letters and all identifiers are
recognized via a hash table. Version 3.03 no longer uses this approach and always
recognizes keywords via a hash table, thus reducing code size [9]. The apostrophe
problem is solved by storing the previously recognized token.

In order to get comparable results, we wanted all scanners to have nearly
identical functionality. In the case of the GNAT scanner, we removed code for
GNAT's excellent error handling. We also omitted some code to implement an
Ada 83 mode, wide character support, style checking, and the generation of
syntax tree nodes which GNAT does, in some cases, in its scanner.

T h e Wai t e m e t h o d . W.M. Waite suggested a technique to efficiently imple-
ment hand-coded scanners [35]. The set of all tokens is divided into a few classes
like "identifiers", "numbers" or "operators". Tokens from different classes must
start with different characters. An array maps characters to the token class start-
ing this way. This array is used in a CASE statement which then branches to code
recognizing the particular token class.

Identifiers, string literals and numbers are recognized by loops. The deci-
sion whether the next input character belongs to the currently scanned token is
implemented by arrays mapping characters to boolean values. The apostrophe
problem is solved using a flag.

As the size of the array might conflict with cache management, we tested
two versions of the scanner, one packing the array using pragma(Pack), which,
however, might cause expensive unpacking. We also tested a version making
heavy use of pragma (I n l i n e) for expanding subprogram calls.

Our h a n d - o p t i m i z e d scanner . Based on our experiences reported here, we
designed an optimized hand-coded scanner. It works similar to the Waite method
but avoids double arrays mapping: the first character of any token is used in a
CASE statement to branch to code dealing with the rest of the token's characters.
This, as well as the lack of any GOT0 statements, can yield a high degree of locality
in the code. Depending on the strategy chosen to implement CASE statements,
this approach might introduce extra tests when the cases are not compact. We
did not examine this in detail, because it is likely that the cases are compact in
scanners for common programming languages.

We also were careful to never discard information needed later. For example,
the main CASE statement already distinguishes between digits. In order not to
loose that information, we provided individual branches for every digit, initial-
ized a variable with that number and then continued recognizing the rest of that
number using common code.

We tested two versions of number conversion. The first one tests characters
using IF statements and then assigns the appropriate value while the second
one maps characters to the appropriate value using an array. The apostrophe
problem is solved using a flag.

4 Results and conclusions

Figure 2 shows the run-time of all scanners on the SUN. There are four entries
given for each scanner, referring to optimization level 00 to 03, respectively.

45OO

.ooo mill

" i 2500

2000

1500

1000 Im__'m._
o II ,,, • o m • Ill l,m,m,m,,m,m,m,i mmm ...

~ x ,, ~ ,, x ~. r- ~- ..-
p_. ., ~o x x uJ ~_ - ~ E ~- F--

< <
z z < ¢

Fig. 2. Run-t ime of all scanners (workstation)

4500

35OO
o Z ~
.¢ 2500

E 2oo0

1000

5OO

z z < a:

Fig. 3. Run-t ime of all scanners (PC)

25O

200

150 .¢_

i
1 0 0

5O

0

9

'< < ~ ~ ~ 0 0 z z

Fig. 4. Run-t ime of hand-wri t ten scanners only (workstation)

Scanner

AFLEX
REXSK
REXS
REXK
REX
GNAT01
GNAT03
WAITPI
WAITI
WAIT
OPT1
OPT2

Time/ I
s e c

66.37
51.17
46.83
50.48
46.79

3.52
3.68
3.81
3,76
4.15
3.37
3.39

[Data

Read Cache
Inst/108 Miss/t06
2188.95 87.33
1439.63 49.18
1397.69 36.57
1350.93 43.63
1321.45 30.74

82.98 1,.22
92.38 1.56
93.34 3.83
92.68 3,66
95.28 3.96
88.04 1.85
88.04 1.95

C o d e
Read Cache

Inst/lO 6 Miss/lO ~
2592.65 9.01
1411,20 8.67
1372.29 9.00
1440.17 9.17
1374.34 9.28

176.72 5.16
198.93 4.21
210.09 6.65
199.31 3.87
210.55 8.63
204.61 2.11
204.86 2~06

Fig. 5. Scanning 11 MB Ada sources (Pentium PC), min. and

L o c a l i t y
Data1 Dode Total

25.07 87.7__55 49.63
29.27 62.77 49.28
38.22 52.48 60.79
30.96 57.05 52.86
43.37 48.10 67.36
68.02 34.25 40.70
59.22 47.25 50.49
24.37 31.59 28.95
25.32 51~50 38.78
24.0.6 24.40 24.30
47.59 96.97 73.76
45.15 99.45 73.04

max. values underlined

All table-driven scanners were slow in general, with REX being about 7.5
t imes faster than Aflex when full optimization is enabled. OPT1 is the fastest
directly encoded scanner and outperforms Aflex by a factor of about 74. Turning
on the first level of optimization yields significant speedup while higher optimiza-
tions show little or no effect.

When repeated on a faster SUN, the difference was only a factor of 27.This
can be explained by the fact that IO is relatively insensitive to CPU speed. There
are fixed costs increasingly dominating total t ime when scanning becomes faster.

Figures 3 and 5 give the results measured on the PCs with 486 and Pent ium
CPU, respectively, which are, in general, quite similar to the workstation results.
Figure 4 shows the run-t ime of directly encoded scanners in more detail. With
optimization turned on, there is not much difference in execution time. Figure 5
shows run-t ime and the number of read instructions and cache misses executed by
the scanners compiled with optimization 02 while scanning 11 MB Ada sources
on a Pent ium PC. There is a quite obvious correlation between run-t ime and
the number of read instructions and cache misses.

The rest of this section discusses possible reasons for the differences in per-
formance. Some reasons are what we had expected, but we also found some sur-
prising results. We tried to verify each hypothesis with differential measurements
which was, however, not possible in all cases as the effect of certain implemen-
tat ion propert ies are very difficult to isolate.

4.1 The representation of states

In order to handle the next input character correctly, the scanning algorithm
needs to know a "history" of characters processed before. FAs encode this infor-
mat ion in the current state.

Our directly coded scanners represent the s tate implicitly by the current
position of control flow. Another approach to represent s tates by control flow is

to associate a label with every FA state and then use GOT0s for state transition,
a technique used in RE2C [5].

Other approaches explicitly store the state using a variable which is then
used to index an array in the case of a table-driven scanner or to dispatch using
a CASE statement [3]. Explicit encoding of state information is, however, an
unnecessary level of indirection, causing run-time overhead - a difference similar
to implementing a programming language using an interpreter or a compiler.

The indirection multiplies the number of instructions to be executed per input
character. Figure 5 shows that those scanners using an indirect representation
of state need to execute up to 26 times more data reads and fetch up to 14
times more instructions than those using implicit state representation. However,
there are further effects increasing the number of instructions, and we could not
isolate these: indirection always comes along with less locality, and the algorithms
used in Aflex and REX have certain weaknesses, sometimes causing unnecessary
operations to be performed.

4.2 Local i ty and cache usage

Most of today's computers have cache memory which is usually as fast as it is
small. Program run-time therefore strongly depends on achieving a good cache
hit rate and this is determined by the degree of referential locality. There is
locality both of data and of program code, affecting data and instruction caches,
resp. Locality in code means that flow of control stays in the same region of code
for a relatively long time while, e.g., far-reaching jumps violate code locality.

We measured the data and instruction cache misses for all scanners on a Intel
Pentium CPU. Both caches have a size of 8 kB and are organized as 32bit words
with LRU replacement strategy [21]. Relative miss rates reflect the algorithm's
working set size which can be considered a measure for locality.

In figure 5, locality is defined as the ratio of read instructions and cache
misses, thus yielding the average number of read instructions between two cache
misses. Total locality is the total number of read instructions divided by the
total number of cache misses.

The fastest scanners of all, OPT1 and OPT2, are those constructed to have
a high degree of both kinds of locality. They achieved good values for code and
data locality and the best values for total locality. However, total locality varied
only by a factor of about 3, and the table-driven scanners exhibited rather good
values, too. Total locality can not be a major factor for speed differences.

Code and data locality show contrary behavior in general. GNAT01, encoding
most information in its control structure and thereby using several hundred
GOT0s and EXITs achieves a very low code locality but has the highest data
locality as it uses almost no large data structures. On the other side, Aflex shows
the best code locality of all scanners but has low data locality. Not surprisingly,
all table-driven scanners yielded similar results, caused by the use of large tables
which do not completely fit into the data cache, while the interpreting algorithm
is rather small.

~0

Token class
Single (non-letter) character tokens
Identifier
Keywords
Two (non-letter) character tokens

Frequency
41.8%
32.9%
14.1%
4.9%

Token class
Integer literals
String literals
Character literals
Real literals

Fig. 6. Frequency of tokens in Ada

Frequency
4.7%

0.94%
0.37%
0.1%

The WAIT scanner, although rather fast, got low values in locality. Possible
causes might be five arrays frequently used for mapping characters, and many
subprogram calls. Code locality is improved by a factor of two when subpro-
gram calls are expanded, which also reduced run-time by a few percent. Packing
arrays did not significantly improve cache behavior but decreased code locality,
presumably caused by the extra code needed for unpacking. The weak cache
behavior might also be explained by working set theory: perhaps WAIT would
produce much less cache misses if the cache were only a little bit larger.

4.3 Algor i thms used in R E X and Aflex

To some degree, the inefficiency of the two table-driven scanners is caused by
weaknesses of the algorithms used. For example, the Aflex-generated scanner
does not use the input character directly but first maps it into an integer number.

For REX, we traced the generated scanner with a debugger and found that
after accepting keyword IF and the following space character, the scanner per-
formed another nine tunnel transitions before it finally recognized that token.
This suggests that the information available from a language definition is not
yet fully exploited: For our RS, spaces act as separators thus terminating any
token and making any further tunneling unnecessary. Additional inefficiencies
exist but are omitted here due to space limitations.

In the case of Aflex we found that some of its inefficiency is caused by the
translation from C to Ada. For example, using subtypes for array ranges and
index variables instead of integer ranges and integer variables will enable good
compilers to omit many range checks.

4.4 Keyword and identifier recognition

Identifiers occur twice as often as keywords in Pascal which suggests that one
should avoid spending additional work for the less probable case of character
strings being keywords [35]. Figure 6 shows that Ada programs have a similar
relation between keywords and identifiers.

For table-driven scanner generators, one suggested method [17,25,19] is im-
plementing keyword recognition as part of the automaton which then skips to
general identifier recognition only if input does not match against any keyword.
The identifier is not yet stored in a name table by that process.

More efficient seems the "sifter" approach [37] where the automaton recog-
nizes strings of characters. These are then passed to a name table which detects

11

GNAT01 -O0

GNAT01 -01
GNAT03 -00
GNAT03 -01
OPT1 -0O
OPT1 -01

length of .s
file in Byte

666552
217170
175401
103467
104792
106793

number
of loads

5263
1358
1629
447
689
396

number
of stores

2928
328
991
206
454
307

number
of no~

5029
9O5

1823
297

1059
268

Fig. 7. Frequency for some machine instructions

keywords via hashing or a specialized search tree [32] and also does general
identifier handling which needs to be done anyway.

Although these arguments sound quite convincing, a comparison of both
methods with REX (see figure 1) revealed that run-times differ by less then
0.5%. Similar statements hold for the two GNAT scanners.

But, keywords and identifiers occur rather frequently. Weaknesses in their
recognition will considerably slow down execution time. Although identifiers oc-
cur more frequently then keywords, it is the case that "important" keywords
are used more often than any identifier, and in larger programs the number of
different identifiers will considerably exceed the number of keywords. A hash
table used to access the name table should therefore avoid collisions between
keywords by choosing a perfect hash function [6,7,39,8,20].

4.5 Facts abou t GOT0

A comparison of all directly encoded scanners contradicts the contention that
structured programming might be inefficient and the usage of GOT0 is necessary
to get fast code.

Another myth concerning GOT0 is that unstructured code necessarily inter-
feres with code optimization. Our results are different: enabling the first level of
optimization yielded a significant speedup for GNAT01 and GNAT03. To explain
this result, we took a closer look at the generated assembly code (see figure 7)
and counted the total number of load, s tore , and nop instructions [36]. We
ignored any files common to all scanners.

The large number of jumps in GNAT01 seems to split the code into many
small basic blocks. With register optimization disabled, this results into a large
number of load and s to re instructions and, as no instruction scheduling is
done, many nops are needed to fill RISC-specific delay slots. Enabling first level
optimization when compiling GNAT01 reduces the number of loads by 74.2%,
the number of s tores by 88.8% and the number of nops by 82~. These im-
provements are lower for GNAT03 and OPT1 which are more well-structured
programs. Higher levels of optimization did not significantly improve run-time
any further, but this was observed for all scanners.

~2

4.6 Never touch characters twice

A key design goal for scanners should be to "minimize the number of times each
character is touched by the program" [35]. Although this sounds quite obvious it
is often violated when using a scanner generator. The problem occurs when REs
do not describe a single lexical token but a token class. Consider how numbers are
recognized: first, the input characters are compared against the corresponding
RE and stored in a buffer usually provided by the scanner generator. This phase
stops when reaching a terminator symbol. Then, the whole number is read again,
this time from buffer, in order to be converted to internal representation.

Directly encoded scanners, however, can do matching and immediate conver-
sion within the same loop. This eliminates the buffer and the second loop and
also avoids re-scanning the particular character sequence. Scanner specification
languages thus should allow semantic actions inside of REs instead of invoking
them only after an expression is completely matched, basically by supporting an
attribution syntax already used by many parser generators.

To check the actual effect, we modified OPT1 by inserting code to first store
the digits in an array and then convert the number after the RE is fully rec-
ognized. This increased overall run-time by about 1.5%. Considering that real
and integer literals make up only about 5% of all tokens in Ada (see figure 6),
this difference would be significant for regular languages with a high frequency
of numeric literals.

4.7 Input buffering

We ran experiments to find out whether execution time depends on the way
input is buffered. We found that buffer size has only a very small influence
on the scanner's execution time. The scanner generated by REX has a default
buffer size of 8 kB 1. Increasing the buffer size to 128 kB led to an acceleration
of only 5%. This might be surprising at first glance, but can be explained by the
fact that the operating system (and perhaps the run-time system, too) already
buffers input from disk. In a different experiment, we measured the percentage
of execution time of OPT1 that was attributable to IO. The result of about 10%
suggests that the cost of IO is sometimes over-estimated.

5 Related Work

P. Bumbulis and D.D. Cowan [5] measured run-time performance of four different
scanners for C on four machines. Figure 8 cites the results for SPARC and i486.
The compiler was gcc with optimization 0i enabled. The generators gta [15],
and RE2C [5] produce directly encoded scanners which are faster than the table-
driven Flex.

Lcc is a hand-written scanner from a public C compiler [10,11]. It was im-
plemented following the Waite method and we were surprised to see that it did

1 plus additional 256 Bytes which remain unused

]3

Scanner
Generator
flex -Cem
flex -Cf
lcc

Time/s] Time/s
on SPARC on i486

18.81 23.12
10.53 10.30
6.47 6.67

Scanner
Generator
gla
re2c
re2c -s

Time/s
on SPARC

5.64
5.43
5.18

Time/s
on i486

6.29
5.86
6.02

Fig. 8. Run-time evaluation of scanners for C [5]

Scanner
Generator
lex
flex -Cem
flex -Cf
Rex -c

Time/s (with hashing of
identifiers and number conversion)

7.21
3.99
2.12
1.77

Time/s (without hashing of
identifiers and number conversion)

6.88
3.69
1,80
1.37

Fig. 9. Run-time evaluation of scanners for Modula-2 [18]

not yield really good results but then took a look at its source code. Lcc is
likely not to achieve good referential locality as it uses many GOTOs for jumping
between different branches of the outer switch statement. Including break and
continue, lcc has a total of 33 jumps. An additional weakness might be keyword
and identifier recognition. The code is similar to the mechanism used in GNAT
3.01 and is claimed to recognize individual keywords faster than even a perfect
hash table could [10], but this is at the expense of handling identifiers which
occur much more frequently. Also, lcc unnecessarily tests for keywords having a
common prefix longer than one character.

J. Grosch [18] compared some generated scanners for lexical analysis of
Modula-2. Figure 9 shows that the original lex generated the slowest scanners.
The relative speed of Flex and REX differs less than in our test.

6 Summary and future work

We compared twelve differently implemented scanners and found that their ex-
ecution time solving the same problem differs by more then a factor of 70 with
table-driven scanners being slow in general. There is no single explanation for
this difference. As a general result we can state that today's computer architec-
tures require algorithms with a high degree of locality in both the executable
code and the data. Locality of code means the absence of frequently executed and
far-reaching transfers of control. Locality of data of course is particularly endan-
gered by the existence large, frequently and randomly accessed tables. Another
factor worth noting is that generated scanners suffer from executing unnecessary
actions, using unnecessary indirection in the implementation of states, or doing
the same thing more than once.

Some other causes which at first seemed quite plausible had only little effect
in practice. Several claims sometimes made about implementation strategies for
fast scanning could not be confirmed. Some might have been valid decades ago

but fail to consider the advances in code generation and hardware architectures
since then. In particular, the effect of input buffering and inline-expansion is
over-estimated and the use of GOT0s did riot prove to be necessary for achieving
good performance - s tructured programming yields bet ter results.

Experimental evaluations are published rarely which has been considered
a problem of computer science in general [33]. However, we found some data
published in the context of newly developed scanner generators and these confirm
our result about the speed of table-driven scanners.

Measuring the effect of different code optimizations leads to the conclusion
that register allocation and, for RISC CPUs, instruction scheduling are criti-
cal issues but most other code optimizations have no or very little effect on a
scanner's run-time.

It is important to note tha t the efficiency does not depend on whether scan-
ners are hand-writ ten or automatically generated. It is, however, the case that
table-driven scanners are slow, and many scanner generators produce such scan-
ners. The fastest scanners in our test were hand-written, but there is no reason
why the construction principles we used should not be incorporated into a scan-
ner generator.

Currently, we design a new scanner generator based on the principles we
found: the input language will allow semantic actions to be written within REs
instead of executing them after a complete RE is matched to avoid unnecessary
buffering and re-scanning of, e.g., numbers. The generated scanning algorithms
will be directly encoded and achieve good locality by avoiding jump statements
as well as the use of large arrays.

References

1. Ada 95 Reference Manual. Intermetrics, Inc., 1995. ANSI/ISO/IEC-8652:1995.
2. A.V. Aho and M.J. Corasick. Efficient String Matching: An Aid to Bibliographic

Search. Communications of the ACM, 18(6):333-340, June 1975.
3. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Addison-Wesley, 1986.
4. J. Barnes. Programming in Ada 95. Addison Wesley, 1995.
5. P. Bumbulis and D.D. Cowan. RE2C: A More Versatile Scanner Generator. ACM

Letters on Programming Languages and Systems, 2(1-4):70-84, 1993.
6. R.J. Cichelli. Minimal Perfect Hash Functions Made Simple. Communications of

the ACM, 23:17-19, 1980.
7. C.R. Cook and R.R: Oldehoeft. A Letter Oriented Minimal Perfect Hashing Func-

tion. ACM SIGPLAN Notices, 17(9):18-27, 1982.
8. Z.J. Czech and G. Havas. An optimal algorithm for generating minimal perfect

hash functions. Information Processing Letters, 43(5):257-264, October 1992.
9. R. Dewar. (private communication).

10. C.W. Fraser and D.R. Hanson. A Retargetable C Compiler. ACM SIGPLAN
Notices, 26(10):29-43, October 1991.

11. C.W. Fraser and D.R. Hanson. A Retargetable C Compiler. Addison-Wesley, 1995.
12. Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307

USA. Using and Porting GNU CC, 1995. (for GCC Version 2.7.2).

15

13. W. Gellerich, M. Kosiol, and E. Ploedereder. Where does goto go to? In
Reliable Software Technologies - Aria-Europe 1996, volume 1088 of LNCS,
pages 385-395. Springer, 1996. (h t tp : / /www. in fo rmat ik .un i - s tu t tga r t .de
/if i/ps/Gellerich/adagot o~w. ps).

14. Gnu ada translator (gnat) documentation, 1995. (f tp cs .nyu.edu: /pub/gnat) .
15. R.W. Gray, V. Heurig, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A complete,

flexible compiler construction system. CACM, 35(2):121-131, February 1992.
16. J. Grosch. Generators for High-Speed Front-Ends. In Compiler-Compilers and

High-Speed Compilation, volume 371 of LNCS, pages 81-92. Springer, 1988.
17. J. Grosch. Selected Examples of Scanner Specifications. Technical Report 7,

Gesetlschaft fuer Mathematik und Datenverarbeitung mbH, 1988.
18. J. Grosch. Efficient Generation of Lexical Analysers. Software Practice and Expe-

rience, 19(11):1089-1103, November 1989.
19. J. Grosch. Rex - A Scanner Generator. Technical Report 5, GeseUschaft filer

Mathematik und Datenverarbeitung mbH, 1992.
20. G. Havas and B.S. Majewski. Graph Theoretic Obstacles to Perfect Hashing.

Congressus Numerantium, 98:81-93, 1993.
21. Intel Corporation. Pentium Processor Family Developer's Manual, 1997.
22. SPARC International. SPARC Architecture Manual, Vers. 8. Prentice Hall, 1992.
23. W.L. Johnson, J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic Generation

of Efficient Lexical Processors Using Finite State Techniques. ACM SIGPLAN
Notices, 11(8):805-813, December 1968.

24. D.W. Jones. How (Not) to Code a Finite State Machine. ACM SIGPLAN Notices,
23(8):19-22, 1988.

25. J.R. Levine, T. Mason, and D. Brown. lex ~ yacc. O'Reilly & Associates, Inc.,
Sebastopol, 2. edition, 1990.

26. SUN Microsystems. Solaris 2.3 Software Developer Answerbook, November 1993.
27. H. Moessenboeck. Alex- a simple and efficient scanner generator. A CM SIGPLAN

Notices, 21(5):69-78, May 1986.
28. Vern Paxon. Flex, Version 2.5. University of California, Berkeley, March 1995.
29. U. Post. Gleitzeit - Performance Monitoring deckt Gleitkommanutzung auf. c't,

pages 256-259, Sep 1997.
30. Ada version of REX. (w~. i n f o r m a t i k . u n i - s t u t t g a r t . d e / i f i / p s / c o c k t a ± l) .
31. J. Self. Aflex - An Ada Lexical Analyzer Generator. Technical Report UCI-90-18,

University of California, Irvine, May 1990.
32. D. Szafron and R. Ng. LexAGen: An Interactive Incremental Scanner Generator.

Software - Practice and Experience, 20(5):459-483, 1990.
33. W.F. Tichy, P. Lukowicz, Lutz Prechelt, and E.A. Heinz. Experimental Evaluation

in Computer Science: A Quantitative Study. Journal of Systems and Software,
28(1):9-18, Januar 1995.

34. J.P. Tremblay and P.G. Sorenson. The Theory and Praxis o] Compiler Writing.
McGraw-Hill, 1985.

35. W.M. Waite. The Cost of Lexical Analysis. Software - Practice and Experience,
16(5):473-488, 1986.

36. D.L. Weaver and T. Germond. SPARC Architecture Manual, Version 9. Prentice
Hall, 1994.

37. R. Wilhelm and D. Maurer. Compiler Design. Addison-WesleySpringer, 1995.
38. M. Withopf and A. Stiller. Durchgriff- Direkte Zugriffe unter Windows NT 4.0

und ein entfesselter Cyrix 6x86. c't, pages 312-315, Jan 1997.
39. D.A. Wolverton. A Perfect Hash Function for Ada Reserved Words. ACM Ada

Letters, VI(1):40-44, July/August 1984.

